Non-Ricardian Regimes and Exchange Rates: A High-Frequency Identification

Alberola, Cantu, Cavallino & Mirkov

BIS and SNB

CEMLA Annual Meeting
30 October 2019

The views expressed in this presentation are those of the authors and do not necessarily represent the views of the BIS or SNB.
Summary

Focus
- Behaviour of exchange rates in Non-Ricardian regimes where
 - fiscal policy raises taxes insufficiently to offset higher govt debt
 - the government defaults or inflates the debt away

Contribution
- Theory: few studies explore it in a NK model
- Empirics: test hypothesis on high-frequency (daily) data

Findings
- In the NR equilibria, the exchange rate depreciates after
 - unexpected monetary tightening
 - unexpected government spending shock
- Example country: Brazil (Blanchard, 2004; De Bolle 2015)
 - unconventional signs of the effect of policy shocks on USDBRL around 2002-2003 and 2015
 - probability of the NR regime related to govt debt service
Model

- Continuous time, Markov Switching New Keynesian small open economy model

- Study the reaction of nominal exchange rate to
 - unexpected increase in gov expenditures
 - unexpected increase in mon policy rate

- Under different policy scenarios:
 - **Ricardian equilibrium**: the govt raises taxes to repay debt
 - **Default equilibrium**: the govt defaults on foreign debt
 - **Inflation equilibrium**: the central bank inflates debt away
- The representative Home household maximizes

\[
\int_0^\infty e^{-\rho t} \left[\ln \left(C_H(t)^{1-\alpha} C_F(t)^\alpha \right) - \frac{L(t)^{1+\varphi}}{1+\varphi} \right] dt
\]

- Households save in domestic government bonds D, thus

\[
dD(t) = [D(t)i(t) - P(t)C(t) + P_H(t)(Y(t) - T(t))] dt
\]

where Y is output and T are real lump-sum taxes
- Monopolistic firms, \(j \in [0, 1] \), produce differentiated goods

\[Y_j(t) = L_j(t) \]

- Firms choose their domestic-currency price and the LOOP holds:

\[P^*_H,j(t) = P_{H,j}(t) / \mathcal{E}(t) \]

where \(\mathcal{E} \) is the nominal exchange rate (price of foreign currency)

- Firms set prices infrequently, a la Calvo

\[
\max_{\hat{P}_{H,j}(t)} \int_t^{\infty} \theta e^{-(\rho+\theta)(k-t)} Y_j(k|t) \frac{\hat{P}_{H,j}(t) - (1 - \tau(k)) W(k)}{C(k) P(k)} dk
\]
- The government issues domestic-currency debt B

$$B(t) = \underbrace{D(t)}_{\text{dom debt}} + \underbrace{F(t)}_{\text{for debt}}$$

- The government can raise taxes T or default on foreign debt

$$dB(t) = [i(t)B(t) - \delta(t)F(t) - P_H(t)(T(t) - G(t))]\,dt$$

where δ is the default rate and G are exogenous expenditures

- Foreign investors are risk-neutral, thus

$$i(t) - \delta(t) - i^*(t) - \frac{d\mathcal{E}(t)}{\mathcal{E}(t)} = 0$$
Government policies

- The government follows the fiscal rule

\[T(t) = T + \phi_T \tilde{B}(t) \]

where \(\tilde{B} \equiv B/P_H \) denotes real debt and \(\phi_T \geq 0 \)

- The default rate (or the prob. of default) is increasing in the real stock of debt

\[\delta(t) = \begin{cases}
\phi_D \left(\frac{\tilde{B}(t)}{\tilde{B}} - 1 \right) & \text{if } \tilde{B}(t) \geq \tilde{B} \\
0 & \text{otherwise}
\end{cases} \]

- The central bank follows the Taylor rule

\[i(t) = \rho + (1 + \phi_\pi) \pi_H(t) + m(t) \]

where \(m \) is an exogenous monetary policy shock
Fiscal policy is stochastic: the Ricardian regime, denoted with \(R \) and a non-Ricardian regime, denoted with \(NR \).

\[
\begin{align*}
\phi^R_T &> \rho & \phi^R_D &= 0 \\
\phi^{NR}_T &= 0 & \phi^{NR}_D &> 0
\end{align*}
\]

The transition between the two regimes is exogenous and governed by following transition rates: \(\sigma^{NR} \) is the instantaneous probability of switching from the Ricardian to the non-Ricardian regime, and \(\sigma^R \) is the probability of switching from the non-Ricardian to the Ricardian regime.
The log-linear dynamics around a steady state with $\tilde{F} > 0$ are

\[
\mathbb{E}[d\lambda(t) | j] = \phi_D^j \hat{b}(t) \, dt
\]
\[
\mathbb{E}[dy(t) | j] = (1 - \gamma) \left(\phi_{\pi} \pi_H(t) - \alpha \eta \phi_D^j \hat{b}(t) + m(t) \right) \, dt + \gamma dg(t)
\]
\[
\mathbb{E}[d\pi_H(t) | j] = \left(\rho \pi_H(t) - \frac{\kappa \omega}{1 - \gamma} y(t) + \frac{\kappa \gamma}{1 - \gamma} g(t) \right) \, dt
\]
\[
\mathbb{E}[d\hat{b}(t) | j] = \left[\left(\rho - \phi_T^j - \phi_D^j \right) \hat{b}(t) + \beta g(t) + m(t) \right] \, dt
\]
\[
\mathbb{E}[d\hat{z}(t) | j] = (\rho \hat{z}(t) + \alpha \lambda(t)) \, dt
\]

and the exogenous variables

\[
dg = -\varrho_g g dt
\]
\[
dm = -\varrho_m m dt
\]
The system of SDEs (1) has a unique solution iff $\phi_\pi > 0$. The solution is mean-square stable iff

$$\phi^{NR}_D > \rho - \frac{\sigma^R (\phi^R_T - \rho)}{\sigma^{NR} + 2 (\phi^R_T - \rho)}$$

(1)
Proposition

Assume $\phi^R_T \downarrow \rho$ and $\phi^{NR}_D \uparrow \rho$. Then the responses of the nominal exchange rate to a government spending shock in the Ricardian and non-Ricardian regimes are

$$\frac{e^R(0)}{g(0)} = -\frac{\gamma \varphi \kappa \phi_\pi}{\rho \rho + \rho^2 + \omega \kappa \phi_\pi} + \sigma^{NR} \beta \psi$$

(2)

$$\frac{e^{NR}(0)}{g(0)} = \eta \beta \frac{1 - \alpha}{\rho + \varrho} - \frac{\gamma \varphi \kappa \phi_\pi + \rho \alpha \eta \beta \left(1 - \frac{\rho \rho + \rho^2}{\omega \kappa \phi_\pi}\right)}{\rho \rho + \rho^2 + \omega \kappa \phi_\pi} - \sigma^R \beta \psi$$

(3)

where ψ is defined in the appendix and $g(0) > 0$. Similarly, the responses of the nominal exchange rate to a monetary policy shock in the two regimes are

$$\frac{e^R(0)}{m(0)} = -\frac{\rho + \varrho}{\omega \kappa \phi_\pi} + \sigma^{NR} \psi$$

(4)
Key equation

$$e(0) = \int_0^\infty \left[\delta(t) + \pi_H(t) - (i(t) - i^*) \right] dt$$
High-frequency identification

- Asset prices reflect all the available information
- Some reflect expectations of future policy
e.g. Fed funds futures
- Price changes around policy actions reflect unexpected or “surprise” policy changes
 i.e. policy shocks
Introducing Markov Switching

\[e_d - e_{d-1} = \delta_0(s_d) + \delta_1(s_d)\xi_{v,d} + \delta_2 M_d + \varepsilon_d \]

where

d – the announcement day

e_d – asset price (e.g. exchange rate)

\(\xi_{v,d} \) – policy shock (e.g. \(v \) is the key policy rate)

\(M_d \) – other macro shocks

\(\varepsilon_d \sim N(0, \sigma_{s_d}^2) \)

\(s_d = \{1, 2\} \)
Markov Switching regimes

- Ricardian (R) vs. Non-Ricardian (NR)

Expected signs of the slope coefficients:

- negative (appreciation of the exchange rate) when agents perceive that the economy is in a Ricardian regime state.
- positive (deprecation of the exchange rate) when agents perceive that the economy is in a non-Ricardian regime state and the risk-premium channel dominates.
- negative (appreciation of the exchange rate) when agents perceive that the economy is in non-Ricardian regime state and the inflation channel dominates.

Additionally, Markov-switching effect, which works to average the response of the exchange rate across the two regimes.
Example country: Brazil

- dependent variable: USDBRL exchange rate
 - Daily from July 1999 to April 2018 from the BIS
- independent variable: monetary policy shock
 - 1-day difference in DI futures rates from Bloomberg
 - 179 policy actions by the Brazilian Central Bank (BCB) from July 1999 to April 2018
- independent variable: fiscal policy shock
 - realized minus the (average) expected primary balance from Bloomberg Survey
 - 180 announcements of primary balance from April 2003 to April 2018
- relating unobservable regimes to fiscal stance: primary deficit, interest payments and probability of default.
Results

<table>
<thead>
<tr>
<th></th>
<th>FP Regression</th>
<th>MP Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>States</td>
<td>States</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>NR</td>
</tr>
<tr>
<td>P</td>
<td>0.99</td>
<td>0.01</td>
</tr>
<tr>
<td>NR</td>
<td>0.18</td>
<td>0.82</td>
</tr>
<tr>
<td>σ</td>
<td>5.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>δ₀</td>
<td>-0.49</td>
<td>4.56</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>δ₁</td>
<td>0.07</td>
<td>4.61</td>
</tr>
<tr>
<td></td>
<td>(0.71)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>δ_{GDP}</td>
<td>-0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.88)</td>
<td></td>
</tr>
<tr>
<td>δ_{EMBI}</td>
<td>7.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>δ_{macro}</td>
<td>65.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>FP Shock</th>
<th></th>
<th>MP Shock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intercept</td>
<td>Slope</td>
<td>Intercept</td>
<td>Slope</td>
</tr>
<tr>
<td>Primary deficit</td>
<td>-1.44</td>
<td>0.14</td>
<td>-1.24</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.03)</td>
<td>(0.00)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Interest payments</td>
<td>-4.61</td>
<td>0.45</td>
<td>-3.22</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Prob of default</td>
<td>-2.25</td>
<td>3.63</td>
<td>-1.91</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Observations</td>
<td>180</td>
<td></td>
<td>148</td>
<td></td>
</tr>
</tbody>
</table>
Thank you for attention.