DSGE Model for Policy Analysis

Rodrigo Caputo Juan Pablo Medina

Central Bank of Chile

XIII Meeting of the Network of America Central Bank Researchers, November 2008, México City.
1. Recent Developments

2. Relevant Issues for DSGE Implementation

3. Challenges
Recent Development

Recent Events

- Bank of Indonesia and BIS Workshop, Bali, June 3-4, 2008 (Keynote, Volker Wieland)
- Banco Central de Reserva del Perú and CEMLA Workshop, Lima, June 23-27, 2008 (Keynote, Fabio Canova)
- Macroeconomic Modeling Workshop, Cartagena, Colombia, October 9-10, 2008 (Keynote, Fabio Canova and Douglas Laxton)

- Macroeconomic Modeling Workshop 2009 is in Israel
Recent Events

- Bank of Indonesia and BIS Workshop, Bali, June 3-4, 2008 (Keynote, Volker Wieland)
- Banco Central de Reserva del Perú and CEMLA Workshop, Lima, June 23-27, 2008 (Keynote, Fabio Canova)
- Macroeconomic Modeling Workshop, Cartagena, Colombia, October 9-10, 2008 (Keynote, Fabio Canova and Douglas Laxton)

- Macroeconomic Modeling Workshop 2009 is in Israel
Recent Events

- Bank of Indonesia and BIS Workshop, Bali, June 3-4, 2008 (Keynote, Volker Wieland)
- Banco Central de Reserva del Perú and CEMLA Workshop, Lima, June 23-27, 2008 (Keynote, Fabio Canova)
- Macroeconomic Modeling Workshop, Cartagena, Colombia, October 9-10, 2008 (Keynote, Fabio Canova and Douglas Laxton)

 - Macroeconomic Modeling Workshop 2009 is in Israel
Recent Events

- Bank of Indonesia and BIS Workshop, Bali, June 3-4, 2008 (Keynote, Volker Wieland)
- Banco Central de Reserva del Perú and CEMLA Workshop, Lima, June 23-27, 2008 (Keynote, Fabio Canova)
- Macroeconomic Modeling Workshop, Cartagena, Colombia, October 9-10, 2008 (Keynote, Fabio Canova and Douglas Laxton)
 - Macroeconomic Modeling Workshop 2009 is in Israel
DSGE Models in CEMLA group

- Several central banks have developed (are developing) DSGE models
- Besides being used for policy analysis they can (and sometimes are) used for forecasting
- "Work overall impressive, especially relative to what I have seen in developed countries" (Canova)
- Models introduced several features that are relevant in our economies:
 - Commodity producers
 - Oil as an input in production
 - Some rule of thumb agents (consumers and producers)
 - Multiple monetary policy objectives
 - Dollarization
 - Banks and credit
 - Fiscal rules
Several central banks have developed (are developing) DSGE models.

Besides being used for policy analysis they can (and sometimes are) used for forecasting.

"Work overall impressive, especially relative to what I have seen in developed countries" (Canova)

Models introduced several features that are relevant in our economies:

- Commodity producers
- Oil as an input in production
- Some rule of thumb agents (consumers and producers)
- Multiple monetary policy objectives
- Dollarization
- Banks and credit
- Fiscal rules
Several central banks have developed (are developing) DSGE models.

Besides being used for policy analysis they can (and sometimes are) used for forecasting.

"Work overall impressive, especially relative to what I have seen in developed countries" (Canova)

Models introduced several features that are relevant in our economies:

- Commodity producers
- Oil as an input in production
- Some rule of thumb agents (consumers and producers)
- Multiple monetary policy objectives
- Dollarization
- Banks and credit
- Fiscal rules
Several central banks have developed (are developing) DSGE models.

Besides being used for policy analysis they can (and sometimes are) used for forecasting.

"Work overall impressive, especially relative to what I have seen in developed countries" (Canova)

Models introduced several features that are relevant in our economies:

- Commodity producers
- Oil as an input in production
- Some rule of thumb agents (consumers and producers)
- Multiple monetary policy objectives
- Dollarization
- Banks and credit
- Fiscal rules
Several central banks have developed (are developing) DSGE models.

Besides being used for policy analysis they can (and sometimes are) used for forecasting.

"Work overall impressive, especially relative to what I have seen in developed countries" (Canova)

Models introduced several features that are relevant in our economies:

- Commodity producers
 - Oil as an input in production
 - Some rule of thumb agents (consumers and producers)
- Multiple monetary policy objectives
- Dollarization
- Banks and credit
- Fiscal rules
Several central banks have developed (are developing) DSGE models

Besides being used for policy analysis they can (and sometimes are) used for forecasting

"Work overall impressive, especially relative to what I have seen in developed countries" (Canova)

Models introduced several features that are relevant in our economies:

- Commodity producers
- Oil as an input in production
- Some rule of thumb agents (consumers and producers)
- Multiple monetary policy objectives
- Dollarization
- Banks and credit
- Fiscal rules
Several central banks have developed (are developing) DSGE models. Besides being used for policy analysis they can (and sometimes are) used for forecasting. "Work overall impressive, especially relative to what I have seen in developed countries" (Canova).

Models introduced several features that are relevant in our economies:

- Commodity producers
- Oil as an input in production
- Some rule of thumb agents (consumers and producers)
- Multiple monetary policy objectives
- Dollarization
- Banks and credit
- Fiscal rules
Several central banks have developed (are developing) DSGE models.

Besides being used for policy analysis they can (and sometimes are) used for forecasting.

"Work overall impressive, especially relative to what I have seen in developed countries" (Canova)

Models introduced several features that are relevant in our economies:

- Commodity producers
- Oil as an input in production
- Some rule of thumb agents (consumers and producers)
- Multiple monetary policy objectives
- Dollarization
- Banks and credit
- Fiscal rules
DSGE Models in CEMLA group

- Several central banks have developed (are developing) DSGE models
- Besides being used for policy analysis they can (and sometimes are) used for forecasting
- "Work overall impressive, especially relative to what I have seen in developed countries" (Canova)
- Models introduced several features that are relevant in our economies:
 - Commodity producers
 - Oil as an input in production
 - Some rule of thumb agents (consumers and producers)
 - Multiple monetary policy objectives
 - Dollarization
 - Banks and credit
 - Fiscal rules
DSGE Models in CEMLA group

- Several central banks have developed (are developing) DSGE models
- Besides being used for policy analysis they can (and sometimes are) used for forecasting
- "Work overall impressive, especially relative to what I have seen in developed countries" (Canova)
- Models introduced several features that are relevant in our economies:
 - Commodity producers
 - Oil as an input in production
 - Some rule of thumb agents (consumers and producers)
 - Multiple monetary policy objectives
 - Dollarization
 - Banks and credit
 - Fiscal rules
Recent Developments

DSGE Models in CEMLA group

- Several central banks have developed (are developing) DSGE models
- Besides being used for policy analysis they can (and sometimes are) used for forecasting
- "Work overall impressive, especially relative to what I have seen in developed countries" (Canova)
- Models introduced several features that are relevant in our economies:
 - Commodity producers
 - Oil as an input in production
 - Some rule of thumb agents (consumers and producers)
 - Multiple monetary policy objectives
 - Dollarization
 - Banks and credit
 - Fiscal rules
Potentially Missing Features

- Labor migration (out and back) and remittances
- No role for relative price movements (services v/s manufacturing)
- At times capital
- Role for foreign direct investment
- Public/nationalized firms (non-competitive sector)
- The informal sector may be large
- Certain sectors maybe dominating the economy
- Certain institutions may be changing
Potentially Missing Features

- Labor migration (out and back) and remittances
- No role for relative price movements (services v/s manufacturing)
 - At times capital
 - Role for foreign direct investment
 - Public/nationalized firms (non-competitive sector)
 - The informal sector may be large
 - Certain sectors maybe dominating the economy
 - Certain institutions may be changing
Potentially Missing Features

- Labor migration (out and back) and remittances
- No role for relative price movements (services v/s manufacturing)
- At times capital
 - Role for foreign direct investment
 - Public/nationalized firms (non-competitive sector)
 - The informal sector may be large
 - Certain sectors maybe dominating the economy
 - Certain institutions may be changing
Potentially Missing Features

- Labor migration (out and back) and remittances
- No role for relative price movements (services v/s manufacturing)
- At times capital
- Role for foreign direct investment
 - Public/nationalized firms (non-competitive sector)
 - The informal sector may be large
 - Certain sectors maybe dominating the economy
 - Certain institutions may be changing
Relevant Issues for DSGE Implementation

Potentially Missing Features

- Labor migration (out and back) and remittances
- No role for relative price movements (services v/s manufacturing)
- At times capital
- Role for foreign direct investment
- Public/nationalized firms (non-competitive sector)
 - The informal sector may be large
 - Certain sectors maybe dominating the economy
 - Certain institutions may be changing
Potentially Missing Features

- Labor migration (out and back) and remittances
- No role for relative price movements (services v/s manufacturing)
- At times capital
- Role for foreign direct investment
- Public/nationalized firms (non-competitive sector)
- The informal sector may be large
 - Certain sectors may be dominating the economy
 - Certain institutions may be changing
Potentially Missing Features

- Labor migration (out and back) and remittances
- No role for relative price movements (services v/s manufacturing)
- At times capital
- Role for foreign direct investment
- Public/nationalized firms (non-competitive sector)
- The informal sector may be large
- Certain sectors maybe dominating the economy
- Certain institutions may be changing
Potentially Missing Features

- Labor migration (out and back) and remittances
- No role for relative price movements (services v/s manufacturing)
- At times capital
- Role for foreign direct investment
- Public/nationalized firms (non-competitive sector)
- The informal sector may be large
- Certain sectors maybe dominating the economy
- Certain institutions may be changing
Modeling Issues

- Financial frictions and fiscal policy can be introduced explicitly
- Very few operation models where credit plays a role in transmitting (amplifying) monetary policy shocks
- One model or many models? Should explain both trend and cycle?
- Suggestion: start from small models and enlarge them. Large models are difficult to understand
- Role of relative price adjustments (particularly relevant for an open economy where exchange rate fluctuations play a central role)
Financial frictions and fiscal policy can be introduced explicitly

Very few operation models where credit plays a role in transmitting (amplifying) monetary policy shocks

One model or many models? Should explain both trend and cycle?

Suggestion: start from small models and enlarge them. Large models are difficult to understand

Role of relative price adjustments (particularly relevant for an open economy where exchange rate fluctuations play a central role)
Financial frictions and fiscal policy can be introduced explicitly

Very few operation models where credit plays a role in transmitting (amplifying) monetary policy shocks

One model or many models? Should explain both trend and cycle?

Suggestion: start from small models and enlarge them. Large models are difficult to understand

Role of relative price adjustments (particularly relevant for an open economy where exchange rate fluctuations play a central role)
Financial frictions and fiscal policy can be introduced explicitly
Very few operation models where credit plays a role in transmitting (amplifying) monetary policy shocks
One model or many models? Should explain both trend and cycle?
Suggestion: start from small models and enlarge them. Large models are difficult to understand
Role of relative price adjustments (particularly relevant for an open economy where exchange rate fluctuations play a central role)
Modeling Issues

- Financial frictions and fiscal policy can be introduced explicitly.
- Very few operation models where credit plays a role in transmitting (amplifying) monetary policy shocks.
- One model or many models? Should explain both trend and cycle?
- Suggestion: start from small models and enlarge them. Large models are difficult to understand.
- Role of relative price adjustments (particularly relevant for an open economy where exchange rate fluctuations play a central role).
Modeling Issues

To avoid the problems of relying just on one model (view), develop a suite of models using different modeling and estimation approach.

- Linear approximations are convenient, but:
 - Nonlinearities may have crucial influence on the economy and policy design.
 - Regime change is nonlinear.
 - Learning introduces a nonlinearity.
Modeling Issues

- To avoid the problems of relaying just on one model (view), develop a suite of models using different modeling and estimation approach
- Linear approximations are convenient, but:
 - Nonlinearities may have crucial influence on the economy and policy design
 - Regime change is nonlinear
 - Learning introduces a nonlinearity
Relevant Issues for DSGE Implementation

Modeling Issues

- To avoid the problems of relying just on one model (view), develop a suite of models using different modeling and estimation approach.
- Linear approximations are convenient, but:
 - Nonlinearities may have crucial influence on the economy and policy design.
 - Regime change is nonlinear.
 - Learning introduces a nonlinearity.
Modeling Issues

- To avoid the problems of relying just on one model (view), develop a suite of models using different modeling and estimation approaches.
- Linear approximations are convenient, but:
 - Nonlinearities may have crucial influence on the economy and policy design.
 - Regime change is nonlinear.
 - Learning introduces a nonlinearity.
Modeling Issues

To avoid the problems of relaying just on one model (view), develop a suite of models using different modeling and estimation approach.

Linear approximations are convenient, but:

- Nonlinearities may have crucial influence on the economy and policy design.
- Regime change is nonlinear.
- Learning introduces a nonlinearity.
Estimation Issues

- Fit the model with ML and later go Bayesian
- Do Bayesian with and without added measurement errors. How much is the model misspecified? In which equation? What is the measurement error doing?
- System-wide methods choose parameters to minimize the largest discrepancy of the model to the data. Careful with having one equation "very" misspecified.
- If breaks exist, use pre-break data to "calibrate" the prior. Don’t throw away.
- Watch out for identification problems
Fit the model with ML and later go Bayesian

Do Bayesian with and without added measurement errors. How much is the model misspecified? In which equation? What is the measurement error doing?

- System-wide methods choose parameters to minimize the largest discrepancy of the model to the data. Careful with having one equation "very" misspecified.
- If breaks exist, use pre-break data to "calibrate" the prior. Don’t throw away.
- Watch out for identification problems
Estimation Issues

- Fit the model with ML and later go Bayesian
- Do Bayesian with and without added measurement errors. How much is the model misspecified? In which equation? What is the measurement error doing?
- System-wide methods choose parameters to minimize the largest discrepancy of the model to the data. Careful with having one equation "very" misspecified.
- If breaks exist, use pre-break data to "calibrate" the prior. Don’t throw away.
- Watch out for identification problems
Estimation Issues

- Fit the model with ML and later go Bayesian
- Do Bayesian with and without added measurement errors. How much is the model misspecified? In which equation? What is the measurement error doing?
- System-wide methods choose parameters to minimize the largest discrepancy of the model to the data. Careful with having one equation ”very” misspecified.
- If breaks exist, use pre-break data to ”calibrate” the prior. Don´t throw away.
- Watch out for identification problems
Estimation Issues

- Fit the model with ML and later go Bayesian
- Do Bayesian with and without added measurement errors. How much is the model misspecified? In which equation? What is the measurement error doing?
- System-wide methods choose parameters to minimize the largest discrepancy of the model to the data. Careful with having one equation "very" misspecified.
- If breaks exist, use pre-break data to "calibrate" the prior. Don´t throw away.
- Watch out for identification problems
In general, models abstract from details in financial markets and interaction with real economy

A common presumption: asset markets passively reflect fluctuations in standard shocks and contribute little to propagation

Challenge: to integrate financial frictions into standard DSGE models. How?:

- "Financial Factors in Economic Fluctuations" Christiano, Motto and Rostagno (2008)
- "Credit and Banking in a DSGE Model" Gerali, Neri, Sessa and Signoretti (2008)
Financial Factors

- In general, models abstract from details in financial markets and interaction with real economy
- A common presumption: asset markets passively reflect fluctuations in standard shocks and contribute little to propagation
- Challenge: to integrate financial frictions into standard DSGE models. How?:
 - “Credit and Banking in a DSGE Model” Gerali, Neri, Sessa and Signoretti (2008)
In general, models abstract from details in financial markets and interaction with real economy.

A common presumption: asset markets passively reflect fluctuations in standard shocks and contribute little to propagation.

Challenge: to integrate financial frictions into standard DSGE models. How?:

- "Financial Factors in Economic Fluctuations" Christiano, Motto and Rostagno (2008)
- "Credit and Banking in a DSGE Model" Gerali, Neri, Sessa and Signoretti (2008)
Financial Factors

- In general, models abstract from details in financial markets and interaction with real economy.
- A common presumption: asset markets passively reflect fluctuations in standard shocks and contribute little to propagation.
- Challenge: to integrate financial frictions into standard DSGE models. How?:
 - ”Financial Factors in Economic Fluctuations” Christiano, Motto and Rostagno (2008)
 - ”Credit and Banking in a DSGE Model” Gerali, Neri, Sessa and Signoretti (2008)
In general, models abstract from details in financial markets and interaction with real economy.

A common presumption: asset markets passively reflect fluctuations in standard shocks and contribute little to propagation.

Challenge: to integrate financial frictions into standard DSGE models. How?:

- "Financial Factors in Economic Fluctuations” Christiano, Motto and Rostagno (2008)
- ”Credit and Banking in a DSGE Model” Gerali, Neri, Sessa and Signoretti (2008)
Optimal Policy and Central Bank Preferences

- Monetary policy is characterized by a Taylor rule
- This is a reduced form without structural interpretation
- An alternative is to make explicit the problem the CB is trying to minimize
- This implies deriving an optimal policy reaction given a loss criterion
- It has the advantage of being flexible (can change the criterion) and have a structural interpretation
- Can generate optimal policy projections
- Can be implemented following Adolfson et al (2008)
Monetary policy is characterized by a Taylor rule

- This is a reduced form without structural interpretation
- An alternative is to make explicit the problem the CB is trying to minimize
- This implies deriving an optimal policy reaction given a loss criterion
- It has the advantage of being flexible (can change the criterion) and have a structural interpretation
- Can generate optimal policy projections
- Can be implemented following Adolfson et al (2008)
Monetary policy is characterized by a Taylor rule
- This is a reduced form without structural interpretation
- An alternative is to make explicit the problem the CB is trying to minimize
 - This implies deriving an optimal policy reaction given a loss criterion
 - It has the advantage of being flexible (can change the criterion) and have a structural interpretation
 - Can generate optimal policy projections
 - Can be implemented following Adolfson et al (2008)
Optimal Policy and Central Bank Preferences

- Monetary policy is characterized by a Taylor rule
- This is a reduced form without structural interpretation
- An alternative is to make explicit the problem the CB is trying to minimize
- This implies deriving an optimal policy reaction given a loss criterion
 - It has the advantage of being flexible (can change the criterion) and have a structural interpretation
 - Can generate optimal policy projections
 - Can be implemented following Adolfson et al (2008)
Monetary policy is characterized by a Taylor rule. This is a reduced form without structural interpretation. An alternative is to make explicit the problem the CB is trying to minimize. This implies deriving an optimal policy reaction given a loss criterion. It has the advantage of being flexible (can change the criterion) and have a structural interpretation. Can generate optimal policy projections. Can be implemented following Adolfson et al (2008).
Monetary policy is characterized by a Taylor rule
This is a reduced form without structural interpretation
An alternative is to make explicit the problem the CB is trying to minimize
This implies deriving an optimal policy reaction given a loss criterion
It has the advantage of being flexible (can change the criterion) and have a structural interpretation
Can generate optimal policy projections
Can be implemented following Adolfson et al (2008)
Monetary policy is characterized by a Taylor rule
This is a reduced form without structural interpretation
An alternative is to make explicit the problem the CB is trying to minimize
This implies deriving an optimal policy reaction given a loss criterion
It has the advantage of being flexible (can change the criterion) and have a structural interpretation
Can generate optimal policy projections
Can be implemented following Adolfson et al (2008)