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1 Introduction

The worldwide spike in inflation following the COVID pandemic, preceded by an unprecedented fis-
cal expansion in response to that shock, reignited the debate about fiscal and monetary policy interac-
tions —especially as the amount of government debt has significantly increased almost everywhere
in recent years (for instance, IMF, 2025 reports that close to 70% of the 175 economies in their sample
had, by 2024, heavier public debt burdens than before 2020). The Fiscal Theory of the Price Level
(FTPL) has been one of the main theoretical frameworks for addressing these issues (foundational
contributions include Leeper, 1991, Sims, 1994, and Woodford, 1994, with a detailed textbook treat-
ment provided by Cochrane, 2023). Most studies in that literature have focused on closed-economy
frameworks. Even the scattered papers analyzing open economies (discussed below) omit a critical
aspect of public finances in emerging and developing economies: government debt denominated in
foreign currency. For instance, according to Arslanalp and Tsuda (2014), in 2023, the average share
of foreign currency debt in emerging countries was 30%, with a standard deviation of 21%, while for
developing economies these values were 52% and 25%, respectively. Against this background, we
study the implications of the FTPL for the dynamics of an otherwise standard New Keynesian model
of a small open economy, with traded and non-traded goods, paying particular attention to the role
played by the currency composition of government debt.

The FTPL focuses on the lifetime government budget constraint (a.k.a. the debt-valuation equa-
tion), which requires the discounted present value of current and expected primary surpluses to
equal the real value of outstanding nominal debt. In a closed economy setup, where debt is fully de-
nominated in local currency, a change in the net present value of primary surpluses (not compensated
in the future) requires an opposite-sign movement in the price level to dilute (or revalue, depending
on the required sign) the real burden of outstanding nominal debt.

An open economy setup allows us to broaden the analysis in several relevant dimensions. First,
even if debt is fully denominated in domestic currency, FTPL considerations might induce non-trivial
dynamics in the nominal exchange rate (as well as the real one, under nominal rigidities). Second,
the larger the share of debt denominated in foreign currency, the smaller the amount of nominal debt
that can be diluted via inflation, magnifying the effects on prices relative to a case where all liabili-
ties are in domestic currency. Third, when part of the debt is in foreign currency, any movement in
the real exchange rate also affects the debt-valuation equation; which might be particularly relevant
for understanding the propagation of real shocks that would move the real exchange rate even under
monetary neutrality. We aim to understand whether these potentially distinct channels are both qual-
itatively and quantitatively relevant, relative to the standard New-Keynesian open-economy analysis
with passive fiscal policy frequently used in both academic and policy circles.

The model we use is an infinite horizon, small and open economy with incomplete asset markets
and a representative household. There is an exogenous endowment of tradables, while non-tradables
are produced using labor under price rigidities that generate a New-Keynesian Phillips curve. Fiscal
policy levies lump-sum taxes to finance debt denominated in both domestic and foreign currencies,
while monetary policy sets a rule for the nominal interest rate. Different combinations of active or
passive fiscal and monetary rules modify the dynamics of the economy.

We begin by studying the (local) existence and uniqueness of a stationary equilibrium under
interest rate rules. Results resemble those obtained in closed-economy setups, almost independently
of the currency composition of debt. In particular, under a Ricardian/passive fiscal rule, the Taylor
principle (i.e., the monetary policy rate reacting more than proportionally to inflation) is enough to
guarantee a unique rational-expectations equilibrium; otherwise, multiplicity arises. Instead, if fiscal
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policy is non-Ricardian/active, the uniqueness of the equilibrium requires a passive monetary policy
(i.e., the policy rate moving less than proportionally to inflation).

We next turn to analyzing the transmission of monetary and fiscal shocks. Dynamics not only vary
depending on the fiscal and monetary regime (as studied elsewhere in closed-economy models), but
our analysis also explores the consequences for the real and nominal exchange rates. For example,
while under a passive fiscal setup an increase in the policy rate leads to both a nominal and real
appreciation, if fiscal policy is active a nominal depreciation emerges.

Moreover, we show that these differences are exacerbated in the presence of debt denominated in
foreign currency. When fiscal policy is passive, a smaller share of domestic-currency debt requires a
larger change in the price level to compensate, which, in turn, magnifies the effects on the exchange
rate. These results speak directly to the empirical literature documenting that an increase in the
domestic monetary policy rate leads to an appreciation in developed economies, while the opposite
seems to happen in emerging countries (see, for instance, Hnatkovska et al., 2016 and Bolhuis et al.,
2024). Our analysis provides a novel interpretation of these differences based on FTPL considerations
when foreign-currency debt is accounted for.

Finally, we study how alternative monetary and fiscal regimes alter the propagation of external
shocks, such as surprises in trade-related income and the international cost of borrowing. We show
that when debt is fully denominated in domestic currency, and as long as the policy rate responds to
movements in inflation (even if the Taylor principle is not satisfied under a Ricardian fiscal regime),
the particular fiscal/monetary configuration does not generate qualitatively different dynamics. In
contrast, a larger fraction of debt in foreign currency significantly changes the dynamics, specially for
variables related to the non-traded sector. In particular, while a jump in the nominal exchange rate
helps dilute debt in domestic currency, it simultaneously increases the real burden of repaying dollar-
denominated debt. Thus, a stronger reaction in non-traded inflation is generally required, leading to
changes in non-traded activity; to the extent that it might even reverse the sign originally induced by
the real shock under consideration.

This paper relates to the recent literature that theoretically studies how the New Keynesian prop-
agation mechanism differs under alternative fiscal and monetary configurations, such as the textbook
by Cochrane (2023), or the work by Caramp and Silva (2023). Our analysis complements these stud-
ies by considering the differences that may arise in an open economy setting. It also highlights that,
under sticky prices, FTPL effectively becomes a fiscal theory of the real exchange rate, particularly if
a fraction of government debt is denominated in foreign currency.

A few studies have previously analyzed how FTPL extends to open economies. Earlier examples
include Loyo (1999), Dupor (2000), and Daniel (2001), while Bianchi (2021) is a more recent contribu-
tion. Many of these studies assume flexible prices in setups where purchasing power parity holds,
leaving no role for the real exchange rate. In contrast, by considering non-traded goods and sticky
prices, we are able to generate non-trivial dynamics for both the nominal and the real exchange rates.
Moreover, once the currency composition of debt is taken into account (which these previous studies
omit) the real exchange rate plays a crucial role in the debt valuation equation. Finally, while previous
work either analyzes how alternative fiscal and monetary configurations determine the equilibrium
in open economies or how the transmission of monetary and fiscal shocks is shaped by FTPL consid-
erations, we also examine how the propagation of other real shocks is affected by different monetary
and fiscal regimes, particularly when foreign-currency debt is present.

The rest of the paper is organized as follows. Section 2 describes the model, including the alter-
native fiscal and monetary configurations we consider. The analysis of the existence and uniqueness
of equilibria is presented in Section 3. The propagation of monetary and fiscal shocks is discussed in
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Section 4. Section 5 studies the impact of external shocks and the role played by the fiscal/monetary
setup, while Section 6 presents several robustness exercises. Finally, Section 7 concludes.

2 The Model

We use a standard New Keynesian model, for instance, Schmitt-Grohé and Uribe (2017, Ch. 9.16).
This is an infinite-horizon, small and open economy with discrete time and uncertainty. Domestic
households derive utility from final-consumption goods and disutility from labor. Financial markets
include one-period, non-contingent bonds denominated in both domestic and foreign currencies (pe-
sos and dollars, for simplicity). There is an exogenous endowment of tradables, satisfying the law of
one price, with its dollar price determined abroad. In contrast, non-tradable goods have a monop-
olistically competitive structure, with a continuum of varieties, each produced by a monopolist that
demands labor and faces a Calvo pricing friction. Final-consumption goods are composed of both
tradables and non-tradables.

The fiscal authority spends an exogenous amount of non-traded goods, financed by both lump-
sum and proportional-income taxes, as well as by issuing debt in both currencies. We assume that
local-currency bonds are held exclusively by domestic households, while dollar-denominated debt
can also be purchased by foreigners (who also lend to domestic households). Finally, monetary policy
follows an interest-rate rule.

2.1 Households

The domestic representative household seeks to maximize

E0

{
∞

∑
t=0

βt
[
(ct)1−σ

1 − σ
− χ

(ht)1+φ

1 + φ

]}
,

where ct denotes aggregate consumption, ht hours worked, while β ∈ (0, 1) and σ, φ, χ > 0 are
parameters capturing, respectively, the discount factor, risk aversion, inverse-Frisch elasticity of labor
supply, and relative dis-utility of hours worked. In every period t, they face the following budget
constraint in domestic currency,

Ptct + StDH∗
t−1 +

Bt

Rt
+ Tt = (1 − νt) (Wtht + Σt) + Bt−1 + St

DH∗
t

R∗
t

. (1)

The left-hand side includes uses of income: final consumption (with price Pt), repayment of debt obli-
gations in dollars decided at t − 1 (DH∗

t−1 is the amount in dollars to be repaid, and St is the nominal
exchange rate), purchases of domestic-currency bonds Bt (with a gross nominal rate Rt), and lump-
sum taxes Tt. The available resources on the right-hand side include labor income (Wt is the hourly
nominal wage) and profits from the ownership of domestic companies (Σt), both taxed at a propor-
tional rate νt; income from domestic bonds (Bt−1) purchased at t − 1; and new debt in dollars (DH∗

t ,
with a gross rate R∗

t ). Households also face No-Ponzi-game conditions (NPGC) for each financial
asset.1

1These, as well as transversality conditions for fiscal policy, are discussed in depth in Appendix A. However, as we
work with a linearized version of the model and focus only on the local existence and uniqueness of equilibrium (as in
most of the literature working with New-Keynesian stochastic models), most of the issues discussed in the appendix are
not consequential for the rest of the analysis.
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The optimality conditions characterizing the solution to the household problem are the budget
constraint (1), both NPGC holding with equality (transversality conditions), and

(1 − νt)wt(ct)
−σ = χ(ht)

φ, (ct)
−σ = βRtEt

{
(ct+1)

−σ

πt+1

}
, (ct)

−σ = βR∗
t Et

{
(ct+1)

−σπS
t+1

πt+1

}
,

with wt ≡ Wt/Pt, πt ≡ Pt/Pt−1, and πS
t ≡ St/St−1. These characterize the trade-offs between,

respectively, consumption and hours worked, as well as current and future consumption through
either type of financial asset.

2.2 Supply side

Final consumption goods are produced by competitive firms using the technology,

ct =

[
ω1/η

(
cN

t

)1−1/η
+ (1 − ω)1/η

(
cT

t

)1−1/η
] η

η−1

,

where cN
t and cT

t denote, respectively, consumption of non-tradables and tradables, with prices PN
t

and PT
t in local currency. The parameters η > 0 and ω ∈ [0, 1] are, respectively, the elasticity of

substitution between goods and the relative weight of non-tradables in the final-consumption basket.
Profit maximization leads to the following demands,

cN
t = ω

(
pN

t

)−η
ct, cT

t = (1 − ω)
(

pT
t

)−η
ct,

with pT
t ≡ PT

t /Pt and pN
t ≡ PN

t /Pt. The ratio of these two captures the intra-temporal trade-off
between both goods as a function of their relative price.

Traded goods are produced by a stochastic endowment yT
t , sold at an international dollar price

P∗
t , with π∗

t ≡ P∗
t /P∗

t−1. Both yT
t and π∗

t are assumed to be stationary. The local price satisfies the law
of one price: PT

t = StP∗
t . Given its previous definition, pT

t is also the real exchange rate (rert) in this
model.

Non-tradables are produced in two stages. First, a continuum of competitive firms produces
non-traded goods by combining non-tradable varieties according to the Dixit-Stiglitz aggregator

yN
t =

[∫ 1

0

(
yN

jt

) ϵN−1
ϵN dj

] ϵN
ϵN−1

,

where yN
jt is the demand for variety j, and ϵN > 1 is the elasticity of substitution across varieties.

A monopolist for variety j produces using labor according to yN
jt = (hjt)

α, with α ∈ (0, 1]. It faces a
Calvo problem in choosing prices: with probability θN it has to keep the previous-period price, while
with probability 1 − θN it can freely choose. Log-linearization around the zero-inflation steady state,
applied to the monopolist’s optimality conditions (see Appendix B.1), leads to the Phillips curve

π̂N
t = βEt{π̂N

t+1}+ κ · m̂cN
t ,

where ·̂ denotes log-deviations from the steady state, mcN
t are real marginal costs in non-traded

units, and κ ≥ 0 is a function of parameters β, θN , α, ϵN .2

2With this description of the supply side, profits in equilibrium are Σt = PN
t yN

t − Wtht + PT
t yT

t .
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2.3 Fiscal policy

The government budget constraint in period t is,

DG
t

Rt
+ St

DG∗
t

R∗
t

+ Tt + νt (Wtht + Σt) = DG
t−1 + StDG∗

t−1 + PN
t gt. (2)

Here, DG
t and DG∗

t denote the repayment value at t + 1 of non-contingent debt emission at t in,
respectively, domestic and foreign currency. Notice that we assume the interest rate in dollars, R∗

t , is
the same as that charged to households (we discuss the implication of this assumption below). Also,
gt denotes government consumption, assumed to be non-tradable. We focus on government choices
satisfying transversality conditions for each type of debt, as discussed in Appendix A.

A fiscal policy is defined as Ricardian (a.k.a. passive) if instruments are set such that (2) holds
for any value of predetermined debt (DG

t−1, DG∗
t−1) as well as for any possible path of the endogenous

variables that affect the government’s resource constraint (such as PN
t , St, Rt, R∗

t , Wt, ht, Σt). In turn,
fiscal policy is Non-Ricardian (a.k.a. active) if this condition is not satisfied.

The government’s budget constraint (2) can be written in real terms as

dG
t−1

πt
+ rert

dG∗
t−1

π∗
t

=
dG

t
Rt

+ rert
dG∗

t
R∗

t
+ spt, (3)

where dG
t ≡ DG

t /Pt, dG∗
t ≡ DG∗

t /P∗
t , and σt ≡ Σt/Pt, τt ≡ Tt/Pt, and spt ≡ τt + νt (wtht + σt)− pN

t gt,
the latter being the primary surplus in real terms.

Most of the FTPL literature studies the case of lump-sum taxes/transfers and, as we mentioned,
there is no discussion about the currency composition of debt. As such, we use a configuration for
fiscal policy that can accommodate the assumptions in the literature to maintain comparability but
can also be expanded to include other relevant cases.

First, we assume proportional taxes and government expenditures are determined by exogenous
and stationary processes, with steady-state values given by ν and g respectively. Second, lump-sum
taxes are determined by the rule

τt − τ = ϕT

[
dG

t−1

πt
+ rert

dG∗
t−1

π∗
t

− sp
1 − β

]
+ uτ

t , (4)

where sp is the steady-state value of primary surpluses, and uτ
t is an exogenous and stationary shock.

In terms of the currency-composition of debt, let

Ωt ≡
rertdG∗

t

dG
t + rertdG∗

t
, (5)

be the share of government debt denominated in dollars. We assume that the government maintains
a constant currency composition: Ωt = Ω ∈ [0, 1] for all t. From the perspective of a first-order
approximation, like the one we will follow, this seems like a natural initial benchmark.

Overall, equations (3)-(5), plus the exogenous processes for proportional taxes and expenditures,
characterize the evolution of the five fiscal variables: dG

t , dG∗
t , Tt, νt and gt. With the last two be-

ing exogenous and under a constant share of dollar debt, fiscal policy being Ricardian relies on the
parameter ϕT. If ϕT = 0, lump-sum taxes are also exogenous and we have a Non-Ricardian configu-
ration. In the other extreme, ϕT = 1 generates a Ricardian policy, while values between 0 and 1 are
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also possible.3

2.4 Monetary policy

We assume a rule for the short-term interest rate in domestic currency with a Taylor-type form:(
Rt

R

)
=
(πt

π

)ϕπ

uR
t , (6)

where R, π are, respectively, steady-state values for Rt and πt, uR
t is an exogenous and stationary

monetary shock, and ϕπ ≥ 0. Under this configuration, a relevant question is which combination of
parameters ϕπ, ϕT, and Ω delivers a unique stationary equilibrium.

2.5 Rest of the world

The interest rate for debt in dollars R∗
t is determined by

R∗
t = RW

t exp
{

ψ
(
d∗t − d̄∗

)}
. (7)

where d∗t = dH∗
t + dG∗

t is the consolidated-net-foreign-debt position, RW
t is an exogenous (station-

ary) process, and ψ > 0. Thus, locals are assumed to pay a premium for borrowing in dollars
(exp

{
ψ
(
d∗t − d̄∗

)}
) over the international rate RW

t . This elastic premium serves as a “closing de-
vice” (Schmitt-Grohe and Uribe, 2003) ensuring that linear dynamics in the real version of the model
are stationary. In turn, as discussed below, assuming a premium elastic to the consolidated net-foreign
debt, in tandem with specific assumptions about preferences, simplifies the dynamics of this model.

2.6 Equilibrium, main channels and calibration

A stationary rational-expectations equilibrium is a set of stochastic processes for endogenous allo-
cations and prices, given initial conditions for predetermined variables and stochastic processes for
exogenous variables, satisfying (i) households and firms’ optimality conditions, (ii) market clearing
in all domestic markets, (iii) government’s budget constraint and its transversality conditions (as dis-
cussed in Appendix A), and (iv) the determination of the interest rate in dollars (7). Appendix B.2
lists all the equilibrium conditions, while section 3 below analyzes conditions for local existence and
uniqueness. Here, we discuss some relevant features to understand the results presented below.

By forward iteration of the government’s budget constraint (3) and under the constant-currency
composition assumption (Ωt = Ω), we get (see Appendix A for details)[

(1 − Ω) + ΩπS
t

πt

]
dt−1 = Et

{
∞

∑
j=0

spt+j

rrt,t+j

}
+ h.o.t., (8)

3Notice that we do not consider the possibility of outright default on debt, which is also the case in most of the related
FTPL literature. An exception of default in the context of FTPL is Uribe (2006), who discusses a tension between price
level determination and default in a closed economy model; without exploring explicitly the choice between the two. Of
course, there is a large literature on sovereign default in open-economy models (e.g. see the survey by Aguiar and Amador,
2014). However, given the global analysis characterizing those models, the combination of monetary and fiscal policy are
generally omitted, as well as the issue of currency composition of debt (for instance, Espino et al., 2025, present a model
with default as well as distortionary fiscal and monetary policies, but exclude the possibility of peso-denominated debt).
Moreover, discussing optimal policy choices in the context of FTPL should naturally consider time-inconsistency issues
arising from incentives to dilute outstanding nominal debt with inflation, as shown by Calvo (1988) in a simple two-period
model. These issues, while potentially relevant, are beyond the scope of the paper.
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where dt ≡ dG
t + rertdG∗

t is total government debt (in domestic consumption units), the real discount
rate is rrt,t+J ≡ ∏J−1

j=0 (Rt+j/πt+1+j), while h.o.t. includes terms (related to valuation effects) that are
zero under certainty and thus vanish up to a first order.4

Without dollar-denominated debt (Ω = 0), (8) is the familiar valuation equation from closed-
economy FTPL models. For a given path of the real rate, a change in primary surpluses (either
contemporaneous or expected) that is not compensated by an offsetting change in the surplus at
some other time (thus changing the net-present value on the right-hand side) needs to be met by
an opposite-sign change in πt on the left-hand side for (8) to hold (as dt−1 is predetermined). If
prices are fully flexible, the real rate cannot be affected by monetary policy, so current prices are
pinned down by fiscal policy alone (monetary policy still determines expected inflation). Under sticky
prices, an additional channel emerges as monetary policy affects the real rate. Still, the degree of
accommodation of primary surpluses is key (governed in the model by the parameter ϕT in (4),
i.e. how Ricardian fiscal policy is). In section 4 we discuss in detail the monetary transmission
mechanism in this context.

As we analyze below, results from closed economy models are qualitatively similar in this open
economy setup when all government debt is denominated in pesos (Ω = 0), although here we can
also explore the exchange-rate consequences. When Ω > 0, several differences arise. For given
values of dt−1 and πS

t , a particular change on the right-hand side of (8), either through movements
in primary surpluses or the real rate, requires (ceteris paribus) a larger change in πt on the left-hand
side. Thus, we would expect inflation to be more volatile the larger the share of dollar-denominated
debt. This is true as long as Ω < 1, for dynamics are different if debt is fully denominated in foreign
currency, as we analyze below.

Another relevant difference arises from the nominal depreciation πS
t on the left-hand side of (8),

which appears because rert affects the real value of outstanding debt. First, any shock inducing a
nominal depreciation, for a given value of the right-hand side in (8), requires an increase in πt. Of
course, a nominal depreciation already induces a direct effect on prices (through tradable inflation)
but, as long as the share of tradable in the consumption basket is less than one, the required rise
in πt needs to also affect non-trade inflation. Importantly, this channel is not present in the related
literature, for most open-economy analyses of FTPL use one-good models. Second, any change in
the net present value of primary surpluses can be accommodated not only by increasing inflation but
also by a nominal appreciation if Ω > 0 (or a combination of both).

Therefore, the co-movement between πS
t and πt can be influenced by FTPL considerations when

a fraction of government debt is denominated in foreign currency. In particular, the observed sign of
this correlation is not obvious, and it is likely dependent on the type of shock affecting the economy.
This creates a role for fiscal policy as a determinant of the real exchange rate, different from other
channels that are present in the standard model.

In order to sharpen the intuition, our baseline specification imposes some additional simplifying
assumptions, that we later modify in the robustness section 6. First, we assume ση = 1 (i.e. equality
between intra- and inter-temporal elasticities of substitution, η and 1/σ respectively). In tandem
with a closing device specified as in (7), this leads to cT

t , d∗t , and R∗
t being determined only by the

exogenous variables π∗
t , RW

t , and yT
t , with no influence from other domestic variables, monetary and

fiscal policy in particular (see Appendix B.3).5

In addition, we assume a zero-inflation steady state (π = π∗ = 1), and also simplify fiscal policy

4With no dollar debt, the term h.o.t. is zero even without linearization, as shown in appendix A.
5Several authors argue that the constraint ση = 1 is empirically plausible (e.g. Schmitt-Grohé and Uribe, 2016).
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by making the primary surplus dependent only on lump-sum taxes in (νt = gt = ν = g = 0). Thus,
the log-linearized equilibrium conditions for the rest of the model simplify to (see Appendix B.4):

π̂N
t = βEt

{
π̂N

t+1

}
+

κ̃

ω

( η

ω
r̂ert + ĉT

t

)
, (9)

π̂t = ω(π̂N
t )− (1 − ω)

(
π̂S

t + π̂∗
t

)
, (10)

r̂ert = r̂ert−1 − ω
(

π̂N
t − π̂S

t − π̂∗
t

)
, (11)

R̂t = R̂∗
t + Et

{
π̂S

t+1

}
, (12)

R̂t = ϕππ̂t + ûR
t ., (13)

(1 − ϕT)
(

d̂t−1 − π̂t + Ωπ̂S
t

)
= β

(
d̂t − R̂t + ΩEt

{
π̂S

t+1

})
+ ûτ

t , (14)

These are six equations for six endogenous variables π̂N
t , π̂t, r̂ert, π̂S

t , R̂t, d̂t. Equation (9) is the New-
Keynesian Phillips curve for non-traded inflation, that in equilibrium is driven by movements in
either r̂ert and ĉT

t (the relevant determinants of non-traded demand). Equation (10) expresses ag-
gregate inflation as a weighted average of the evolution of traded and non-traded prices. In turn,
(11) relates the evolution of the real exchange rate with the change of the relative prices between
both goods. Equation (12) is the uncovered interest rate parity (UIP), while (13) is the Taylor rule
for the domestic interest rate. Finally, equation (14) is the combination of the government’s budget
constraint and the rule for lump-sum taxes.

A relationship that will prove useful to analyze the dynamics of the nominal exchange rate arises
from combining the UIP condition (12) with (10) and (11), and iterating forward,

π̂S
t = π̂t − π̂∗

t − r̂ert−1 +
∞

∑
j=0

[
(R̂∗

t+j − π̂∗
t+1+j)− (R̂t+j − π̂t+1+j)

]
, (15)

As can be seen, everything else equal, an increase in the monetary policy rate (either today or ex-
pected) generates a nominal appreciation. The final effect, however, is determined by the endoge-
nous response of the inflation path. If it falls, it reinforces the direct effect and the nominal exchange
rate appreciates for sure. Instead, if inflation increases, the final effect on π̂S

t is ambiguous, possi-
bly even increasing. As we will analyze, fiscal policy being Ricardian or not, as well as the share of
government debt denominated in dollars, are key to determining the final effect.

Before moving to the main analysis, Table 1 presents the calibration of the parameters in the
baseline specification. Those shared with the model in Schmitt-Grohé and Uribe (2017, Ch. 9.16) are
taken from them. The parameters R∗, d

∗
, χ, and τ are set endogenously in steady state to obtain shares

of primary surplus and trade balance to GDP of 5%, as well as values for h and rer that generate a
relative size of non-tradable GDP of 57% (as implicit in the calibration of Schmitt-Grohé and Uribe,
2017). The other parameters related to monetary and fiscal policy (ϕπ, ϕT, and Ω) are set to specific
values described below, depending on the particular exercise we investigate.

3 Existence and Uniqueness

In this section, we explore the determination of a locally-stationary equilibrium. As the system (9)-
(14) contains only two endogenous predetermined/state variables (r̂ert and d̂t), two stable eigenval-
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Table 1: Baseline Calibration

β σ φ η ω α ϵN θN ψ

0.9694 2 0.5 0.5 0.6 0.75 6 0.7 0.000034

π π∗ sp
gdp

ν g h tb
gdp

rer

1 1 0.05 0 0 0.73 0.05 1

ues are required for the existence of a unique equilibrium. While Appendix C provides a formal
proof, here we provide an intuitive characterization. Notice first that equations (9), (10), and (11) can
be combined to obtain a backward-looking equation for rert of the form

r̂ert

(
1 +

κ̃η

ω

)
= r̂ert−1 + ôt,

where ôt collects all other terms (which, importantly, contain only non-predetermined/forward-

looking variables). The eigenvalue for r̂ert in this equation is
(

1 + κ̃η
ω

)−1
, which is always less than 1.

Thus, to the extent that ôt is stationary, r̂ert will not play a direct role in the discussion of how different
combinations of fiscal and monetary policy determine the existence and uniqueness of equilibria.

In the case of government debt d̂t, notice that equation (14) can be written as

(1 − ϕT)d̂t−1 = βd̂t + êt,

where êt collects all other terms, and thus the eigenvalue for d̂t is (1 − ϕT)/β ≥ 0. Therefore, as long
as êt is stationary, d̂t is non-explosive if its eigenvalue is less than one , or ϕT > 1− β. Alternatively, if
ϕT ≤ 1− β, d̂t could still be stationary if the endogenous behavior of variables in êt generates another
stable eigenvalue that offsets the explosive dynamics that d̂t would otherwise display.

We mentioned that ϕT = 1 corresponds to a Ricardian/passive fiscal policy, while ϕT = 0 is
Non-Ricardian/active. As it is well known from closed economy setups (e.g. Leeper, 1991), un-
der Ricardian fiscal policy, the determination of inflation is up to monetary policy. Instead, in the
Non-Ricardian case, monetary policy needs to be passive. This intuition can be generalized for inter-
mediate values of ϕT. If ϕT is big enough (ϕT > 1 − β), we will always have at least one stationary
equilibrium. If the other parts of the model (monetary policy in particular) induce a unique station-
ary behavior for the other variables (e.g., if the Taylor principle is satisfied, ϕπ > 1) the equilibrium
is unique. Otherwise, we have multiple stationary equilibria.

In contrast, if ϕT is relatively low (ϕT ≤ 1 − β), the existence of a stationary equilibrium is not
guaranteed. If an additional stable eigenvalue is produced in other parts of the model (monetary
policy in particular), the equilibrium would be unique (e.g., if ϕπ < 1), while there are no stationary
equilibria otherwise.

Figure 1 provides a visual representation of the results. Each graph displays whether the partic-
ular combination of ϕπ (horizontal axis) and ϕT (vertical axis) delivers a unique equilibrium (green),
no equilibrium (red), or multiplicity/indeterminacy (black). Those in the upper panel correspond to
cases under flexible prices (θN = 0), while the others show cases with sticky prices (θN = 0.7). Each
column corresponds to a particular share of dollar-denominated government debt Ω.

In line with the previous intuition and the results from the proposition, determinacy arises either
with ϕT < 1 − β and ϕπ < 1 (active fiscal, passive monetary), or ϕT > 1 − β and ϕπ > 1 (passive
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Figure 1: Existence and Uniqueness under Taylor Rule

Notes: Green: Uniqueness. Red: No stable equilibrium. Black: Multiplicity

fiscal, active monetary). Instead, if ϕT < 1 − β and ϕπ > 1 (both active) there are no equilibria,
while ϕT > 1 − β and ϕπ > 1 (both passive) generate multiplicity. The only exception to this pattern
appears when prices are flexible (θN = 0) and debt is fully dollarized (Ω = 1). In such a case,
active fiscal policy is irrelevant for price determination under a passive monetary policy because,
under flexible prices, the real exchange rate (the only relevant price affecting the current value of
outstanding debt if Ω = 1) is independent of monetary policy. Thus, at least locally, in the case of
ϕT < 1 − β and ϕπ < 1, there is also multiplicity if θN = 0 and Ω = 1. However, as long as prices
are sticky, even under 100% dollar-denominated debt, an active fiscal policy combined with passive
monetary policy can affect the real exchange rate, thus the equilibrium is uniquely pinned down.

These results show that, in the baseline setup, the share of debt denominated in dollars is gener-
ally irrelevant to determine the conditions under which the equilibrium exists and is unique. How-
ever, in the following sections we show that, provided determinacy, dynamics are indeed signifi-
cantly altered by the currency composition of debt in cases in which fiscal policy is Non-Ricardian/active.

4 Monetary and Fiscal Transmission Mechanism

We first analyze the dynamics generated by an i.i.d. shock to the monetary policy rate, uR
t in equation

(6); beginning with the Ω = 0 case (only domestic-currency debt) in Figure 2. The blue lines display
the case with active monetary policy (with the usual parameter for a Taylor rule of ϕπ = 1.5) and a
fully Ricardian/passive fiscal policy (ϕT = 0); i.e., the frequently used configuration in NKSOE mod-
els that neglects fiscal policy. From the household’s perspective, the shock induces (ceteris paribus,
given the same for prices) an increase in the real interest rate. This leads to both an inter-temporal
substitution as well as a negative wealth effect (as the net present value of after-tax real and financial
income falls). Both of them tend to decrease current overall consumption.
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Figure 2: Responses to a monetary-policy-rate shock, Ricardian vs. Non-Ricardian.

Notes: Each graph plots responses of the following variable: Real GDP (gdp ≡ yT + yN), non-traded consumption (cN),
traded consumption (cT), real exchange rate (rer), total inflation (π), non-traded inflation (πS), nominal exchange rate (S),
monetary-policy rate (R), ex-ante real interest rate (rr = R̂t − Et{π̂t+1}), and lump-sum taxes (τ/gdp). The shock is an
increase in uR

t , with zero persistence, normalized to increase R by 1% on impact. Solid-blue lines correspond to the case
with ϕπ = 1.5 and ϕT = 1, while dashed-red lines are the case with ϕπ = 0 and ϕT = 0; all with Ω = 0. All responses are
measured as percentage-point deviations relative to the steady state.

As shown by Caramp and Silva (2023) in a closed economy setup, the size of the wealth effect
heavily depends on the fiscal-policy response to the shock. From the perspective of the lifetime gov-
ernment budget constraint (8), the increase in the real rate induces a reduction in the net present
value of primary surpluses. If fiscal policy is Ricardian (ϕT = 1), lump-sum taxes need to increase to
counteract this effect. In turn, this increase in taxes induces an even larger income effect for house-
holds, further decreasing desired consumption. According to Caramp and Silva (2023), this extra
wealth effect can account for almost the totality of the contraction in consumption induced by the
higher policy rate in closed-economy models.

In the open economy, the required change in taxes if ϕT = 1 is also present. Thus, the contraction
in aggregate consumption translates into a reduction in desired demand for both traded and non-
traded goods (provided homothetic preferences). The contraction in cN induces a fall in non-traded
inflation (πN). In turn, by (15), the increase in the policy rate induces a nominal appreciation if it is
not compensated by an increase in inflation (indeed πN falls). Overall, rer appreciates. Instead, cT

does not move in equilibrium under ση = 1.6

After the initial period, the nominal appreciation is partially offset, as the UIP condition (12)
requires a depreciation going forward if R increases today (i.e., the shock induces exchange-rate

6The real appreciation increases desired traded consumption (as it becomes cheaper), perfectly offsetting the desired
fall previously discussed, when both elasticities (η and 1/σ) are the same.
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overshooting).7 Overall, the shock contracts the economy (from the non-traded sector) and reduces
both traded and non-traded inflation.

Dynamics are quite different if fiscal policy is Non-Ricardian (ϕT = 0) and the interest rate is not
responsive to inflation (ϕπ = 0), as shown in dashed-red lines in Figure 2. In this case, while the
real rate increases (ceteris paribus) following the shock, lump-sum taxes remain constant. This has
two important consequences. First, the negative wealth effect brought about by a Ricardian policy
(through tax increases, as previously discussed) is absent, and therefore cN only marginally drops at
the moment the shock is realized. This extends the result in Caramp and Silva (2023) to this small
and open economy setup.

Second, by the FTPL mechanics, the price level needs to increase to satisfy the government life-
time constraint equation (8), which leads to an increase in both non-traded prices and the nominal
exchange rate. In terms of S, the initial-period response is only marginally positive. But we also
know from UIP (12) that a further depreciation is expected if R increases today, so the new higher
level in S is achieved with a delay, eliminating the overshooting dynamics. In turn, this could help
explain the empirical result documented in the literature that, for emerging countries, an increase in
the policy rate tends to be followed by a nominal depreciation, instead of an appreciation.

In terms of πN , there are two channels at play. On the one hand, the fall in cN pushes non-traded
prices downward; though this channel should be small as the negative wealth effect induced by
taxes is absent. On the other hand, the FTPL channel requires prices to increase. If prices were fully
flexible, this would materialize instantaneously. Under sticky prices, it builds up over time, so it is
natural to expect additional non-traded inflation in the future. Therefore, from the perspective of the
New-Keynesian Phillips curve, the initial contraction in demand for non-tradables is compensated
by the forward-looking channel that anticipates higher future inflation. As a result, πN rises from the
moment the shock hits, with an additional increase in the following period.

These dynamics for πN and S also generate a different behavior for the real exchange rate, which
initially increases, intensifying in the following periods as S jumps even further. This induces an
additional substitution effect in favor of cN , as traded goods become relatively more expensive if rer
increases.8 The dynamics of cN can also be understood by the behavior of the ex-ante real rate rr. In
the Ricardian case (solid-blue line), the real-rate path converges back to the steady state monotoni-
cally from above, explaining why consumption cN displays a similar path back to steady state, with
the opposite sign (due to intertemporal substitution). In turn, in the Non-Ricardian case (dashed-red
line), the real rate falls below its steady state value after the initial increase due to the expected higher
inflation, converging to the steady state from below. This is consistent with the dynamics displayed
by cN under that case.9

In the robustness appendix D.1, we explore the role of the monetary response parameter ϕπ for a
given fiscal regime. In the Ricardian case (ϕT = 1), comparing the baseline ϕπ = 1.5 against a value
just above the determinacy region (ϕπ = 1.01), only marginal differences arise, with responses being
relatively muted for lower values of ϕπ. Instead, in the Non-Ricardian regime (ϕT = 0), setting the

7This also explains why, even though the shock is i.i.d., the policy rate slowly converges back to steady state and not
instantaneously. Recall that the Taylor rule (6) is specified in terms of total inflation π, not just πN . Thus, the overshooting
behavior of the S generates total inflation to be above the steady state even after the shock materializes, leading to analo-
gous dynamics for R in the period following the realization of the shock. This adds an extra push downwards to cN (via
the same channels previously discussed), and thus the effect of the shock does not simply vanish after the initial period (as
it would be the case in the closed-economy version).

8Again, cT is not affected in equilibrium as the several effects offset each other.
9Of course, explanations based on rer or rr are two sides of the same coin, as the behavior of these two variables is

linked in equilibrium by the UIP condition expressed in terms of real rates.
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monetary response parameter to a value marginally below that required for determinacy (ϕπ = 0.99)
significantly alters the dynamics. In particular, the nominal policy stays above the steady state for
much longer, despite the shock being i.i.d., as the Taylor rule dictates that the policy rate should
be high if inflation is above the steady state. This, in turn, implies a more persistent higher path
for the real rate which, from the FTPL channel, induces more non-traded inflation (which is also
persistent) while nominal depreciation continues even after the initial periods. At the same time, the
initial response of non-traded consumption and the real exchange rate is marginally smaller, but its
convergence back to the steady state from above is much slower.

Overall, under this alternative policy configuration, an increase in the nominal rate leads to an in-
crease in inflation and an expansion in output, similar to the effects shown, for instance, by Cochrane
(2023) in a closed-economy setting. Our analysis extends the results to open economies, which also
allows understanding the consequences for both the nominal and real exchange rates.

Figure 3 extends the analysis even further to cases with a positive fraction of dollar-denominated
debt (Ω > 0). All cases displayed assume ϕπ = 0 and ϕT = 0, considering alternative values for Ω
equal to 0, 0.5, 0.75, and 1. As long as Ω < 1, we can see that a higher share of dollar-denominated
debt yields larger responses for both non-traded inflation and the nominal exchange rate. This is in
line with the discussion of the FTPL equation (8) in section 2.6: as the share of debt in pesos is smaller,
the rise in inflation required to dilute the real value of outstanding debt, in order to compensate for
a given change in the net-present value of primary surpluses, is larger. As a result, the real exchange
rate and non-traded consumption increase further under a larger share of dollar-denominated debt.

Figure 3: Responses to a monetary-policy-rate shock, Non-Ricardian, different values of Ω.

Notes: The figure is analogous to Figure 2, except that here all cases feature ϕπ = 0 and ϕT = 0, and they differ depending
on the value for Ω: In dashed-red Ω = 0, in dashed-dotted black Ω = 0.5, in dotted magenta Ω = 0.9, and in solid-green
Ω = 1.

Dynamics are different if debt is fully denominated in dollars (Ω = 1, solid-green lines in Figure
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3). From the left-hand side of the FTPL equation (8), we see that a real appreciation is required to
compensate for the drop in the net-present value of surpluses that the shock generates. As non-
traded prices are sticky, this cannot materialize through an increase in πN and therefore an initial
nominal appreciation is induced. This, in turn, reduces the demand for non-tradables, generating a
drop in cN and gdp. After the initial period, given that UIP requires the nominal exchange rate to
depreciate and also because the real exchange rate has to converge back to steady state, S jumps to a
level above zero. Therefore, while a higher share of dollar denominated debt induces more inflation
and a more depreciated currency, there is a discontinuity if Ω = 1.

We next turn to the dynamics generated by a fiscal shock, uτ in the policy rule (4). Under a
Ricardian/passive fiscal policy, a change in taxes today induces an opposite-sign modification in
future taxes such that the net-present value in the right-hand side of (8) is unaltered, and therefore has
zero effects. Instead, the shock induces non-trivial aggregate dynamics under non-Ricardian/active
fiscal policy. Figure (4) shows the effects of a fall in lump-sum taxes, normalized to represent 1% of
steady-state GDP (with an autocorrelation of 0.7), for different values of Ω. In all cases, the policy
rate is kept fixed (ϕπ = 0) and ϕT = 0.

Figure 4: Responses to a fiscal shock, Non-Ricardian, different values of Ω.

Notes: The figure is analogous to Figure 3, except that is shows responses to a drop in lump-sum taxes, normalized to
represent 1% of steady-state GDP, with an autocorrelation of 0.7. All cases feature ϕπ = 0 and ϕT = 0, and they differ
depending on the value for Ω: In dashed-red Ω = 0, in dashed-dotted black Ω = 0.5, in dotted magenta Ω = 0.75, and in
solid-green Ω = 1.

Beginning with the case of full peso-denominated debt (Ω = 0, represented by dashed-red lines
in the figure), if the policy rate is fixed, the FTPL equation (8) indicates that the shock requires either
an increase in the price level today, an increase in expected inflation, or a combination of both. This
is achieved by both a nominal depreciation and an increase in πN , the latter being quantitatively
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smaller and spread over time due to sticky prices. As a result, a real depreciation materializes.
This real depreciation leads cN to increase, through intra-temporal substitution, as non-traded

goods become relatively cheaper. Moreover, an additional expansionary channel arises from the
positive wealth effect that tax reduction generates. While the real interest rate is reduced (as expected
inflation rises), this is not enough to compensate for the increase in the net present value of after-tax
income. Overall, total output rises in equilibrium.10

If we turn to cases where a fraction of debt is denominated in dollars, as long as Ω < 1, the dy-
namics are magnified by a larger share Ω. Again, this can be explained by the additional inflation that
is required to dilute the relatively smaller outstanding amount of peso-denominated debt. Finally, if
all debt is denominated in dollars, we obtain dynamics with opposite effects; precisely for the same
reasons discussed during the analysis of monetary-policy shocks under Non-Ricardian policies.

In summary, not only does the transmission of both monetary and fiscal shocks differ depending
on the policy regime, but the share of dollar-denominated government debt is also relevant in deter-
mining the dynamics. In particular, a larger share of dollar-denominated debt magnifies the effects
of both shocks (as long as the debt is not fully dollarized). These results are relevant, as they provide
an interesting testable implication that future work can use to test the FTPL channel in the data.

5 The Effect of Real Shocks

In this section, we study the effects of shocks to traded output yT (which could also be interpreted
as terms-of-trade shocks in this simple setup) and to the world interest rate RW (shocks to π∗ induce
similar effects to those generated by RW). For each of them, we first describe the propagation under
Ricardian/passive fiscal policy, then analyze the role played by a Non-Ricardian setup, and finally
study the role played by the currency composition of government debt.

5.1 Traded output

Figure 5 displays the dynamics triggered by an increase in yT, with an autocorrelation of 0.7, normal-
ized to increase traded consumption by 1%. The shock induces a positive wealth effect, increasing de-
sired consumption of both types of goods. The increase in cT is quite persistent, as the interest rate in
dollars R∗ is calibrated to have a minor elasticity to the country’s net-foreign debt position, and thus
convergence back to steady state is quite slow. Additionally, the higher demand for non-tradables
increases its relative price, leading to a real appreciation. If prices were fully flexible, this would
materialize instantaneously, but as non-traded prices are sticky, it takes time to reach its maximum
appreciated value. Instead, under sticky prices, the real appreciation comes about by a relatively
small increase in non-trade inflation and, more significantly, by a nominal appreciation.

The specific dynamics are shaped by the fiscal and monetary regime. The blue lines display the
case with a Ricardian/passive tax response (ϕT = 1) and an active Taylor rule for the interest rate
(ϕπ = 1.5). Under such a configuration, the policy rate falls following the reduction in inflation. This,
in turn, induces an even further appreciation: by the UIP condition (12), a fall in the domestic rate
requires a further expected appreciation. In addition, as the policy rate falls by more than overall

10In the robustness appendix D.1, we see that if ϕT = 0, but the monetary-response parameter is close to one, non-trivial
differences arise; similar to those described before, in the case of a monetary shock. In particular, if ϕπ = 0.99, the policy
rate remains high for a longer period, increasing non-traded inflation and the nominal exchange rate even further, resulting
in the policy rate rising even more persistently. At the same time, the initial increases in both cN and rer are smaller than
with ϕπ = 0, but its convergence back to the steady state is much slower.
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Figure 5: Responses to a traded-output shock, Ricardian vs. Non-Ricardian.

Notes: The figure show the responses to a positive shock to yT , with an autocorrelation of 0.7, normalized to increase cT

by 1% at the moment the shock hits. All cases feature Ω = 0. In solid blue lines ϕT = 1 and ϕπ = 1.5. in dashed-red lines
ϕT = 0 and ϕπ = 0, while in dashed-dotted yellow lines ϕT = 0 and ϕπ = 0.99. See Figure 2 for variables’ definitions.

inflation, the real rate also decreases. From the perspective of households, this increase non-traded
consumption cN further on impact, via inter-temporal substitution.

In turn, fiscal policy is also affected by the shock through two different channels. First, the reduc-
tion in inflation increases the real value of the outstanding nominal debt. Second, the reduction in
the real rate increases the net present value of taxes. The former dominates in equation (8), as can be
seen from the fact that lump-sum taxes increase in response to the shock.

The dashed-red lines in Figure 5 show the responses to the same shock under a Non-Ricardian
fiscal policy (ϕT = 0) and a constant policy rate (ϕπ = 0). While responses are qualitatively simi-
lar to those in the previous policy configuration, some quantitative differences emerge. The policy
rate remaining fixed produces two differences. First, the further nominal appreciation in the period
following the shock that we described in the blue lines disappears, which in turn eliminates the per-
sistence of the initial fall in overall inflation. Second, as the nominal interest rate does not move but
expected inflation is positive, the drop in the real rate is much smaller than in the previous policy
configuration.

In turn, the smaller reduction in the real rate reduces the intertemporal substitution that influ-
enced non-trade consumption, and therefore cN increases by less on impact. This also implies that
the path of cN in the periods after the shock hits converges more slowly to the steady state. In turn,
as πN is forward-looking under Calvo prices, the initial increase in non-traded inflation is larger
initially, anticipating the expected higher demand in the future.

In terms of fiscal policy, as lump-sum taxes are fixed, the right-hand side of the FTPL equation (8)
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increases as the real rate falls. This implies that, relative to the case with Ricardian policy, prices need
to fall even more. We already described reasons for which this is not going to happen through πN ,
which implies that the initial nominal appreciation is larger.

Notice there are two differences that distinguish the dashed-red lines from the solid-blue ones:
both taxes and interest rates are kept constant if ϕT = ϕπ = 0. In order to better understand the
relative importance of both of them, Figure 5 includes an additional case (in dashed-dotted yellow
lines) where taxes still do not move (ϕT = 0) but the policy rate increases with inflation, using ϕπ =

0.99 (just below the value required for equilibrium uniqueness under an active fiscal policy). In this
third case, the dynamics of both the nominal and the real interest rates, non-traded inflation and
consumption, as well as the real exchange rate, are similar to those under a Ricardian/passive fiscal
policy. Thus, to a large extent, the differences between the solid-blue and dashed-red lines are driven
by the different behavior of the policy rate. Still, the FTPL channel continues to play a role. As the
real rate drops even more in the dashed-dotted-yellow lines, further increasing the right-hand side of
the FTPL equation (8). Thus, an initially larger nominal appreciation is still required to compensate
if taxes do not change.

Dynamics are significantly altered once we allow for a positive share of debt denominated in
foreign currency. Figure 6 shows three cases, all of them with ϕT = 0 and ϕπ = 0, but with different
values of Ω: 0 (dashed red), 0.5 (dashed-dotted black), and 0.75 (dotted magenta).11 For larger values
of Ω, further nominal and real appreciations materialize, and non-traded inflation and consumption
now fall. What triggers these differences?

Figure 6: Responses to a traded-output shock, Non-Ricardian, different values of Ω.

Notes: The figure is analogous to Figure 5, except that here all cases feature ϕπ = 0 and ϕT = 0, and they differ depending
on the value for Ω: In dashed-red Ω = 0, in dashed-dotted black Ω = 0.5, in dotted magenta Ω = 0.75.

11In Appendix D.2 a similar figure is displayed with ϕπ = 0.99, where it can be seen that differences are magnified.
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In the presence of foreign denominated debt, the real appreciation generated by the shock (which
has a real origin, present even under flexible prices) tends to reduce the real value (in domestic con-
sumption units) of outstanding dollar-denominated debt if Ω > 0. For a given path of lump-sum
taxes (as ϕT = 0), satisfying the FTPL equation (8) requires either an increase in the real value of
outstanding peso-denominated debt (which can materialize if the price level drops as the shock hits),
a reduction in the net-present value of primary surpluses (which requires the real rate to increase),
or a combination of both. These two alternatives help each other in achieving the goal: a higher real
rate pushes cN downwards, which in turn reduces non-traded inflation today, helping to dilute the
real value of outstanding debt in pesos. At the same time, the real-exchange rate appreciates even
further, which also adds an intra-temporal substitution channel that further reduces cN and thus πN .
Moreover, these effects are magnified for larger shares Ω > 0.12

Overall, while in the case of government debt fully denominated in pesos FTPL considerations
do not qualitatively alter the propagation of shocks to yT, this is not the case if a fraction of debt is
denominated in foreign currency. In particular, a positive shock might lead to a contraction in the
non-trade sector, even though the real exchange rate is appreciating. For here the appreciation is not
mainly led by a larger demand in non-tradables, but it is produced by the FTPL channel that requires
non-trade prices to fall, which materializes via a lower non-traded demand.13

5.2 World interest rate

We now turn to the analysis of the consequences generated by an increase in the world interest rate
RW . Figure 7 displays the dynamics of a shock with a persistence of 0.7, normalized to drop cT by
1% on impact, under the assumption of Ω = 0. The real mechanisms behind the propagation of this
shock work as follows. The increase in the international cost of borrowing induces an intertempo-
ral substitution effect and a negative wealth effect (as the country is a net-foreign borrower in our
calibration), both reducing consumption of both types of goods. In particular, the contraction in the
demand for cN reduces its relative price, leading to a real depreciation. In a world with sticky prices,
the final outcome hinges on the fiscal and monetary configuration.

The solid-blue lines in Figure 7 correspond to the case passive-fiscal, active-monetary setup (ϕT =

1 and ϕπ = 1.5). We can see that cN falls on impact, and the real exchange rate depreciates via
a nominal depreciation. We can also see that cN rises above its steady state level in the periods
following the realization of the shock, which also explains why non-trade inflation increases. This
is generated by the fact that the domestic real rate rr, while increasing following the shock, returns
back to the steady state at a faster rate than the world interest rate RW .14 This, in turn, implies that
the real exchange rate (via the UIP condition) also takes longer to converge back to the steady state
after the initial jump. As this relatively more depreciated path implies cheaper non-traded goods,
cN increases after the initial drop, increasing also πN as firms anticipate this future higher demand
in the presence of Calvo frictions. Finally, the Ricardian fiscal rule requires a reduction in taxes to
compensate the effect on equation (8) of a higher inflation (reducing the outstanding value of debt)
and the increase in the real rate.

12Notice that we have not included the case of Ω = 1, which is included in the Appendix D.2. As we mentioned before,
if government debt is fully denominated in dollars, the dynamics have the opposite sign than those under positive but
strictly smaller values for Ω, with a similar intuition as already discussed.

13As shown in Appendix D.2, having a policy rate that reacts to inflation with ϕπ = 0.99 only magnifies these differences,
as the drop in the policy rate in such a case generates a path for the nominal exchange rate that appreciates even further,
which requires an even larger and more persistent fall in πN (and thus cN).

14While that evolution of RW is not shown in the figure, its autocorrelation of 0.7 implies that, for instance, five periods
after the shock hits it still at a value of 0.08 above steady state, whereas rr is virtually zero at that point.
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Figure 7: Responses to a world interest-rate shock, Ricardian vs. Non-Ricardian.

Notes: The figure show the responses to a positive shock to RW , with an autocorrelation of 0.7, normalized to decrease cT

by 1% at the moment the shock hits. All cases feature Ω = 0. In solid blue lines ϕT = 1 and ϕπ = 1.5. in dashed-red lines
ϕT = 0 and ϕπ = 0, while in dashed-dotted yellow lines ϕT = 0 and ϕπ = 0.99. See Figure 2 for variables’ definitions.

The dashed-red lines in Figure 7 correspond to the case of Non-Ricardian fiscal policy (ϕT = 0)
and a constant policy rate (ϕπ = 0). In that case, notice that cN converges from below to the steady
state, which shows how the previously analyzed dynamics in the periods following the shock in the
blue lines were heavily influenced by the path of the policy rate. This, in turn, induces a fall in πN ,
while the nominal exchange rate falls monotonically after the initial period.

From the FTPL perspective, this initial jump in the nominal exchange rate materializes to com-
pensate for the fact that the increase in RW puts upward pressure on the relevant discount rate. As
lump-sum taxes are fixed, the net present value of primary surpluses drops, requiring a jump in
the price level to compensate on the left-hand side of (8). Overall, dynamics under this alternative
configuration are quite different.

However, as we saw in the analysis of a yT shock and also stressed here, these differences are, to
a large extent, determined by the assumption of a constant policy rate. Indeed, the dashed-dotted
yellow lines in Figure 7 report the case with an active fiscal policy (ϕT = 0) but with a monetary-
policy rate sensitive to inflation (ϕπ = 0.99). We can see that the dynamics are much closer to the case
of a Ricardian fiscal policy in the solid-blue lines.

Figure 8 displays dynamics under the active-fiscal, passive-monetary setup (ϕπ = 0 and ϕT = 0),
for different values of the share of government debt denominated in dollars, Ω.15 As the shock
induces a real depreciation, it increases the real value (in domestic units) of outstanding dollar-

15Appendix D.2 also includes a case with ϕT = 0 and ϕπ = 0.99, showing more exacerbated differences relative to Figure
8.
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denominated debt. In order to compensate, either the price level should increase to dilute the burden
of debt obligations in pesos, or the real rate needs to fall to increase the net-present value of primary
surpluses (which is brought about by higher expected inflation), or a combination of both. As a result,
the shock is more inflationary the higher the share Ω, and the expansion in non-traded consumption
is even larger.16

Figure 8: Responses to a world interest-rate shock, Non-Ricardian, different values of Ω.

Notes: The figure is analogous to Figure 7, except that here all cases feature ϕπ = 0 and ϕT = 0, and they differ depending
on the value for Ω: In dashed-red Ω = 0, in dashed-dotted black Ω = 0.5, in dotted magenta Ω = 0.75.

Overall, we see that the dynamics induced by a shock to the world interest rate are also signifi-
cantly different if fiscal policy is active and part of the debt is denominated in foreign currency units.

16Again, as can be seen in Appendix D.2, the case of Ω overturns these results.
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6 Robustness

TBA

7 Conclusions

TBA
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Supplementary Appendix

A Transversality conditions

Define rrt,t+J such that rrt,t ≡ 1 and rrt,t+J ≡ ∏J−1
j=0

Rt+j
πt+1+j

for J ≥ 1. Under perfect foresight, this
would be the cumulative (up to period J) ex-ante real rate, from the perspective of time t. In a
stochastic world, this is the cumulative rate for a given history of realizations from t to t + J.

Let household’s real assets be bt ≡ Bt/Pt and dH∗
t ≡ DH∗

t /P∗
t . We assume they face two No-

Ponzi-game conditions (NPGC) for each financial asset,

lim
J→∞

Et

{
1

rrt,t+J
rert+J

dH∗
t−1+J

π∗
t+J

}
≤ 0, lim

J→∞
Et

{
1

rrt,t+J

bt−1+J

πt+J

}
≥ 0. (A.1)

The discussion below clarifies why we impose one for each asset an instead of one for total financial
wealth.

In real terms, the household’s budget constraint (1) is

ct + rert
dH∗

t−1

π∗
t

+
bt

Rt
+ τt = (1 − νt) (wtht + σt) +

bt−1

πt
+ rert

dH∗
t

R∗
t

, (A.2)

Defining savt ≡ (1 − νt) (wtht + σt)− ct − τt, the previous can be written as,

rert
dH∗

t−1

π∗
t

− bt−1

πt
= rert

dH∗
t

R∗
t
− bt

Rt
+ savt.

From the real exchange rate’s definition, rert = rert+1
πt+1

πS
t+1π∗

t+1
. Replacing this on the first-term on the

right-hand side, and then multiplying and dividing by πt+1 the second-term, yields

rert
dH∗

t−1

π∗
t

− bt−1

πt
=

πt+1

πS
t+1R∗

t
rert+1

dH∗
t

π∗
t+1

− πt+1

Rt

bt

πt+1
+ savt,

Adding and subtracting πt+1
Rt

rert+1
dH∗

t
π∗

t+1
on the right hand side, we get

rert
dH∗

t−1

π∗
t

− bt−1

πt
=

πt+1

Rt

(
rert+1

dH∗
t

π∗
t+1

− bt

πt+1

)
+ savt +

(
πt+1

πS
t+1R∗

t
− πt+1

Rt

)
rert+1

dH∗
t

π∗
t+1

Let soH
t+1 ≡

(
πt+1

πS
t+1R∗

t
− πt+1

Rt

)
rert+1

dH∗
t

π∗
t+1

. The expectation Et{soH
t+j} captures expected valuation changes

due to deviations from perfect-foresight (or complete markets in a stochastic setting) uncovered in-
terest rate parity which, in a non-linear stochastic model, generally does not hold because of co-
variance/premium terms. Notice also that this term arises only because we have more than one
non-contingent asset and financial markets are incomplete; otherwise perfect-foresight non-arbitrage
relationships would hold and sot+1 = 0. However, this term is zero up to a first order of approxima-
tion, for in the non-stochastic steady state valuation effects are nil.
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Let aH
t ≡ rert

dH∗
t−1
π∗

t
− bt−1

πt
. Thus, we can write

aH
t =

aH
t+1

rrt,t+1
+ savt + soH

t+1.

Replacing forward aH
t+1 yields

aH
t =

1
rrt,t+1

(
aH

t+2

rrt+1,t+2
+ savt+1 + soH

t+2

)
+ savt + soH

t+1 =
aH

t+1

rrt,t+2
+

1

∑
j=0

(
savt+j + soH

t+1+j

)
rrt,t+j

,

where we have used the property rrt,t+J = rrt,t+N · rrt+N+1,t+J , for 0 ≤ N < J. Continuing iterating
forward up to an arbitrary period J, we get

aH
t =

aH
t+J

rrt,t+J
+

J−1

∑
j=0

(
savt+j + soH

t+1+j

)
rrt,t+j

Finally, applying expectations conditional on time t information set on both sides, and then taking
the limit for J up to infinity,

aH
t = lim

J→∞
Et

{
aH

t+J

rrt,t+J

}
+

∞

∑
j=0

Et


(

savt+j + soH
t+1+j

)
rrt,t+j


Recall that aH

t = rert
dH∗

t−1
π∗

t
− bt−1

πt
. Given the NPGC (A.1), the household optimal plan needs to satisfy

the transversality condition,

lim
J→∞

Et

{
1

rrt,t+J

(
rert+J

dH∗
t−1+J

π∗
t+J

− bt−1+J

πt+J

)}
= 0, (A.3)

otherwise, if this limits was negative, consumption could be increased in every period and increase
utility. Thus, it is not optimal to choose a plan in which this limit in (A.3) is not zero. For this
condition to hold, and given the NPGC are imposed individually for each asset, both of the following
transversality conditions need to hold,

lim
J→∞

Et

{
1

rrt,t+J
rert+J

dH∗
t−1+J

π∗
t+J

}
= 0, lim

J→∞
Et

{
1

rrt,t+J

bt−1+J

πt+J

}
= 0. (A.4)

Regarding the government, its period t resource constraint in real terms is,

dG
t−1

πt
+ rert

dG∗
t−1

π∗
t

=
dG

t
Rt

+ rert
dG∗

t
R∗

t
+ spt, (A.5)

where spt denotes the real primary surplus. Following similar steps as in the household case, this
can be written as

dG
t−1

πt
+ rert

dG∗
t−1

π∗
t

=
πt+1

Rt

dG
t

πt+1
+

πt+1

πS
t+1R∗

t
rert+1

dG∗
t

π∗
t+1

+ spt
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Adding and subtracting 1
rrt,t+1

rert+1
dG∗

t
π∗

t+1
on the right hand side, we get

dG
t−1

πt
+ rert

dG∗
t−1

π∗
t

=
1

rrt,t+1

(
dG

t
πt+1

+ rert+1
dG∗

t
π∗

t+1

)
+ spt +

(
πt+1

πS
t+1R∗

t
− 1

rrt,t+1

)
rert+1

dG∗
t

π∗
t+1

Let soG
t+1 ≡

(
πt+1

πS
t+1R∗

t
− 1

rrt,t+1

)
rert+1

dG∗
t

π∗
t+1

. Similar to soH
t , this represents valuation effects due to market

incompleteness. Defining also, aG
t ≡ dG

t−1
πt

+ rert
dG∗

t−1
π∗

t
, we get

aG
t =

1
rrt,t+1

aG
t+1 + soG

t+1 + spt

Replacing forward aG
t+1 up until arbitrary period J we get

aG
t =

aG
t+J

rrt,t+J
+

J−1

∑
j=0

(
spt+j + soG

t+1+j

)
rrt,t+j

Finally, applying expectations conditional on information at time t on both sides, and then taking the
limit for J up to infinity,

aG
t = lim

J→∞
Et

{
aG

t+J

rrt,t+J

}
+

∞

∑
j=0

Et


(

spt+j + soG
t+1+j

)
rrt,t+j


It follows that we need to impose the condition lim

J→∞
Et

{
aG

t+J
rrt,t+J

}
= 0 which, from the definition of aG

t ,

is equivalent to

lim
J→∞

Et

{
1

rrt,t+J

(
dG

t+J−1

πt+J
+ rert+J

dG∗
t−1+J

π∗
t+J

)}
= 0. (A.6)

While household’s TVC (A.4) follow from optimization as we have discussed, the government’s TVC
does not. For that reason, transversality condition on government debt are part of the controversy
surrounding FTPL in the literature.

In closed economy models with representative agents, the transversality condition for the gov-
ernment is not an extra requirement, for coincides with the household’s TVC, which is an optimality
condition. Here, as in equilibrium bt = dH

t (as we are assuming that only domestic households hold
peso bonds), the part of (A.6) corresponding to the debt in pesos is equivalent to household’s TVC
for its holding of domestic assets (i.e. the second equation in (A.4)) which, again, is an optimality
condition given our assumptions.

However, if in an open economy we allow for both domestic and foreign agents to hold govern-
ment bonds, the household’s TVC related to foreign debt is not the same as that of the government’s.
This is discussed by earlier open-economy contributions such as Dupor (2000) and Daniel (2001). In
particular, notice that a government not satisfying the TVC, but that still faces a NPGC condition
(which is natural to assume), is wasting resources that could be used to either finance additional
spending or to reduce taxes at some point. Therefore welfare could be improved if policy is con-
strained to satisfy the transversality condition with equality. A such, Daniel (2001) introduces the
concept of “no-surplus fiscal policy” to describe schemes in which governments in a multi-country
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model do not waste resources in this way.
In our case, assuming that

lim
J→∞

Et

{
1

rrt,t+J
rert+J

dG∗
t−1+J

π∗
t+J

}
= 0, (A.7)

in tandem with the household’s TVC in pesos as previously discussed, implies that we focus on
“no-surplus fiscal policies”.

After imposing these transversality conditions, the lifetime government budget constraint is

dG
t−1

πt
+ rert

dG∗
t−1

π∗
t

=
∞

∑
j=0

Et


(

spt+j + soG
t+1+j

)
rrt,t+j


Using the definition of the share of government debt in dollars Ωt in (5), plus the constant-currency
composition rule (Ωt = Ω), we get[

1 − Ω
πt

+
rert

rert−1

Ω
π∗

t

]
dt−1 =

[
(1 − Ω) + ΩπS

t
πt

]
dt−1 = Et

{
∞

∑
j=0

spt+j

rrt,t+j

}
+ h.o.t.,

where dt ≡ dG
t + rertdG∗

t , in the first equality we have used rert = rert−1
πS

t π∗
t

πt
, and also h.o.t. ≡

∑∞
j=0 Et

{
soG

t+1+j/rrt,t+j

}
. This is equation (8) in the text.

Finally, it is relevant to notice that the transversality condition for government debt in dollars
(A.7) is not only relevant to describe the government problem, but also to guarantee that the balance
of payments is sustainable. Consolidating the household and government’s budget constraints (A.2)
and (A.5), using also the market clearing condition for non-traded goods, the following represents
the balance of payments in this model, expressed in domestic-consumption units,

rert
d∗t−1

π∗
t

= rert
d∗t
R∗

t
+ tbt

where d∗t ≡ dG∗
t + dH∗

t is the countries’ net-foreign lending position, and tbt ≡ rert(yT
t − cT

t ) is the
trade balance. As before, this can be written as

rert
d∗t−1

π∗
t

=
πt+1

πS
t+1R∗

t
rert+1

d∗t
π∗

t+1
+ tbt

or,

rert
d∗t−1

π∗
t

=
1

rrt,t+1
rert+1

d∗t
π∗

t+1
+

(
πt+1

πS
t+1R∗

t
− 1

rrt,t+1

)
rert+1

d∗t
π∗

t+1
+ tbt

Defining sot+1 ≡
(

πt+1
πS

t+1R∗
t
− 1

rrt,t+1

)
rert+1

d∗t
π∗

t+1
, iterating forward up to period J, applying expectations

conditional on information at time t on both sides, and taking the limit for J up to infinity, we get

rert
d∗t−1

π∗
t

= lim
J→∞

Et

{
1

rrt,t+J
rert+J

d∗t−1+J

π∗
t+J

}
+

∞

∑
j=0

Et

{(
tbt+j + sot+1+j

)
rrt,t+J

}
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It follows that for the balance of payments to be sustainable we need,

lim
J→∞

Et

{
1

rrt,t+J
rert+J

d∗t−1+J

π∗
t+J

}
= 0,

Therefore, as d∗t ≡ dG∗
t + dH∗

t , the households optimality TVC for dollar assets, plus the assump-
tion of “no-surplus” policy previously discussed, is equivalent to requiring the balance of payments’
sustainability. In other words, in the open economy, arguing about whether the TVC condition for
government’s debt needs to hold is equivalent to discussing the balance-of-payment’s sustainability.

Still, it should be highlighted that this discussion is more pertinent to a global equilibrium anal-
ysis, which previous open-economy papers had only tackle in deterministic models. Instead, in this
paper, as we approximate the solution by linearization around a non-stochastic steady state, the local
existence and uniqueness requirements implicitly assume these transversality conditions hold. More-
over, the valuation terms previously described vanish up to a first order of approximation. Future
research could be devoted to study the requirements for global existence and uniqueness in stochastic
small-and-open economy models.

B Equilibrium characterization

B.1 Production of non-tradable varieties and Calvo

A monopolist producing the variety j produces uses labor according to yN
jt = (hjt)

α, with α ∈ (0, 1]. It
internalizes the demand for j (obtained from the maximization of the competitive firms aggregating
non-trade goods), given by

yN
jt =

(
PN

jt

PN
t

)−ϵN

yN
t , for all j.

In addition, it faces a Calvo problem in choosing its price PN
jt : with probability θN it is forced to

set PN
jt = PN

jt−1, while with probability 1 − θN it can freely choose a price P̃N
jt . Using well-known

aggregation results (e.g. Schmitt-Grohé and Uribe, 2017, Ch. 9.16), in particular that all firms able to
chooses set the same price P̃N

t , the following characterize dynamics of non-traded prices,

pN
t mcN

t =
wt

α
(yN

t )
( 1

α−1), (A.8)

ft = ( p̃N
t )

1−ϵN yN
t
(ϵN − 1)

ϵN
+ θNEt

χt,t+1

(
p̃N

t

p̃N
t+1

)1−ϵN

(πN
t+1)

ϵN ft+1

 , (A.9)

ft = ( p̃N
t )

−ϵN yN
t mcN

t + θNEt

{
χt,t+1

(
p̃N

t

p̃N
t+1

)−ϵN

(πN
t+1)

1+ϵN ft+1

}
, (A.10)

1 = θN(π
N
t )ϵN−1 + (1 − θN)( p̃N

t )
1−ϵN . (A.11)

Equation (A.8) equates marginal costs to the ratio between wages and the marginal product of labor,
where mcN

t is the real marginal cost in non-traded units. Equations (A.9)-(A.10) provide a recursive
representation to the optimal choice of price P̃N

t for those allowed to chose (where p̃N
t ≡ P̃N

t /PN
t ),

equating the net present value of marginal revenues in those states in which the price P̃N
t still holds
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(called ft in this notation) to that of marginal costs.17 The last condition (A.11) relates the optimal
price chosen by those allowed to do so and non-traded inflation πN

t ≡ PN
t /PN

t−1.
These equations can be log-linearized around the zero-inflation steady state (see Schmitt-Grohé

and Uribe, 2017, Ch. 9.16) to obtain,

π̂N
t = βEt{π̂N

t+1}+ κ · m̂cN
t ,

where ·̂ denotes log-linear approximation, and κ = (1−θN)(1−βθN)

θN(
ϵN
α +1−ϵN)

.

B.2 Equilibrium conditions

Besides the transversality conditions in Appendix A, the following characterize the equilibrium,

(1 − νt)wt(ct)
−σ = χ(ht)

φ, (Eq.1)

(ct)
−σ = βRtEt

{
(ct+1)

−σ

πt+1

}
, (Eq.2)

(ct)
−σ = βR∗

t Et

{
(ct+1)

−σπS
t+1

πt+1

}
, (Eq.3)

ct =

[
ω1/η

(
cN

t

)1−1/η
+ (1 − ω)1/η

(
cT

t

)1−1/η
] η

η−1

, (Eq.4)

cN
t = ω

(
pN

t

)−η
ct. (Eq.5)

cT
t = (1 − ω)

(
pT

t

)−η
ct, (Eq.6)

pN
t mcN

t =
wt

α
(yN

t )
( 1

α−1), (Eq.7)

ft = ( p̃N
t )

1−ϵN yN
t
(ϵN − 1)

ϵN
+ θNEt

β
(ct+1)

−σ

(ct)−σπt+1

(
p̃N

t

p̃N
t+1

)1−ϵN

(πN
t+1)

ϵN ft+1

 , (Eq.8)

ft = ( p̃N
t )

−ϵN yN
t mcN

t + θNEt

{
β

(ct+1)
−σ

(ct)−σπt+1

(
p̃N

t

p̃N
t+1

)−ϵN

(πN
t+1)

1+ϵN ft+1

}
, (Eq.9)

1 = θN(π
N
t )ϵN−1 + (1 − θN)( p̃N

t )
1−ϵN . (Eq.10)

dG
t−1

πt
+ rert

dG∗
t−1

π∗
t

=
dG

t
Rt

+ rert
dG∗

t
R∗

t
+ spt, (Eq.11)

spt = τt + νt

(
pN

t yN
t + pT

t yT
t

)
− pN

t gt, (Eq.12)

τt − τ = ϕT

[
dG

t−1

πt
+ rert

dG∗
t−1

π∗
t

− sp
1 − β

]
+ uτ

t , (Eq.13)

Ω =
rerdG∗

t

dG
t + rerdG∗

t
, (Eq.14)

17In these, χt,t+h ≡ βh (ct+h)
−σ Pt

(ct)−σ Pt+h
is the households’ stochastic discount factor for nominal claims.
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(
Rt

R

)
=
(πt

π

)ϕπ

uR
t , (Eq.15)

R∗
t = RW

t exp
{

ψ
(
d∗t − d̄∗

)}
, (Eq.16)

d∗t = d∗G
t + d∗H

t , (Eq.17)

yN
t = (ht)

α, (Eq.18)

yN
t = (∆t)

α(cN
t + gt), (Eq.19)

∆t = θN∆t(π
N
t )

ϵN
α + (1 − θN)( p̃N

t )
− ϵN

α , (Eq.20)

rert = pT
t , (Eq.21)

rert = rert−1
πS

t π∗
t

πt
, (Eq.22)

pN
t = pN

t−1
πN

t
πt

, (Eq.23)

d∗t−1

π∗
t

=
d∗t
R∗

t
+ (yT

t − cT
t ). (Eq.24)

All variables were described before, except for ∆t that captures the potential inefficiency induced
by price dispersion in the presence of sticky prices. However, as we will assume zero steady-state
inflation, it is not relevant up to first order.

Overall, we have 24 endogenous variables:

wt ct ht Rt πt R∗
t πS

t cN
t cT

t pN
t pT

t rert

mcN
t yN

t ft p̃N
t πN

t dG
t dG∗

t spt τt d∗t d∗H
t ∆t

and 7 exogenous variables:

yT
t π∗

t RW
t gt νt uτ

t uR
t

For xt = {yT
t , π∗

t , RW
t , uτ

t , uR
t } we assume the following AR(1) process in logs

log
( xt

x

)
= ρx log

( xt−1

x

)
+ σxεx

t ,

where εx
t is an i.i.d. shock, ρx ∈ [0, 1) and σx > 0. Instead, for the other exogenous variables that can

take the value zero, we assume

(gt − g)
gdp

= ρg
(gt−1 − g)

gdp
+ σgε

g
t ,

(uτ
t − uτ)

gdp
= ρτ

(uτ
t−1 − uτ)

gdp
+ στετ

t , (νt − ν) = ρν(νt−1 − ν) + σνεν
t

where gdp = yN + yT is real GDP in steady state, ρg, ρτ, ρν ∈ [0, 1) and σg, στ, σν > 0.

B.3 Tradable block

Combining equations (Eq.3), (Eq.6), (Eq.21) and (Eq.22) we get

(cT
t )

−σ(pT
t )

−ση = βR∗
t Et

{
(cT

t+1)
−σ(pT

t+1)
−ση pT

t+1

π∗
t+1 pT

t

}
, (B.1)
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If in addition we assume ησ = 1, this yields

(cT
t )

−σ = βR∗
t Et

{
(cT

t+1)
−σ

π∗
t+1

}
, (B.2)

Equations (B.2), (Eq.16) and (Eq.24) form a system for the endogenous variables cT
t , d∗t and R∗

t , which
can be solved as a function of exogenous variables π∗

t , RW
t , yT

t alone. Thus, in this setup, the tradable
block is isolated from non-tradables, as well as from monetary and fiscal policy. The intuitive reason
for this result is that any effect on the real exchange rate (pT

t ), originated from exogenous variables
different from π∗

t , RW
t , yT

t , induces both intra- and inter-temporal substitution effects. By the former,
an increase in pT

t produces (ceteris paribus) a desire for substituting away from tradables, as these
become more expensive; an effect determined by the intra-temporal elasticity of substitution η. By
the latter, a temporary increase in pT

t produces (ceteris paribus) a fall in the real return of saving in
tradables, increasing desired tradable consumption today (an effect determined by the intra-temporal
substitution elasticity 1/σ). Thus, when ησ = 1, the two effects offset each other.

B.4 Non-tradable and policy block

Taking out 3 equations for the 3 traded variables that are determined independently, eliminating ct,
d∗H

t and pT
t to simplify, using also the assumption ησ = 1, assuming ∆t = 1 (which holds up to first

order), and re-ordering some equations, the remainder equilibrium conditions are:
Non-Policy

(1 − νt)
wt

pN
t

(
cN

t
ω

)−σ

= χ(ht)
φ, (B.3)

cN
t =

ω

1 − ω

(
pN

t
rert

)−η

cT
t , (B.4)

1 = ω
(

pN
t

)1−η
+ (1 − ω) (rert) ,1−η (B.5)

pN
t mcN

t =
wt

α
(yN

t )
( 1

α−1), (B.6)

yN
t = (ht)

α, (B.7)

yN
t = (cN

t + gt), (B.8)

rert = rert−1
πS

t π∗
t

πt
, (B.9)

pN
t = pN

t−1
πN

t
πt

, (B.10)

RtEt

{
(ct+1)

−σ

πt+1

}
= R∗

t Et

{
(ct+1)

−σπS
t+1

πt+1

}
, 18 (B.11)

π̂N
t = βEt{π̂N

t+1}+ κ · m̂cN
t , (B.12)

Policy
dG

t−1

πt
+ rert

dG∗
t−1

π∗
t

=
dG

t
Rt

+ rert
dG∗

t
R∗

t
+ spt (B.13)

18This equation also features ct+1, but it will disappear once we log-linearize.
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spt = τt + νt

(
pN

t yN
t + pT

t yT
t

)
− pN

t gt, (B.14)

τt − τ = ϕT

[
dG

t−1

πt
+ rert

dG∗
t−1

π∗
t

− sp
1 − β

]
+ uτ

t , (B.15)

Ω =
rertdG∗

t

dG
t + rertdG∗

t
, (B.16)(

Rt

R

)
=
(πt

π

)ϕπ

uR
t , (B.17)

Overall, we have 15 endogenous variables:

wt ht Rt πt πS
t cN

t pN
t rert

mcN
t yN

t πN
t dG

t dG∗
t spt τt

and 10 exogenous variables:

yT
t π∗

t RW
t gt νt uτ

t uR
t d∗t cT

t R∗
t

(recall d∗t , cT
t , R∗

t are determined independently of other endogenous variables)
We begin by log-linearizing the Non-Policy block (except for νt and gt for which we just linearize)

− ν̂t

1 − ν
+ ŵt − p̂N

t − σĉN
t = φĥt,

ĉN
t = −η

(
p̂N

t − r̂ert

)
+ ĉT

t ,

0 = ω p̂N
t + (1 − ω) r̂ert,

p̂N
t + m̂cN

t = ŵt +

(
1
α
− 1
)

ŷN
t ,

ŷN
t = αĥt,

ŷN
t =

(
1 − g

yN

)
ĉN

t +

(
1

yN

)
ĝt,

p̂N
t = p̂N

t−1 + π̂N
t − π̂t,

r̂ert = r̂ert−1 + π̂S
t + π̂∗

t − π̂t,

R̂t = R̂∗
t + Et

{
π̂S

t+1

}
,

π̂N
t = βEt{π̂N

t+1}+ κ · m̂cN
t .

The first six equations (the ones that are just static) can be used to write marginal costs as,

m̂cN
t =

[(
1 + φ

α
− 1
)(

1 − g
yN

)
+ σ

]
ĉN

t +
ν̂t

1 − ν
+

(
1
α
− 1
)(

1
yN

)
ĝt

Notice also that, from 0 = ω p̂N
t + (1 − ω) r̂ert, we have

p̂N
t − r̂ert = − 1

ω
r̂ert,
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Thus, from ĉN
t = −η

(
p̂N

t − r̂ert
)
+ ĉT

t we get,

ĉN
t =

η

ω
r̂ert + ĉT

t

In addition, again using 0 = ω p̂N
t + (1 − ω) r̂ert and the equations describing the evolution of p̂N

t
and r̂ert, we can write inflation as

π̂t = ω( p̂N
t−1 + π̂N

t ) + (1 − ω)
(

r̂ert−1 + π̂S
t + π̂∗

t

)
.

But, as it also holds that 0 = ω p̂N
t−1 + (1 − ω) r̂ert−1, we get

π̂t = ω(π̂N
t ) + (1 − ω)

(
π̂S

t + π̂∗
t

)
⇒ π̂N

t =
1
ω

π̂t −
(1 − ω)

ω

(
π̂S

t + π̂∗
t

)
If we further simplify by assuming νt = gt = ν = g = 0, defining κ̃ ≡ ωκ

[
(1+φ)

α − 1 + σ
]
, we can

reduce the non-policy block to:

π̂N
t = βEt

{
π̂N

t+1

}
+

κ̃

ω

( η

ω
r̂ert + ĉT

t

)
, (B.18)

π̂t = ω(π̂N
t ) + (1 − ω)

(
π̂S

t + π̂∗
t

)
, (B.19)

r̂ert = r̂ert−1 + π̂S
t + π̂∗

t − π̂t, (B.20)

R̂t = R̂∗
t + Et

{
π̂S

t+1

}
, (B.21)

These are 4 equations for 4 non-policy endogenous variables π̂N
t , π̂t, r̂ert, π̂S

t .
The fiscal policy block, with the simplifying assumptions νt = gt = ν = g = 0, is

dG
t−1

πt
+ rert

dG∗
t−1

π∗
t

=
dG

t
Rt

+ rert
dG∗

t
R∗

t
+ τt

τt − τ = ϕT

[
dG

t−1

πt
+ rert

dG∗
t−1

π∗
t

− τ

1 − β

]
+ uτ

t ,

Ω =
rertdG∗

t

dG
t + rertdG∗

t
,

These are 3 equations for 3 fiscal-policy endogenous variables, dG
t , dG∗

t , τt. Notice that the government
budget constraint can be written as[

(1 − Ω)

πt
+

rert

rert−1

Ω
π∗

t

]
dt−1 =

[
(1 − Ω)

Rt
+

Ω
R∗

t

]
dt + τt

where dt = dG
t + rertdG∗

t is the total amount of government debt, expressed in domestic consumption
units, evaluated at the steady-state real exchange rate.

Define At ≡
[
(1−Ω)

πt
+ rert

rert−1

Ω
π∗

t

]
, Bt ≡

[
(1−Ω)

Rt
+ Ω

R∗
t

]
, Ât ≡ log(At/A) and B̂t ≡ log(Bt/B). Also,

we focus on cases with d, τ > 0, so we also define d̂t ≡ log(dt/d) and τ̂t ≡ log(τt/τ). Thus, applying
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the change of variables, we get
AeÂt ded̂t−1 = BeB̂t ded̂t + τeτ̂t .

Taking a first-order approximation

Ad(Ât + d̂t−1) = Bd(B̂t + d̂t) + ττ̂t.

In a steady state with π = π∗ = πS = 1, then R = R∗ = 1/β, so we have

A = 1, B = β, d(1 − β) = τ.

Therefore, the first-order approximation simplifies to

Ât + d̂t−1 = β(B̂t + d̂t) + (1 − β)τ̂t. (B.22)

Similarly, the rule for lump-sump taxes can be written as

τt − τ = ϕT

(
Atdt−1 −

τ

1 − β

)
+ uτ

t ⇒ τeτ̂t − τ = ϕT

(
AeÂt ded̂t−1 − τ

1 − β

)
+ uτ

t ,

or

eτ̂t − 1 = ϕT

(
1

(1 − β)
eÂt+d̂t−1 − 1

1 − β

)
+

1
(1 − β)

ûτ
t ,

where ûτ
t ≡ uτ

t (1 − β)/τ. Taking a first order approximation,

τ̂t = ϕT
1

(1 − β)
(Ât + d̂t−1) +

1
(1 − β)

ûτ
t . (B.23)

Thus, combining (B.22) and (B.23), we can write

(1 − ϕT)(d̂t−1 + Ât) = β(d̂t + B̂t) + ûτ
t . (B.24)

In addition, from the definitions At ≡
[
(1−Ω)

πt
+ rert

rert−1

Ω
π∗

t

]
, Bt ≡

[
(1−Ω)

Rt
+ Ω

R∗
t

]
, first notice that

using (Eq.22),

At ≡
[
(1 − Ω)

πt
+

rert

rert−1

Ω
π∗

t

]
=

[
(1 − Ω)

πt
+

πS
t

πt
Ω

]
=

[
(1 − Ω) + ΩπS

t
πt

]

Thus, we can log-linearize to obtain,

Ât = −π̂t + Ωπ̂S
t B̂t = −(1 − Ω)R̂t − ΩR̂∗

t .

Thus, (B.24) can be written as

(1 − ϕT)
[
d̂t−1 − π̂t + Ωπ̂S

t

]
= β

[
d̂t − R̂t − Ω(R̂∗

t − R̂t)
]
+ ûτ

t ,

or, using (B.20) and (B.21),

(1 − ϕT)
(

d̂t−1 − π̂t + Ωπ̂S
t

)
= β

[
d̂t − R̂t + ΩEt

{
π̂S

t+1

}]
+ ûτ

t , (B.25)
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Notice also that, using (B.19), this can be written as

(1 − ϕT)
[
d̂t−1 − ω(π̂N

t )− (1 − ω)
(

π̂S
t + π̂∗

t

)
+ Ωπ̂S

t

]
= β

[
d̂t − R̂t + ΩEt

{
π̂S

t+1

}]
+ ûτ

t ,

or

(1 − ϕT)
[
d̂t−1 − ω(π̂N

t ) + (Ω + ω − 1)π̂S
t − (1 − ω)π̂∗

t

]
= β

[
d̂t − R̂t + ΩEt

{
π̂S

t+1

}]
+ ûτ

t ,

Finally, the log-linearization of the Taylor rule is

R̂t = ϕππ̂t + ûR
t . (B.26)

Summarizing, the non-traded plus policy blocks can be reduced, up to first order, to equations
(B.18), (B.19), (B.20), (B.21), (B.25) and (B.26), corresponding to the endogenous variables π̂N

t , π̂t, r̂ert,
π̂S

t , R̂t, and d̂t.
Finally, notice that combining (B.19), (B.20) and (B.21) we can derive,

R̂t = R̂∗
t + Et

{
π̂S

t+1

}
⇒ r̂ert = R̂∗

t − R̂t + Et {r̂ert+1 + π̂t+1 − π̂∗
t+1}

⇒ r̂ert =
∞

∑
j=0

[
(R̂∗

t+j − π̂∗
t+1+j)− (R̂t+j − π̂t+1+j)

]
⇒

π̂S
t = π̂t − π̂∗

t − r̂ert−1 +
∞

∑
j=0

[
(R̂∗

t+j − π̂∗
t+1+j)− (R̂t+j − π̂t+1+j)

]
,

which is (15) in the text.

C Existence and Uniqueness

C.1 Case A: θN ∈ (0, 1)

Combining the equations (B.18), (B.19), (B.20), (B.21), (B.25) and (B.26) to eliminate π̂t and R̂t, we get
the following equations characterizing the dynamics of π̂N

t , r̂ert, π̂S
t , d̂t:19

π̂N
t = βπ̂N

t+1 + Kr̂ert, (B.27)

r̂ert = r̂ert−1 + ω(π̂S
t − π̂N

t ), (B.28)

ϕπ

[
ωπ̂N

t + (1 − ω)π̂S
t

]
= π̂S

t+1, (B.29)

(1 − ϕT)
(

d̂t−1 − ωπ̂N
t − (1 − ω − Ω)π̂S

t

)
= β

[
d̂t − (1 − Ω)π̂S

t+1

]
, (B.30)

with K ≡ κ̃
ω

η
ω . Here, r̂ert and d̂t are predetermined/state endogenous variables, while π̂N

t and π̂S
t

are non-predetermined/jumping. Local equilibrium uniqueness thus requires 2 stable and 2 non-
stable eigenvalues. If there are more than 2 stable eigenvalues, there are multiple local equilibria.
Otherwise, there is no locally stationary equilibrium.

19We have eliminated uncertainty and exogenous variables, as these are not relevant for analysis of local existence and
uniqueness
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These equations can be re-arranged as

π̂S
t+1 = ϕπωπ̂N

t + ϕπ(1 − ω)π̂S
t (B.31)

π̂N
t+1 =

1
β
(1 + ωK)π̂N

t − 1
β

Kr̂ert−1 −
1
β

ωKπ̂S
t , (B.32)

r̂ert = r̂ert−1 + ωπ̂S
t − ωπ̂N

t , (B.33)

d̂t =
(1 − ϕT)

β
d̂t−1 +

[
(1 − Ω)(1 − ω)ϕπ − (1 − ϕT)

β
(1 − ω − Ω)

]
π̂S

t + ...

+

[
(1 − Ω)ϕπ − (1 − ϕT)

β

]
ωπ̂N

t (B.34)

Defining wt ≡ [π̂S
t , π̂N

t , r̂ert−1, d̂t−1]
′, the system can be written as

wt+1 = Fwt

where

F =


aπSπS aπSπN 0 0
aπNπS aπNπN aπNrer 0
arerπS arerπN arerrer 0
adπS adπN 0 add


Given that the matrix F is a block lower triangular matrix of the form

F =

(
A 0
C D

)

we get
det(F − λI) = det(A − λI)× det(D − λI)

This means that we can analyze the eigenvalues of A and D separately. First, notice that the eigen-
value of D is equal to 1−ϕT

β , which is less than one if 1 − β < ϕT.
In terms of A, notice that

det(A − λI) =

∣∣∣∣∣∣∣
aπSπS − λ aπSπN 0

aπNπS aπNπN − λ aπNrer
arerπS arerπN arerrer − λ

∣∣∣∣∣∣∣ =
(aπSπS − λ) [(aπNπN − λ)(arerrer − λ)− arerπN aπNrer]− (aπSπN ) [aπNπS(arerrer − λ)− arerπS aπNrer] =

λ3 − (aππ + arerrer) λ2 + (aππarerrer − aπrerarerπ − aπSπaππS) λ + (aπSπaππS arerrer − aπSπaπrerarerπS)

Thus, we need to compute the solutions to,

λ3 −
(

1
β
+ (1 − ω)ϕπ +

ωK
β

+ 1
)

λ2 +

(
1
β
+ (1 − ω)ϕπ + ϕπ

1
β
(1 + ωK)− ωϕπ

1
β

)
λ−ϕπ

(1 − ω)

β
= 0
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In other words, the characteristic equation of matrix A takes the following form:

λ3 + A2λ2 + A1λ + A0 = 0.

We are interested in determining sufficient conditions under which this polynomial has:

− Exactly two roots outside the unit circle (i.e., |λ| > 1) and one inside (|λ| < 1),

− Or, exactly two roots inside the unit circle and one outside.

Sufficient Conditions for 2 Roots Outside and 1 Root Inside
Any one of the following sets of conditions is sufficient to ensure this root configuration (see, for

instance, Woodford, 2003, Appendix C):

Condition Set 1: {
1 + A2 + A1 + A0 < 0,

−1 + A2 − A1 + A0 > 0.

Condition Set 2: 
1 + A2 + A1 + A0 > 0,

−1 + A2 − A1 + A0 < 0,

A2
2 − A0A2 + A1 − 1 > 0.

Condition Set 3: 
1 + A2 + A1 + A0 > 0,

−1 + A2 − A1 + A0 < 0,

A2
2 − A0A2 + A1 − 1 < 0,

|A2| > 3.

Sufficient Conditions for 2 Roots Inside and 1 Root Outside
Any one of the following sets of conditions is sufficient to ensure this alternative configuration:

Condition Set A: {
1 + A2 + A1 + A0 > 0,

−1 + A2 − A1 + A0 > 0.

Condition Set B: 
1 + A2 + A1 + A0 < 0,

−1 + A2 − A1 + A0 < 0,

A2
2 − A0A2 + A1 − 1 > 0.

Condition Set C: 
1 + A2 + A1 + A0 < 0,

−1 + A2 − A1 + A0 > 0,

A2
2 − A0A2 + A1 − 1 < 0,

|A2| > 3.
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Case I: ϕπ > 1
We need

1 + A2 + A1 + A0 = (ϕπ − 1)
ωK
β

> 0

−1 + A2 − A1 + A0 = −2
(

1 +
1
β
+ (1 − ω)ϕπ +

ϕπ(1 − ω)

β

)
− (1 + ϕπ)

ωK
β

Given that ϕπ > 0:
−1 + A2 − A1 + A0 < 0

|A2| = | −
(

1
β
+ (1 − ω)ϕπ +

ωK
β

+ 1
)
|

Since β ∈ (0, 1):

1 +
1
β
> 2

Then, to prove that |A2| > 3, it is sufficient to show that:

(1 − ω)ϕπ +
ωK
β

≥ 1

Which implies that:

ϕπ ≥
1 − ω K

β

1 − ω

A2
2 − A0 A2 + A1 − 1 =

[
−
(

1
β
+ (1 − ω)ϕπ +

ωK
β

+ 1
)]2

−ϕπ
(1 − ω)

β

(
1
β
+ (1 − ω)ϕπ +

ωK
β

+ 1
)

+

(
1
β
+ (1 − ω)ϕπ + ϕπ

1
β
(1 + ωK)− ωϕπ

1
β

)
Therefore, A2

2 − A0A2 + A1 − 1 takes the form of a quadratic equation in ϕπ:

A2
2 − A0A2 + A1 − 1 = aϕ2

π + bϕπ + c

where:

a = (1 − ω)2(1 − 1
β
) < 0

In order to prove that A2
2 − A0A2 + A1 − 1 > 0 it is sufficient to show that:(

1
β
+ (1 − ω)ϕπ +

ωK
β

+ 1
)2

−ϕπ
(1 − ω)

β

(
1
β
+ (1 − ω)ϕπ +

ωK
β

+ 1
)
+(ϕπ − 1)

ωK
β

+
ϕπ

β
(1−ω) > 0

For the case where ϕπ > 1 and
1− ωK

β

1−ω ≥ 1, we know that for ϕπ ∈
(

1,
1− ωK

β

1−ω

)
, it is not guaranteed

that |A2| > 3. Therefore, we must show that within this interval, the condition A2
2 − A0A2 + A1 − 1 >

0 holds:
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If ϕπ = 1:(
1
β
+ (1 − ω) +

ωK
β

+ 1
)2

− (1 − ω)

β

(
1
β
+ (1 − ω) +

ωK
β

+ 1
)
+

1
β
(1 − ω) =

= (1 − ω) +
ωK
β

+ 1 +
ω

β
+

1
β

(1 − ω)
1
β + (1 − ω) + ωK

β + 1
> 0

If ϕπ =
1− ωK

β

1−ω :

(
1
β
+ (1 − ω)

1 − ωK
β

1 − ω
+

ωK
β

+ 1

)2

−
1 − ωK

β

1 − ω

(1 − ω)

β

(
1
β
+ (1 − ω)

1 − ωK
β

1 − ω
+

ωK
β

+ 1

)

+

(
1 − ωK

β

1 − ω
− 1

)
ωK
β

+
1 − ωK

β

1 − ω

(1 − ω)

β
=

= 2 +
ωK
β2 +

[(
1 − ωK

β

1 − ω
− 1

)
ωK
β

+
1 − ωK

β

1 − ω

(1 − ω)

β

]
1

1
β + (1 − ω)

1− ωK
β

1−ω + ωK
β + 1

> 0

On the other hand, if
1− ωK

β

1−ω < 1 then:

|A2| > 3 ∀ ϕπ ∈ (1,+∞)

We can now establish the stability conditions for all values of ϕπ > 1. The expression A2
2 − A0A2 +

A1 − 1 has been shown to be a strictly concave function of ϕπ (i.e., a downward-opening parabola).

On the interval where ϕπ ∈
(

1,
1− ωK

β

1−ω

)
, which is the region where the condition |A2| > 3 is not

guaranteed, the function evaluates to a strictly positive value at the boundary points of this interval

(i.e., at ϕπ = 1 and ϕπ =
1− ωK

β

1−ω ).
A fundamental property of strictly concave functions dictates that:

Lemma. Let f be a strictly concave function on the closed interval [a, b]. If f (a) > 0 and f (b) > 0,
then f (x) > 0 for all x in the open interval (a, b).

Then, it follows that A2
2 − A0A2 + A1 − 1 > 0 holds for all ϕπ in the specified range.

For the case where ϕπ > 1, we show that the sufficient conditions are satisfied for the case in
which there are two roots outside the unit circle and one inside20. Given that d̂t and r̂ert are predeter-
mined variables, and π̂S

t and π̂t are jumping variables, we require two eigenvalues with modulus less
than one and two with modulus greater than one in order to ensure the local uniqueness of equilibrium.
This implies that the remaining eigenvalue must lie inside the unit circle:

det(D − λI) = |add − λ|
20This holds whether A2

2 − A0 A2 + A1 − 1 > 0 or A2
2 − A0 A2 + A1 − 1 < 0; we avoid discussion of certain non-generic

boundary cases.
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∴ λ4 = add =
(1 − ϕT)

β

λ4 < |1| ⇐⇒ ϕT > 1 − β

Case II: ϕπ < 1

1 + A2 + A1 + A0 = (ϕπ − 1)
κ̃

β

η

ω
< 0

As previously stated, for ϕπ > 0, we know that:

−1 + A2 − A1 + A0 < 0

Now, for the case where ϕπ ∈ (0, 1) we need to prove that:
A2

2 − A0 A2 + A1 − 1 > 0
If ϕπ = 0: (

1
β
+

ωK
β

+ 1
)2

− ωK
β

=
1
β
+

(
1 − 1

1
β + ωK

β + 1

)
ωK
β

+ 1 > 0

We previously prove that the quadratic function is positive when ϕπ is valued at 1. Therefore,
given that the quadratic function is a strictly concave function, we can state that:

A2
2 − A0A2 + A1 − 1 > 0 ∀ ϕπ ∈ (0, 1)

Thus, we have shown that when ϕπ < 1, the sufficient conditions are met to establish the existence
of two roots inside the unit circle and one outside. Accordingly, the remaining eigenvalue must lie
outside the unit circle:

λ4 < |1| ⇐⇒ ϕT < 1 − β

Case B: θN = 0 ∧ Ω ∈ [0, 1)

From the system (B.27)-(B.30) and the fact that θN = 0 and, thus, K → ∞:

π̂N
t+1 = ϕππ̂N

t , (B.35)

d̂t = (1 − Ω)

[
ϕπ − (1 − ϕT)

β

]
πN

t +
(1 − ϕT)

β
d̂t−1, (B.36)

Defining zt ≡ [π̂N
t , d̂t−1]

′, the system can be written as

zt+1 = Jzt

where J:

J =

(
aπNπN 0
adπN add

)
Given that the matrix J is a block lower triangular matrix:

39



J =

(
E 0
G H

)
where:

det(J − λI) = det(E − λI)× det(H − λI)

Once again, we can split the analysis of eigenvalues of E and H. In this sense, it can be seen that
the eigenvalue of E is equal to ϕπ and the eigenvalue of H to (1−ϕT)

β . Consequently, given that πN
t is a

jumping variable and dt is a predetermined variable, one eigenvalue must lie outside and one inside
the unit circle, which leads to the existence of two regions of local uniqueness of equilibrium:

− Passive Fiscal - Active Monetary: ϕT ∈ [0, 1 − β) ∧ ϕπ > 1

− Active Fiscal - Passive Monetary: ϕT > 1 − β ∧ ϕπ ∈ (0, 1)

Case C: θN = 0 ∧ Ω = 1

If the debt is entirely denominated in foreign currency and prices are flexible, the system (B.35)-
(B.36) takes the form of:

π̂N
t+1 = ϕππ̂N

t , (B.37)

d̂t =
(1 − ϕT)

β
d̂t−1, (B.38)

As it may be seen, the system becomes dichotomous. Consequently, the Active Fiscal - Passive
Monetary regime does not ensure local uniqueness of equilibrium, with the Passive Fiscal - Active
Monetary regime being the only one that guarantees local uniqueness of equilibrium.
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D Robustness Exercises

D.1 Monetary and fiscal shocks, the role of ϕπ

Figure D.1: Responses to a monetary-policy-rate shock, Ricardian vs. Non-Ricardian, the role of ϕπ.

Notes: The shock is an increase in uR
t , with zero persistence, normalized to increase R by 1% on impact. Solid-blue and

dashed red lines are the same as in Figure 2 for comparison (i.e. respectively, ϕπ = 1.5, ϕT = 1, and ϕπ = 0, ϕT = 0).
In addition, the dashed-dotted black lines correspond to the case of ϕπ = 0.99, ϕT = 0, while dotted-magenta lines use
ϕπ = 1.01, ϕT = 1. In all cases, Ω = 0. See Figure 2 for variables’ definitions.
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Figure D.2: Responses to a monetary-policy-rate shock, Ricardian vs. Non-Ricardian, the role of ϕπ.

Notes: The shock is a drop in lump-sum taxes, normalized to represent 1% of steady-state GDP, with an autocorrelation of
0.7. All cases feature Ω = 0, differing in the fiscal and monetary configuration: solid-blue lines use ϕπ = 1.5 and ϕT = 1,
dashed-red lines ϕπ = 0,ϕT = 0, dashed-dotted black lines correspond to the case of ϕπ = 0.99 and ϕT = 0, and dotted-
magenta lines use ϕπ = 1.01 and ϕT = 1. See Figure 2 for for variables’ definitions.

42



D.2 The effect of real shocks, alternative policy configurations

Figure D.3: Responses to a traded-output shock, Non-Ricardian, different values of Ω, with
ϕπ = 0.99.

Notes: The figure is analogous to Figure 6, but using a value for ϕπ = 0.99.
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Figure D.4: Responses to a traded-output shock, Non-Ricardian, different values of Ω.

Notes: The figure is analogous to Figure 6, adding also the case of Ω = 1 in solid-green lines.

Figure D.5: Responses to a world interest-rate shock, Non-Ricardian, different values of Ω, with
ϕπ = 0.99.

Notes: The figure is analogous to Figure 8, but using a value for ϕπ = 0.99.
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Figure D.6: Responses to a world interest-rate shock, Non-Ricardian, different values of Ω.

Notes: The figure is analogous to Figure 8, adding also the case of Ω = 1 in solid-green lines.
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