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Abstract

This paper estimates the output gap for the Colombian economy between 1995 and 2022, explicitly
modeling the COVID-19 period where results show a significant 18.8% decrease in the output gap.
Our proposed modelling framework comprises a Bayesian Structural Vector Autoregressions with
an identification setup based on a permanent-transitory decomposition that exploits the long-run
relationship of consumption with output and whose residuals are scaled up around the COVID-19
period. Our results indicate that (i) a single structural error is sufficient to explain the permanent
component of the gross domestic product (GDP); (ii) the adjusted method allows for the incorporation
of the COVID-19 period without assuming sudden changes in the modelling setup after the pandemic;
and (iii) the proposed adjustment generates approximation improvements relative to standard filters
or similar models with no adjustments or alternative ones, but where the specific rare observations
are not known. Importantly, abstracting from any adjustment may lead to over- or underestimating
the gap, too-quick gap recoveries after downturns, or too-large volatility around the median potential
output estimations.
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1 Introduction

The COVID-19 pandemic exposed the interconnectedness of the global economy. As the virus
spread, nations worldwide faced synchronized economic downturns. The International Monetary
Fund (IMF) reported a worldwide economic contraction of 3.0% in 2020, with developed and
emerging economies both suffering significant losses. The Colombian economy was no exception
and was hit significantly by this crisis, falling by 7, 0%, the lowest number in the country’s economic
history. However, also thanks to globalization and technological progress, the world was able
to find vaccines and cope with the gradual opening after the lockdown of the first half of 2020.
As a consequence, the rebound of the economy was surprisingly important in such a way that
in 2021 also positive rates never seen before were observed. For instance, the world economy
grew 6, 0% which was significantly higher than its average since 2001 (3, 5%). So, for two years
the world economy not only suffered high levels of uncertainty but also the presence of extreme
macroeconomic data both in the downturn and in the subsequent rebound which has raised a
question about what happened to the output gap (or potential GDP growth) of the economy?

First of all, we can start by describing that the measurement of output gap is probably one of the
unobserved economic variables which has become a huge challenge for economist mainly because
its estimation involves more uncertainty and controversy in the profession. So, the Covid shock
makes it even more difficult to measure this variable than ever due to the high uncertainty in the
disaggregation of shocks into permanent components and transitory ones.

Second, the standard and traditional economy theory suggest that potential output is influenced
entirely by supply forces while demand shocks did not, therefore the latter is associated with
the transitory component that causes the fluctuations around the potential GDP that explains the
output gaps (Blanchard and Quah (1989), Barsky and Sims (2011), Blinder and Rudd (2013), Chen
and Gornicka (2020)). Nevertheless, the role of demand has been vindicated due to the observed
losses and prolonged crisis after the financial crisis in 2008 where the weakness of demand not
only affected the current output but also deteriorated its future expectations, in such a way that
it shifted down the path of potential growth (Fontanari, Palumbo, and Salvatori (2020)). In fact,
this empirical trait again promoted the hypothesis of hysteresis where different type of shocks
may have a permanent repercussion on output, in particular those associated with crises and deep
recessions and not necessarily only those on the supply side (Blanchard and Summers (1986), Ball
(2009), Summers (2015), Benati and Lubik (2021)).

The foregoing becomes more relevant in the current context of the Covid shock which was initially
considered a supply shock but the facts showed a feedback to the demand which encouraged an
increase in the economic literature about demand spillovers during this episode. Fornaro and Wolf
(2020) model a drop in the productivity growth rate as a consequence of pandemic shock under a
new Keynesian model framework. The authors model a negative endogenous feedback between
the current and the expected growth path in future due to a contraction in demand by the fall in
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future productivity which cause a stagnation trap. Guerrieri et al. (2022) show how a supply shock
that reduce potential GDP in one sector of the economy could diminish demand in other sectors, in
turn, can cause additional drops in GDP potential. According to the authors, the destruction of
jobs and businesses exacerbates the initial shock and spreads the recession when the elasticity of
substitution between sectors is relatively low, the intertemporal elasticity of substitution is relatively
high, and markets are incomplete.

With this in mind, we estimate the output gap for Colombian economy by using a Bayesian
Vector Auto-regressive model (BSVAR) with a relative large eight-variable set as well as we model
the extreme observations which were seen during the Covid pandemic following Granados and
Parra-Amado (2024). Unlike the more popular methods for estimating potential GDP (or output
gap) such as HP filter (Hodrick and Prescott (1997)), CF filter (Christiano and Fitzgerald (2003)) or a
production function approach which are based only on real GDP (univariate methods) or in a small
set of variables, we include a relatively large set of eight variables that enables us to recognize the
hypothesis of permanent income and the key relationship between consumption and GDP growth
long-run path in order to find a permanent-transitory decomposition (Cochrane (1994)). Also, we
take into account variables like exchange rate and oil prices for the fact the Colombian economy is
an small open economy dependent on oil as its main export product.

On the empirical ground, a key limitation in SVAR framework is related to the identification
scheme which we need to impose strong assumption in order to identify a specific shocks such as
supply, demand or monetary policy shocks. Among the most common identification alternatives
are contemporaneous effects as Choleski or short restrictions (Sims (1980), Christiano et al. (1996,
1999)), sign restrictions (Uhlig (2005)), long-run restrictions (Blanchard and Quah (1989)), through
heteroskedasticity (Rigobon (2003)), instruments for shocks (Romer and Romer (2004, 2010)), and
others (Beaudry and Portier (2006), Gertler and Karadi (2015), Lütkepohl and Netšunajev (2017)).
Considering this, building on Granados and Parra-Amado (2024), our empirical approach employs
an agnostic identification strategy similar to Uhlig (2003, 2004)1 and models extreme COVID ob-
servations as in Lenza and Primiceri (2022). With this strategy, we enable to handle the extreme
volatility of covid shocks and then identify the structural shocks by those that explained the vari-
ability of Colombian GDP in the long-run in a flexible identification scheme without impose strong
restrictions and and separating it from economic theory.

As result, we find that a single shock is enough to describe the fluctuations in the Colombian
business cycle which is similar to other studies such as Angeletos et al. (2020) and Brignone and
Mazzali (2022). So, we build the output gap by rerunning our model, setting to zero that single
shock (with the highest percentage of explanation of GDP variability in the long-run) and obtaining
the cyclical component of GDP logarithm’s. The latter is subtracted from the log observed GDP

1This approach find the structural errors by using the maximization of fraction of long-horizon Forecast Error Variance
(FEV) of a specific variable. In particular, we focus on GDP FEV in a 25 years horizon.
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and we recover the log of the potential GDP. In particular, the COVID-19 pandemic caused a sharp
decrease in the Colombian gap, reaching a low of -18.9% in the second quarter of 2020. However,
this decline was temporary, unlike the persistent downturn seen in previous recessions, and then
the gap rebounded quicky. Through a counterfactual analysis, we determined that COVID-19 had
a negative impact of 1.4 percentage points on Colombia’s potential economic growth.

This article is organized as follows. In the next section, we show a brief literature review. In
section 3, we introduce the methodology proposed by Granados and Parra-Amado (2024) which
combines two methods: addressing extreme values in covid pandemic as Lenza and Primiceri
(2022) and the identification scheme in VAR models proposed by Uhlig (2003, 2004). In section 4,
we introduce the data, the model and its empirical approach, and the main results and findings.
Our conclusions are drawn in the final section.

2 Literature review

As mentioned before, it is quite common to associate potential GDP with the trend component
of observed GDP which is used to calculate the output gap defined as the deviation of real GDP
from its potential output. From the policy perspective, many central banks use the output gap
measure as a source or indicator of inflationary pressures, which could condition their monetary
stance by assessing the response of observed GDP to shocks and how those fluctuations could
reflect a conservative or undesirable change from the optimal path of output. Likewise, output gap
indicates the economy’s position on business cycle which enables us to evaluate how close or far
the current fiscal deficit is from that considered as neutral.

From an empirical perspective, as potential GDP is a latent variable from which the output gap is
also derived, both statistical and economic models have emerged as a tool for its measurement. As
pointed out by Kiley (2013), the concepts of potential output gap stemming from definitions that are
not only different, but they also lead to different conclusions and assessments oftentimes. According
to this author, those concepts can be grouped in three main gap estimation approaches: filtering
or statistical approach, the production function approach, and the New Keynesian approach. In a
similar vein, Álvarez and Gómez-Loscos (2018) survey the gap estimation methods and provide a
classification according to features such as complexity, decision variables or type of modeling (e.g.,
univariate, multivariate, see the Appendix B).

A popular tool to measure the output gap is by production function approach which estimates
the output deviation from a level consistent with current technologies and full usage of resources of
capital and labor (CBO (2001, 2014), Havik et al. (2014)). However, from an empirical perspective,
these measures are usually associated with the common wisdom of a trend GDP where the gap
is defined by the deviation of output from its long-run trend (e.g., filtering approaches such as
Beveridge and Nelson (1981), Hodrick and Prescott (1997), Baxter and King (1999), Christiano
and Fitzgerald (2003), among others). In line with this, it is common some analysts and policy
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practitioners is to conceive the potential output as a smooth trend (Basu and Fernald (2009)). This
implies that supply factors and technology changes do not present significant fluctuations over
time, and therefore, short-run fluctuations of output gap are mainly driven by demand shocks.
Although empirically those univariate filters are usually used, their main criticism comes from the
fact that they typically show a low transitory variability (Cochrane (1990)2).

In a structural multivariate model this notion also began to be conceived. For example, Blanchard
and Quah (1989) show that under the traditional Keynesian view of fluctuations, they interpret
the permanent shocks as supply disturbances which are the only sources that affect the potential
output while those shocks defined as transitory are linked with demand disturbances. However,
they also recognize that there could be cases in which demand shocks affect GDP in the long term,
although in such a case they consider that those shocks would be small compared to those defined
as supply shocks.

Our starting point is the seminal article of Cochrane (1994) which examines how to decompose
permanent and transitory components in GNP unraveling the consumption’s behaviour. Thus,
it results a useful measure of the trend in GNP based on the permanent income interpretation.
According to Cochrane (1994), under a random walk consumption’s dynamics, if consumption
shows no change, the consumers interpret any contemporary shock or movement in GNP as
transitory.

Uhlig (2003, 2004) identify the permanent and transitory shocks in US economy by maximizing
the FEV of real GNP over five-years horizon. As a result, it is possible to explain around 90%
of the GNP variability by using the largest two shocks of the FEV. Although this method is
entirely empirical and does not contemplate structural restrictions from economic theory in the
identification process, the author suggests that the first shock seems like a productivity shock while
the second could be attributed to inflationary or wage push shock. Following this identification
scheme, Angeletos et al. (2020) find that a single shock can be used to explains macroeconomic
fluctuations. This common propagation mechanism in macroeconomic data was defined as Main
Business Cycle shock (MBC) by the authors. It is neither a supply-side shock nor a standard
inflationary-type demand shock, and they point out deficiencies in the traditional mechanisms
since there is a disconnection between the variables of the economic cycle and inflation or TFP.
Brignone and Mazzali (2022) expand Angeletos et al. (2020) in a high dimensional framework by
using dynamic factor model over a set of 136 variables. They found the the economy seems to
be mainly driven in the long-run by just one supply-side permanent shock. In this aspect, our
research follows this branch of the literature in which the identification mechanism is agnostic and
data-driven and the business cycle is explained by a single permanent shock.

In recent years, empirical evidence suggests that the use of multivariate models produces more
reasonable estimates of the output gap, since they include a broad set of relevant information to

2Cochrane (1990) compares univariate and multivariate filters and finds much larger cyclical components in the latter
ones where including variable as consumption enable to assess whether shocks to GNP are persistent.
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capture the reduced-form dynamics of macroeconomic variables and identify aggregate shocks
(Jarociński and Lenza (2018), Morley and Wong (2020), Barigozzi and Luciani (2021), Furlanetto et al.
(2022)). In particular, Morley and Wong (2020) apply Beveridge and Nelson (1981) decomposition
based on a large BVAR to estimate the U.S. output gap taking into account the FEV of the GDP
one-step ahead. The authors mitigate the possibility of over-fitting output growth by Bayesian
shrinkage.

Regarding the covid period, Berger et al. (2023) build a nowcast model to US output gap
by combining Beveridge and Nelson (1981) decomposition and mixed-frequency Bayesian VAR
(Ghysels (2016), Cimadomo et al. (2022)). They estimate a steep decline of the US output gap
in 2020Q2 between -10.1% and -8.3% conditional to the set of information from April to June
2020. They show that monthly indicators such as consumer sentiment, credit risk spread and the
unemployment rate are useful for nowcasting the output gap in real time. Similar results for the
German economy have been reported in Berger and Ochsner (2022) by using the same methodology.
They find that the output gap dropped from 1.17 to -8.78% due to covid shock which implies it
only marginally affected potential output but is accounted for by a massive decline in the output
gap. These articles take into account a large set of information to determine in real time the impacts
of the covid by using monthly variables but do not explicitly model the covid. On the contrary,
Morley et al. (2022) propose a take a two-step approach where first the authors use a hybrid of
Bayesian and maximum likelihood estimation (MLE) approaches discussed in Lenza and Primiceri
(2022) to model the covid shock, and second, they decompose the GDP growth following Beveridge
and Nelson (1981) in order to fit the GDP trend-permanent component of the euro zone. Our
research is similar in that we use a two-stage method, but differs in that instead of using the above
decomposition, we rely on Uhlig (2003, 2004) identification scheme.

Uhlig (2003, 2004) identifies the permanent and transitory shocks in US economy by maximizing
the FEV of real GNP over a five-year horizon. As a result, it is possible to explain around 90% of
the GNP variability by using the largest two shocks of the FEV. Although this method is empirical
and does not contemplate structural restrictions from economic theory in the identification process,
the author suggests that the first shock seems like a productivity shock while the second could be
attributed to inflationary or wage push shock. Following this identification scheme, Angeletos et al.
(2020) found that a single shock can explain macroeconomic fluctuations. The authors defined this
common propagation mechanism in macroeconomic data as the Main Business Cycle shock (MBC).
It is neither a supply-side shock nor a standard inflationary-type demand shock, and they point out
deficiencies in the traditional mechanisms since there is a disconnection between the variables of
the economic cycle and inflation or TFP. Brignone and Mazzali (2022) expand Angeletos et al. (2020)
in a high-dimensional framework by using a dynamic factor model over 136 variables. They found
that the economy is mainly driven in the long run by just one supply-side permanent shock. In this
aspect, our research follows this branch of the literature in which the identification mechanism is
agnostic and data-driven, and a single permanent shock explains the business cycle.
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In recent years, empirical evidence suggests that using multivariate models produces more
reasonable estimates of the output gap since they include a broad set of relevant information to
capture the reduced-form dynamics of macroeconomic variables and identify aggregate shocks
(Jarociński and Lenza (2018), Morley and Wong (2020), Barigozzi and Luciani (2021), Furlanetto et al.
(2022)). In particular, Morley and Wong (2020) apply Beveridge and Nelson (1981) decomposition
based on a large BVAR to estimate the US output gap taking into account the FEV of the GDP
one step ahead. In addition, the authors mitigate the possibility of over-fitting output growth by
Bayesian shrinkage.

Regarding the covid period, Berger et al. (2023) build a nowcast model for the US output gap
by combining Beveridge and Nelson (1981) decomposition and mixed-frequency Bayesian VAR
(Ghysels (2016), Cimadomo et al. (2022)). They estimate a steep decline of the US output gap in
2020Q2 between -10.1% and -8.3% conditional on the information set from April to June 2020.
Furthermore, they show that monthly indicators such as consumer sentiment, credit risk spread,
and the unemployment rate are helpful for nowcasting the output gap in real-time. Similar results
for the German economy have been reported in Berger and Ochsner (2022) by using the same
methodology. They find that the output gap dropped from 1.17 to -8.78% due to covid shock, which
only marginally affected potential output but is accounted for by a massive decline in the output
gap. These articles take into account a large set of information to determine in real-time the impacts
of the covid by using monthly variables but do not explicitly model the covid. On the contrary,
Morley et al. (2022) propose a two-step approach where first, the authors use a hybrid of Bayesian
and maximum likelihood estimation (MLE) approaches discussed in Lenza and Primiceri (2022) to
model the covid shock. Second, they decompose the GDP growth following Beveridge and Nelson
(1981) in order to fit the GDP trend-permanent component of the eurozone. Our research is similar
in that we use a two-stage method but differs in that instead of using the above decomposition; we
rely on Uhlig (2003, 2004) identification scheme.

3 Methodology

To calculate the output gap, we employ a permanent-transitory decomposition approach as outlined
in Granados and Parra-Amado (2024) which is divided into two stages. First, we use a reduced-form
Vector Autoregressive (VAR) model that includes a scale factor to account for COVID-19-induced
volatility. As in Lenza and Primiceri (2022), the traditional VAR include a st term as follows:

Yt = B0 + B1Yt−1 + B2Yt−2 + . . . + BpYt−p + stut, ut ∼ N(0, Σ) (1)

where st is set to one in the sample period before the COVID-19 shock (t∗), and subsequently,
latent parameters (θ ≡ [s̄0, s̄1, s̄2, ρ]) are estimated to capture the increased uncertainty during the
COVID-19 period, which then diminishes as the economy recovers. As usual in this framework, we
fit the scale factors for the first three quarters in COVID period starting at the first quarter of 2020
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(t∗ = 2020Q1) and a decay parameter ρ for the next quarters. Thus, the unobserved parameters are
st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2 and st∗+j = 1 + (s̄2 − 1)ρj−2 for j ≥ 3.

Equation (1) can be estimated as in Giannone, Lenza, and Primiceri (2015) by assuming the prior
distributions of the coefficients to be conjugate Normal-Inverse Wishart and by including the scale
factors into the posterior hyperparameters. They are jointly estimated using Bayesian techniques
by drawing those parameters in a Metropolis-Hasting procedure. The priors of β and Σ can be
described as

Σ ∼ IW (Ψ, d)

β|Σ ∼ N(b, Σ ⊗ Ω)

where β ≡ vec([B0, B1, . . . , Bp]′) and γ ≡ (Ψ, d, b and Ω) are the hyperparameter vectors. The
posterior of θ is used to capture the dynamics of st, which is jointly evaluated with the posterior of
γ as proposed by Lenza and Primiceri (2022):

p(γ, θ|Y ) ∝ p(Y |γ, θ) · p(γ, θ)

Second, we recast the model of equation (1) into an SVAR form by identifying the main shock
explaining the Colombian business cycle in the long run, which is done, along the lines of Uhlig
(2003, 2004), that is, by maximizing the explained fraction of the total FEV of the GDP at a long-
run horizon (e.g. 15 or 25 years ahead). Recall that the structural errors (εt) are related to the
reduced-form errors (ut) in equation (1) through the impact matrix (A0) that establishes ut = A0εt

and Σ = A0A′
0. Uhlig (2003, 2004) use an alternative matrix Ä0 which can be found by using an

orthonormal matrix Q where A0 = Ä0Q and QQ′ = I through maximization of the following
expression:

q1 = argmax q′
1Mq1 ≡ q′

1

k∑
h=0

Ä0
′
C ′

h(eje′
j)ChÄ0q1

subject to q′
1q1 = 1

where q1 is a column of Q that explains the k-step-ahead forecast error of the j-th variable in
Yt (in our case, the log of GDP), whose variance is given by M . Simultaneously, as shown in
Uhlig (2003), q1 is the eigenvector associated with the largest eigenvalue of the matrix M . ej is a
selector vector with zeros everywhere and a 1 in the j-th position, and Ch is a component of the
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long-run impact matrix of the VAR associated to the horizon h.3 The constraint guarantees that q1

is a unit-length column vector that belongs to an orthonormal matrix.

Notably, the method recovers all eigenvalues and eigenvectors of M, which, given the decom-
position method, are ordered from higher to lower fractions, explained by the FEV of the target
variable. Thus, we can verify whether one or more shocks explain a larger component of the
long-run FEV of the GDP. In other words, this approach identifies the shock that best explains the
long-run component of the target variable. This is done in the following section.

4 Results

4.1 Data and empirical strategy

We set an eight-variable B-SVAR in levels for the period 1995Q2 to 2022Q1 using Colombian data.4

The variables included are GDP, household consumption (CON), government consumption (GOV),
investment (INV), inflation (CPI), real exchange rate (RER), interbank interest rate (ITB), and Brent
oil price. The domestic account variables (first five in the VAR) were obtained from the Colombian
National Statistics Department (DANE), the exchange rate and interest rate from the Central Bank
of Colombia (Banco de la República), and the oil price from Bloomberg.

We select a lag length of two (p = 2) following the Bayesian and Hannan-Quinn Information
criteria, and estimate the VAR in levels using a hierarchical modelling approach that allows us to
make inferences about the informativeness of the prior distribution of the BSVAR, as proposed
by Giannone, Lenza, and Primiceri (2015) which automatically determines a suitable measure of
the shrinkage by considering a combination of conjugate priors such as a Minnesota prior and
tighter priors when the model includes many coefficients relative to the number of observations.
We ran 20.000 draws and kept half for estimation after burn-in. In addition, we explicitly modelled
the COVID-19 extreme observations, as in Lenza and Primiceri (2022). From this first stage, we
obtain a reduced-form VAR that has already been adjusted by the scale factor st and incorporates
the pandemic shock.

In the second stage, we identified the impact of the matrix of the SVAR by maximizing the
explained share of the forecast variance error of the GDP for a 25 years horizon, as in Uhlig (2003,
2004). As part of the procedure, we restrict that the share of the FEV one step ahead of consumption
explained by the first structural error, or (the majority of the) permanent component, is larger
than that of the output and for the latter to be larger than that of the investment. As explained
by Cochrane (1994) and King, Plosser, Stock, and Watson (1987), this accounts for the fact that
consumption is more closely aligned to the permanent component of GDP, while investment should
reflect its most volatile and transitory components. After verifying these restrictions and keeping

3Note that C(L) = I + C1L + C2L2 + C3L3 · · · + ChLh + . . . and the moving average representation of the model is
given by Yt = B(L)−1ut = C(L)ut.

4We report unit root and cointegration tests that are consistent with our model choice in Appendix A
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the draws that comply with them, we conducted PT decomposition and computed the permanent
(and transitory) output component.5

As aforementioned, the decomposition and resulting impact matrix already consider the ordering
of structural shocks according to their share of the explained variance of the target variable. This
can be verified in Figure 1, where we can see that only the first structural error is necessary to
account for approximately 90% of the long-run (permanent) component of the GDP. Concurrently,
the next most important shock explain the GDP’s FEV in the short run which is more resembling
the transitory output component.

In light of these results, we compute the output gap based on the second to eighth structural
shocks and use only the first one to recover the potential GDP.6 On a related point, it should also
be noted that the first structural error will explain the majority of the long-run FEV of the GDP
(target variable), but not necessarily the largest share of the FEVfor other variables. The relative
importance of the shocks to the other variables can be seen in the FEV decomposition per variable,
as shown in Figure 9 in the Appendix C.1.7

Figure 1: Contribution of FEV explanation over each variable (first two largest shocks that maximize
FEV of GDP)

(a) First shock (permanent) (b) Second shock (transitory)

Note: The left panel shows the contribution to the FEV of each variable by the structural error identified as the one with the highest

percentage of explanation for the FEV of GDP. The right panel shows the second-largest shock that explains the GDP’s FEV.

5As a check, we increased the number of draws to 100.000 and obtained similar results.
6Analogously, the potential GDP can be obtained as the original series minus the transitory component.
7We leave additional results that are related to other variables and shocks for the appendix, as we are only concerned

with approximating the target variable, but also because the trade-off of this method is that you compromise a structural
interpretation of the shocks as separable types of drivers (e.g. monetary, financial, global, local, supply, or demand,
among others), as by construction, the method only gauges the overall importance of shocks at different horizons.
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4.2 Baseline Results

Figure 2 shows the output gap and potential GDP for the Colombian economy obtained from our
proposed BSVAR, using a combined PT decomposition and a scale factor adjustment to include and
adjust for the COVID-19 period observations. Before COVID-19, our estimated gap and potential
output reflected the recession of the late 1990s, a slight deterioration during the GFC.8 In both
cases, we can see decreases in the gap dynamics and dips in the potential output. An additional
gap decrease occurred during 2016, reflective of a reduction in terms of trade due to exogenous
shocks in the international price of oil.9 In general, these dynamics are aligned with previous
business cycle dating exercises carried out for Colombia (e.g., Alfonso et al., 2013), despite the high
uncertainty one may expect to see around these estimates also reflected in the amplitude of the
percentile intervals shown in the figure.

Figure 2: Baseline results: Output gap and potential GDP for Colombia

(a) Output gap (b) Potential GDP

Notes: The solid black line represents the median estimates. The solid and dotted red lines represent the percentiles of 5% , 95% , 16%

and 84% , respectively.

During the COVID-19 pandemic, the gap underwent a steep decline (−18.9%) in the second
quarter of 2020; however, unlike in the 1999 recession, the downturn was not persistent. Instead, it
bounced back in the following quarters. As in most economies, the decrease is largely explained by
lockdown measures, while the recovery is induced by the gradual reopening of the economy. The
potential output also displays different dynamics than the 90s recession as it dips down, but more
mildly and less persistently during the lockdown quarters. In the late nineties, the potential GDP
growth went negative, contrasting with the pandemic when it only decelerated (from 3.5% in 2019
to 2.2% in 2020). The recovery paths are also in contrast with the potential output trending upward

8For the Colombian case, our main downturns of reference are the 1999 and GFC crises. The former is one of the
worst recessions to date, while the latter is relatively mild compared with the dynamics of advanced economies.

9Colombia’s main export commodity is crude oil and related products.

11



and gap closing by 2022Q1.

4.2.1 Comparison with alternative estimation methods

We also compare our estimations with those generated by usual filtering techniques, namely the
Hodrick-Prescott (HP) and Christiano-Fitzgerald (CF) filters, as well as to an estimation computed
using a production function approach (PF).10 The output gap estimates for the compared methods
and our proposal are shown in Figure 3. We can see that the univariate filters (HP, CF) tend to
deliver a large gap right before COVID-19 and rapid and sizeable subsequent recovery, which
sends that gap onto positive territory (and at or beyond 5%) in a few quarters. These features
may indicate an overestimation of the gap, specifically when we see that the other estimates,
including our proposal, do not display such behaviour, and instead suggest a dynamic yet more
moderate recovery. Notably, when tying these results to the associated potential output dynamics,
these results indicate that our proposal does not lower the potential output significantly during
the period, which is related to adjusting the model to incorporate COVID-19 observations in the
estimation sample without assuming drastic changes in its data-generating process.

By contrast, the PF function seems to draw the gap in the opposite direction and could indicate
its underestimation. First, it is below all competing methods throughout the sample, but primarily,
it lowers the gap too steeply during every downturn (1999, 2008, 2016, COVID-19). These patterns
also contrast with our proposal; thus, we see our method as a middle point. In particular, concerning
the PF method, our proposal has the advantage of including more information in the model and
pinpointing the long-run behavior of the GDP through its link to consumption. While the PF,
conversely, can be too quick to associate the bulk, if not all, of the fluctuations in capital and labor
inputs to the short-run behavior of the GDP, which is counterfactual to recent studies on hysteresis
and the scarring effects of protracted recessions (e.g., Cerra, Fatás, and Saxena, 2023; Aikman,
Drehmann, Juselius, and Xing, 2022).

Finally, we compared the proposed BSVAR model with two models of the same type. That is
models with the same identification setup (PT decomposition as in Uhlig, 2003). We consider an
alternative BSVAR without a scaling adjustment for the COVID-19 episode and another where,
instead of using a scale factor, the model is allowed to feature stochastic volatility (BSVAR-SV).

The associated output gaps and potential outputs of the two B-SVAR alternatives are shown in
Figure 4 and 5. A large contrast between the baseline and the alternatives emerges at first sight:
both the BSVAR (unadjusted) and the BSVAR-SV generate a less negative gap during the COVID-19
outbreak, which implies that the potential output is affected more drastically relative to our baseline
model. In that sense, as with some of the simpler filters, the alternatives tend to overestimate the
impact of the shock on the long-run output.

10The PF approach reconstructs the potential output from the individual inputs of GDP, aside from the total productiv-
ity, in the context of a Cobb-Douglas technology setup
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Figure 3: Comparison methodologies for output gap estimation

Regarding the volatility around the estimates, the BSVAR (unadjusted) displays the largest
uncertainty, as reflected by percentile ranges that are twice as large as in the baseline. Nevertheless,
the BSVAR-SV successfully mitigates volatility (at a similar range span as the baseline); however, it
is the method where the potential output is affected the most during the downturn.

Figure 4: Output gap and Potential GDP- BSVAR without scale factor

4.2.2 Outlier observations around the COVID pandemic

Given that our main concern is to study the adjustment of potential output estimates to drastic
magnitude shocks, such as those observed in the COVID-19 outbreak, verifying the estimates of
the scale factors generated by our baseline estimates can be insightful. Principally, if scaling is
irrelevant, the posterior estimates should suggest s̄0 = s̄1 =s̄2 = 1; otherwise, they should be
sizeable. We estimate these parameters, as in Lenza and Primiceri (2022), and present our estimate
of scale factors (and shrinkage) in Figure 6.
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Figure 5: Output gap and Potential GDP-Stochastic volatility BSVAR without scale factor

The parameters posteriors are drawn based on a Metropolis Hastings algorithm with a Minnesota
Prior. Thus, we estimated the scaling factors together with other hyperparameters in a hierarchical
structure. The resulting posteriors for s̄0, s̄1, s̄2 peak around 1.5, 10, and 4.5, respectively, indicating
that, in effect, it is relevant for this sample to scale up the errors around the COVID-19 observations
to account for the steep increase in volatility of that period, but that may not characterise its
data-generating process, nor should it drastically influence the BVAR estimates. Nonetheless, the
posterior of the decay coefficient (ρ) peaks around 0.75, which, together with s̄2, implies that the
volatility scale factor falls by a third after 2020Q3 and then non-linearly towards one.11

Figure 6: Posterior distribution of the overall standard deviation of Minnesota prior and volatility
scaling factors

11We also obtain the posterior for the shrinkage parameter of Minnesota prior (λ), depicting a mode around 0.19.
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To further illustrate the impact of the COVID-19 shock on the output gap, we can depict the
distributions of the draw estimates for dates around the episode, as shown in Figure 7. We reveal
the quarter of the shock (2020Q1), the subsequent two quarters, and the first quarter of 2022 as a
reference for a date when the potential output dynamics are, in principle, back to normal (here
implicitly recognise the transitory nature of the pandemic shock).12

As we can see in the figure, the distribution of the gap has a large shift to the left, implying that
the potential GDP was not largely affected by the downturn (and instead, the gap lowered in line
with the observed GDP). In addition, the distribution spread increased, reflecting an increase in
uncertainty around the estimate during the pandemic. Afterwards, we observe the distribution
shifts back to pre-COVID-19 levels, although it still reflects increased volatility. In summary, we
can see that the impact on the mean gap was transitory, although a somewhat larger uncertainty
remains. Nonetheless, the larger uncertainty is approximately one percentage point higher than
before, rather than orders of magnitude larger, as may be induced by a model without a scale factor
adjustment for the COVID-19 downturn.

Figure 7: Distribution of the output gap estimation during COVID-19 shock and 2022Q1.

4.3 Counterfactual exercise (no covid) vs baseline model

In this subsection we compute a counterfactual output gap where the COVID downturn is ab-
stracted from. We re-run our permanent-transitory decomposition through the BSVAR model by
setting to zero the shocks linked with the transitory component, using sample information until

12As an additional exercise, we present a counterfactual exercise in Appendix 4.3, where we discuss the gap and
potential output that would have been observed in the absence of the pandemic shock.
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December 2019 and forecasting nine quarters ahead. Notably, the Colombian potential GDP would
have grown 3.6% in 2020 which represents a loss of 1.4% compared to the baseline model. We
find similar results assuming that potential GDP would have grown at the average rate of the last
decade.

In a world without COVID we obtain the potential GDP would have grown 3.6% in 2020, i.e.,
1.4% higher than in our baseline model with COVID (which grows by 2.2%). In terms of the output
gap, the counterfactual shows a median around zero which contrasts with the estimates of the
COVID period that show a median of −18.8%.

Figure 8: Counterfactual exercise vs baseline model
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5 Concluding remarks

This study examined whether potential output models should be adjusted to account for rare,
large-magnitude shocks, such as those experienced during the COVID-19 lockdown in 2020. It
aimed to include a complete set of observations in the model while preventing observations
of unprecedented magnitudes (that do not resemble the sample data-generating process) from
affecting the quality of the resulting econometric modelling framework.

To address this question, we considered a baseline model incorporating ample information
sources into a structural framework that allows for the application of an identification strategy
that exploits the relationship between consumption and output to recover the permanent and
transitory components of GDP, as in Uhlig (2003, 2004). Based on this setup, we adjusted the model
with a scaling factor of the residuals around the COVID-19 pandemic outbreak along the lines
of Lenza and Primiceri (2022). Our results indicate that only one structural error is enough to
account for most of the long-run behaviour of GDP (and potential output) and that the remaining
shocks majorly explain transitory fluctuations (i.e. the gap). Our setup prevents quick output gap
reversals after downturns or drastic changes in the potential output after high-magnitude transitory
observations. In particular, during COVID times, our findings indicate an 18.8% decline in the
output gap during the pandemic. Furthermore, our statistical analysis reveals a 1.4 percentage
point reduction in potential GDP due to the COVID-19 crisis.

While our identification strategy has its limitations, particularly in terms of decomposing output
dynamics in economic structural drivers (e.g. monetary, financial, global, supply, and demand), it
provides a simple way to find a agnostic structural identification that explain the FEV of the GDP in
the long-run. Although we can estimate the output gap with a reasonable accuracy, future research
can explore these drivers in more detail, building on our findings to refine the approximation and
minimize the drawbacks of arbitrary shock horizon adjustments common in other approaches.
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A Additional descriptive data

Table 1: Unit root test

Variable-Test ADF PP KPSS ERS
Level First Diff Level First Diff Level First Diff Level First Diff

GDP 0.9609 0.0000 0.9684 0.0000 1.16079 0.101328 198.0309 0.505899
CON 0.9962 0.0000 0.9984 0.0000 1.152888 0.313152 158.1545 0.478252
INV 0.8669 0.0000 0.842 0.0000 0.971256 0.145345 26.53758 0.495762
GOV 0.8951 0.0000 0.6729 0.0000 1.188665 0.136647 715.5667 0.679222
CPI 0.2782 0.0006 0.4451 0.0000 0.826933 0.075889 45.25559 0.030919
TIB 0.0948 0.0000 0.0664 0.0000 0.77068 0.322704 9.37788 0.866045
ITCR 0.3569 0.0000 0.2941 0.0000 0.723053 0.222996 75.03317 0.92045
OIL 0.1299 0.0000 0.2149 0.0000 0.246352 0.069921 1.960358 0.556965

Note: * For ADF and PP the data in table corresponds to p-values, and the test statistic are reported for KPSS
(1%: 0.739, 5%:0.463, 10%: 0.347) and ERS (1%: 1.9472, 5%:3.1142, 10%: 4.1812)
Source: Authors’ calculations.

Table 2: Cointegration test

GDP CON INV GDP CON INV GOV CPI TIB ITCR OIL
Hypothesized Trace Hypothesized Trace
No. of CE(s) Eigenvalue Statistic p-value* No. of CE(s) Eigenvalue Statistic p-value*
None 0.191276 30.49843 0.0415
At most 1 0.081933 8.844121 0.38 None * 0.556582 260.3158 0

Unrestricted At most 2 0.001222 0.124712 0.724 At most 1 * 0.455536 177.3651 0
Cointegration At most 2 * 0.342743 115.3538 0.0012

Rank Test At most 3 * 0.238327 72.54651 0.0298
(Trace) At most 4 0.199753 44.7783 0.0946

At most 5 0.131228 22.0492 0.2958
At most 6 0.066799 7.700448 0.498
At most 7 0.00634 0.648709 0.4206

Hypothesized Max-Eigen Hypothesized Max-Eigen
No. of CE(s) Eigenvalue Statistic p-value* No. of CE(s) Eigenvalue Statistic p-value*

Unrestricted None 0.191276 21.6543 0.0422 None * 0.556582 82.95069 0
Cointegration At most 1 0.081933 8.719409 0.3103 At most 1 * 0.455536 62.01128 0.0005

Rank Test At most 2 0.001222 0.124712 0.724 At most 2 * 0.342743 42.80733 0.024
(Maximum At most 3 0.238327 27.7682 0.2244
Eigenvalue) At most 4 0.199753 22.72911 0.1853

At most 5 0.131228 14.34875 0.3371
At most 6 0.066799 7.051739 0.483
At most 7 0.00634 0.648709 0.4206

*MacKinnon-Haug-Michelis (1999) p-values

Source: Authors’ calculations.
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B Survey: methods

Table 3: Univariate estimation methods

Model based Decision variables Complexity Need or advisability
of using forecats

Hodrick & Prescott No Smoothness parameter Low Yes
Baxter & King No Pass band Filter length Low Yes
Butterworth filtering No Pass band Filter length High Yes
Wavelet-based methods No Wavelet basis High Yes
Linear detrending Yes None Low No
Beveridge & Nelson Yes ARIMA model High Yes
Structural time series Yes STS model High No
Hamilton Yes Regime switching model High No
Kim & Nelson Yes Regime switching model High No

Source: Álvarez and Gómez-Loscos (2018).

Table 4: Multivariate estimation methods

Underlying Decision variables Complexity
economic theory

Okun‘s Law Okun‘s Law VAR model Medium
Production function Production function Production function High

Cyclically adjusted
inputs

Blanchard & Quah Supply and demand shocks SVAR model High
Phillips curve Phillips curve Output gap time series High

process
Natural rate of interest Natural rate of interest Lags in the Phillips High

curve, Output gap
time series process

RBC model General equilibrium VECM model High
DSGE model General equilibrium Model specification High

Source: Álvarez and Gómez-Loscos (2018).

C Baseline model: Results

C.1 Forecast Error Variance decomposition (FEVs)
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Figure 9: Forecast Error Variance decomposition (FEVs) by variable
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D Other models: Results

D.1 Comparison between adjusted gap measures and SVAR-Permanent-Transitory
decomposition

We consider a measure of output gaps similarity described in Mink, Jacobs, and de Haan (2012).
The measure is given by:

φit = 1 − |gi(t)gr(t)|∑n
i=1 |gi(t)|

,

where gi(t) is the output gap in period t that is compared with an output gap of reference gr(t),
and n refers to the number of countries in an economic region where the comparison is made. In
our simpler case, n = 1. The similarity φit will take values equal lower to one, and will approach
one where the output gaps are more similar (in fluctuations and amplitude).

For completeness, we also consider the correlation. In both cases, we estimate each indicator
over a rolling window (of four years for the similarity and of eight years for the correlation).13

Figure 10: Comparison measures between adjusted SVAR models and SVAR-PT

13The result is robust to different windows’ sizes; we also considered windows of sizes 12, 20, and 24 quarters for each
measure but chose 16 and 32 to strike a balance between the data lost in the calculation and the amount of information
considered in each estimate. On the other hand, we also compared a synchronicity measure but do not report it as the
signs between either adjusted gap measure and the benchmark show a coincidence ratio of over 90%.
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