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Abstract

This article proposes a methodology to compute international spillovers between a large set of
financial institutions. We rely on a latent factor model to gather the most relevant dependence
features with a score-driven dynamic to capture time evolution. The latent factor model decreases
the prediction error and improves the goodness-of-fit over the standard factor model, i.e., a financial
index factor. We propose a set of measures that allow us to track systemic risk and identify emerging
stress scenarios.

Topics— systemic risk, financial stability, multivariate density forecasting, joint tail risk

JEL Codes— C02, C32, C58, G21

Résumé

Cet article propose une méthodologie pour calculer les retombées internationales entre un grand
nombre d’institutions financières. Nous nous appuyons sur un modèle à facteurs latents pour ras-
sembler les caractéristiques de dépendance les plus pertinentes et sur une dynamique axée sur les
scores pour saisir l’évolution temporelle. Le modèle à facteurs latents réduit l’erreur de prédiction
et améliore la qualité de l’analyse. l’erreur de prédiction et améliore la qualité de l’ajustement par
rapport au modèle factoriel standard. modèle factoriel standard, c’est-à-dire le facteur de l’indice fi-
nancier. Nous proposons un ensemble de mesures qui nous permettent de suivre le risque systémique
et d’identifier les scénarios de stress émergents.

Les sujets— risque systémique, stabilité financière, prédiction de densité multivariée, risque de queue com-
mun

JEL Codes— C02, C32, C58, G21
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1 Introduction

Systemic risk can be defined as the possibility that occurrence of negative shocks, associated to single industries
or firms, causes a financial market turmoil. The financial sector is potentially the greatest source of systemic risk.
Since banks perform the function of inter-temporal and maturity transformation (i.e., financing long-term assets
with short-term liabilities), the banking sector is vulnerable to contagion effect due to high leverage, growth
of shadow banking, risk of confidence loss and the use of aggressive liquidity management strategies, i.e., high
reliance on funding from the interbank market (ECB 2009). Other financial institutions can contribute to the
financial instability by increasing the effect of fire sales as a consequence of following a procyclical behaviour,
like mutual funds (Sydow et al. 2024), or might alleviate the impact from the financial system acting as a shock
absorber, as have been the case of pension funds for some countries (Bédard-Pagé et al. 2016, Bruneau et al.
2023, ) Building a resilient financial sector able to prevent spread of a breakdown in the economic system is
an important target for supervisory authorities, as irregular performance of the financial system could reduce
the effectiveness of monetary policy, hampering the economic and financial well-being of the citizens ( Gravelle
and Li 2013). Analytical tools enabling the timely identification of shocks and sources of risk that could lead to
systemic events can help policymakers to assess the likely spread of individual problems in the financial system
during crisis periods and to calibrate prudential instruments in tranquil times.

In this paper we develop a high-dimensional non-Gaussian modeling framework for financial stability assess-
ment. We use a latent bifactorial model to capture national and international dependencies in financial markets
and we model dynamics using a “generalized autoregressive score” (GAS) model. This approach allows us to
overcome substantial difficulties in the econometric modeling of high-dimensional panels. We use the model to
generate a set of systemic risk measures, with a special interest on the international spillovers and the sectoral
decomposition of the systemic risk. Our framework captures the marginal, joint and conditional distribution of
the variable of interest, which provide enough information to define which are the scenarios prone to generate the
highest impact in the financial system with a certain probability of occurrence. It also allows us to decompose
the tail returns of each institution, i.e. Expected Shortfall, into scenarios of joint distress with other financial firms.

We apply our general framework to weekly equity data from US (NUS = 158), Canada (NCA = 24), Europe
(NEU = 53), Switzerland (NCH = 18) and United Kingdom (NUK = 21) from January 2006 to March 2024
(T = 956). Consequently, our database considers several crisis and periods of distress in the financial market.
The 2008 global financial crisis, the sovereign European debt crisis, the COVID crisis, the UK gilt market crisis
or the collapse of SVB (US) and Credit Suisse (CH) are examples of distress events that were materialized during
the sample period.
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Our study relates to the literature on high-dimensional tail dependence modeling as well as the literature on
systemic risk measurement.
Regarding the first branch, we follow the factor copula introduced by Krupskii and Joe (2013) in a bifactor frame-
work to take into account two sources of co-movement: domestic and international. In particular, we implement
a latent nested bifactor model (Krupskii and Joe 2015). The factor model reduces the number of parameters to
be estimated and the latent variable allow to capture the co-movement in a more flexible way. We also propose a
test to check if the latent factor provides a better fitting of the data than the one-factor explicit model following
a test similar to the likelihood ratio test. Pakel et al. (2021) follows the composite likelihood approach to use
bivariate likelihoods to infer the full-dimensional structure of the data, overlooking the role of each variable in
the full sample, which can be capture via the latent factor. Additionally, the latent factor model ensures the
inversion of the large dimensional matrices. Engle and Kelly (2012) proposes the estimation of the correlation
matrix assuming the same parameter for all the variables, i.e. equicorrelation structure. Lucas et al. (2017)
employs the block equicorrelation structure to capture the dependency between Euro Area financial firms. The
block equicorrelation structure could be seen as a restricted version of the latent one-factor model. Lucas et al.
(2014) uses the hypersphere parameterization of the correlation matrix, where the number of parameters equals
the number of correlation pairs. They employ this parameterization to model the sovereign CDS spread for 10
European countries. Although highly flexible, this approach might face the curse of dimensionality when the
number of institutions becomes larger.Oh and Patton (2017) proposes a flexible linear factor model for modeling
multivariate financial data and Oh and Patton (2018) employs this model to estimate the contagion risk from
a set of 100 US firms using CDS log-change as a proxy of credit risk. Oh and Patton (2023) uses a cluster ap-
proach to associate firms into similar groups in bifactor model, where one factor is common and a second factor
is group-specific. This is the paper closer to us in modeling the dependency in the high dimension framework.
They estimate the group-specific factor via a cluster procedure, while we assume that the country defines the
group-specific dependence. A second difference is the fact that they assume that both factors are independent,
while we assume that the country-specific factor is nested within the global factor, which allow us to analyse how
global connections spillovers into the domestic dependency structure.
Regarding the systemic risk literature, there are three main broad categories of classification depending on the
data and tools employed. The first strand of research focuses on how shocks could propagate via balance sheet
linkages, generating externalities between economic agents and amplifying losses (Bruneau et al. 2023, Sydow
et al. 2024, Ha laj 2020, Ha laj and Hipp 2024). These studies usually rely on private or confidential data, which
make them difficult to replicate. A second branch uses network theory to understand the structure of connections
in the financial system and to get a better idea about the shocks that could trigger the collapse of the whole
network (Chan-Lau et al. 2009, Cai et al. 2018, Blei and Ergashev 2014, Ha laj and Kok 2013). These exercises
usually rely on simulations to unveil systemic connections not easy to identify due to the highly complex structure
in network structure. The third strand uses information from market data to measure systemic risk. Our work
belongs to this branch of the literature, where most of the measures in a one-factor model structure between an
index of financial institutions and each institution (Adrian and Brunnermeier 2016, Acharya et al. 2012, Acharya
et al. 2017), with multivariate models going beyong the bivariate case present scalability issues (Lehar 2005,
Brownlees and Engle 2017, Segoviano and Goodhart 2010, Gravelle and Li 2013). In particular, Segoviano and
Goodhart 2010 and Gravelle and Li 2013 are the studies dealing with systemic risk more similar to this piece
of research. Segoviano and Goodhart (2010) uses a non-parametric copula to estimate a set of systemic risk
indicators where the conditioning scenario could entail several financial firms, while Gravelle and Li (2013) relies
on a semiparametric extreme value theory approach to estimate the contagion spillovers between Canadian, US,
European and Asian financial firms. We also estimate the spillovers between global financial institutions following
a parametric approach, which would allow us to consider changes in the estimates in a timely way by modeling
the dynamics using a Generalized Autoregressive Score model (GAS). Also, we take into account the probability
of occurrence when building stress scenarios involving several financial institutions. To our knowledge, most of
the measures for systemic risk assumes the scenario of stress without taking into account the potential set of
stress scenarios when building the risk indicator. One of the few exception is González-Rivera et al. (2021), where
they estimate a quantile of the GDP-growth conditional to a scenarios (i.e. Growth-at-Risk measure), where the
probability of the multivariate scenario conditions the risk measure. In other words, they are not only looking at
the tail of the GDP-growth conditional distribution, but they are also selecting the scenario with a higher impact
in terms of GDP-growth given a certain probability of materialization of the scenario. SImialrly, we proposed
some modifications of systemic risk measures proposed by Segoviano and Goodhart (2010) to take into account
the probability of occurrence of the different scenario, allowing us to track and identify emerging risks using this
scenario-based analysis.

We found that the role of US is predominant in terms of effect on the systemic risk measures for the rest
of jurisdictions, but the composition of the stress scenarios is changing over time. While US financial and com-
modity marker operator companies are present in the stress scenarios for other regions in the period 2008-2010,
the banking sector lead the scenario composition in the period 2010-2018, while the US insurance sector start
having more relevance in the design of stress scenario from 2018 onwards. Also we find different patterns, both
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for conditional probabilities and returns, for the different jurisdictions, with a higher volatility of European sys-
temic indicators compared to American systemic risk measures and some idiosyncratic patterns captured by some
regions, like the Brexit event in the UK time series. Also, we find that the between 20 to 60% of the Expected
Shortfall from the US financial system is happening at the same time that the stress scenario of Canada, which
reflect the great symbiosis between these two jurisdictions. Canada also presents ties with Switzerland, being
more than 40% of the Swiss Expected Shortfall is ocurring at the same time than tail losses in Canadian financial
firms. This link could be explained by the role of insurance companies in two countries.

The findings of this research have implications for several economic agents. Firstly, for the supervisory au-
thorities, who seek to monitor and track systemic risk and to identify scenarios that could generate large losses in
the financial market. Secondly, policy makers, who wish to understand the interactions between financial system
from different regions and how it could impact domestic economy. Thirdly, for risk management, investors and
traders, who might find an interesting methodology to reduce portfolio’s tail loss.

The article is laid out as follows: Section 2 present the methodology and the tail measures. Section 3
introduces the data and presents a descriptive analysis of our sample. Section 4 presents the results of the
estimation and the spillovers across jurisdictions and sectors. Finally, section 5 provides the conclusion.
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2 Methodology

2.1 Tail indicators

The definition of a crisis or stress scenario is not uniformly defined in the literature. While Acharya et al. (2012)
consider a drop higher than 40% in the overall market capitalization over six months,Brownlees and Engle (2017)
consider a decrease of 10-20% over one month period. At daily frequency, Acharya et al. (2012) establish an
absolute threshold of daily losses bigger than 2%. Hautsch et al. (2015) indicates the threshold in relative terms
as being below the 5% worst case scenarios while Adrian and Brunnermeier (2016) consider also the 1% worst
case scenario. The methodology is flexible enough to allow the definition of the stress scenario in relative or
absolute terms. We will present the threshold scenario as κ, which could be an absolute value, e.g. -10%, or a
relative value, e.g. 5% worst case scenario for the returns of a specific firm. For the empirical application we
assume that a firm is in a distress scenario if it is below its unconditional 5-th quantile, which would allow us to
consider both marginal and dependence features when defining the distress region.

2.1.1 Index of joint distress

Segoviano and Goodhart (2010) proposes a systemic risk measure that looks into the probability of joint distress
for the financial system (JPoD), i.e.

P (ri < κi, . . . , rM < κM ) = JPoD, (1)

where κj is the distress threshold for institution j in a financial system of M entities and ri is the variable
of interest for entity i, which we will refer as returns hereinbelow. This measure, although informative of the
general resilience of the financial system, might imply difficulties in the computation of the probability of joint
distress in financial systems with a large number of institutions, as clusters of distress in a subset of institutions
are hard to identify as a consequence of being faded out in the full financial network. Moreover, the threshold
κ cannot be understood aside of the joint probability, as the set of κ values will condition the joint probability
of distress. This makes difficult to understand what is driving the change in the JPoD as, for instance, the
decrease in the returns’ volatility of one institution, might imply a lower probability of crossing the distress
probability, affecting the overall probability of distress. Consequently, the increase or decrease in the JPoD is
not informative about the institutions driving that change. We should mention that not all the institutions or
sectors have the same effects in the financial system, like systemic important institutions and small consumer
lending entities, and we would like to adjust our measure to take into account the relative importance or the expert
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advice on the institutions which could have a stronger effect in the market due to their size or funding connections.

We could consider which would be the maximum loss in an index made of financial institutions with a certain
probability. We would like to point out which are the firms leading those losses, where we could combine the
information obtained from the joint distribution with ad-hoc or prior information obtained from other sources
(e.g. balance sheet information about leverage or liquidity, market capitalization, ...). We define the financial
index of joint distress (FIJD) as,

FIJD(α) = min
A
E

(
M∑
i=1

ωiri|A

)
, (2)

s.t. P (A) ≥ α

where the scenario A is defined by a distress scenario for a subset of firms and ωi is the weight assigned to
institution i.

Note that the solution to Eq. (2) is similar to the Expected Shortfall of the financial system using weights ω,
however, IJD uses individual thresholds in the conditioning even while in the Expected Shortfall the conditioning
event is defined on the convolution of firms’ returns. Aside of this small difference, we could define the FIJD as
FIJD = ES(A) where the probability of the conditioning scenario A P (A) = α. We apply the decomposition of
the Expected Shortfall in contributions from each institutions (Acharya et al. 2012, Banulescu and Dumitrescu
2015), i.e. ES(A) =

∑M
i=1 ωiE(ri|A).

This decomposition is extremely interesting when the set of institutions considered in the scenario A and the
entities with a weight ω higher than zero are different, e.g. if we consider the JPoD for US institutions and we
assign a weight ω of zero for the non-Canadian financial entities, we would get

(i) an estimation of the losses for the Canadian financial system given a distress scenario for the US financial
system;

(ii) the US distress scenario with highest spillover into the Canadian financial system with a certain probability
of occurrence;

(iii) the exposure of Canadian firms and their individual contribution to the overall losses.

2.1.2 Financial Spillover Index

Segoviano and Goodhart (2010) proposes a second indicator to assess the connectivity of the financial system.
They define the Banking Stability Index (BSI) as the expected number of banks becoming distressed given that
at least one bank has become distressed, i.e.

BSI =
P (ri ≤ κi, . . . , rM ≤ κM

1 − P (ri ≥ κi, . . . , rM ≥ κM )
, (3)

where the distress scenario is given by the probability of being below the threshold κ. The numerator of Eq. (3)
indicates the probability of each institution of being in distress and the denominator the probability of at least
one institution becoming distressed. This measure could be seen as an indicator of banking linkage (Huang 1992).
When the BSI = 1 in the limit, banking linkage is weak (asymptotic independence). The higher the BSI is, the
greater the banking linkage is (asymptotic dependence) implying a higher instability for the financial system.

Note that P (ri ≤ κi) is within P (A) = 1 − P (ri ≥ κi, . . . , rM ≥ κM ), i.e. firm i would be distressed if and
only if at least one institution (firm i) is distressed. Consequently P ((ri ≤ κi) ∩A) = P (ri ≤ κi). We could
see the BSI as a weighted sum of the marginal probabilities, providing a decomposition of the contribution of
each institution into the index. The BSI could be easily generalized to a distress scenario where N financial
institutions are under stress. However, we are not controlling for the probability of occurrence of the conditioning
event, so when dealing with heterogeneous financial systems with entities with diverse business model, a firm
being in distress might not be enough to define a stressful scenario for the full network. For instance, let us
suppose we have M financial firms, of which M − 1 have perfect dependence and one institution has a negative
perfect dependence with the remaining institution. In that case the BSI would be the sum of the marginal
probabilities of distress, as P(A)=1, without providing a good view of the dependence between institutions.

We proposed the following definition for a Financial Stability Index (FSI), i.e.

FSI = max
A

∑M
i=1 1(ri≤κi)∩A

P (A)
= max

A

M∑
i=1

P (ri ≤ κi|A) (4)

s.t. P (A),≥ α
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where 1x is an indicator function that values 1 when the condition x holds or zero otherwise. To distinguish the
effect of the scenario from the evolution of the marginal probability of distress, we present in section 4 the results
as a difference between the sum of the probabilities with and without scenario, i.e.

∑M
i=1 P (ri ≤ κi|A) − P (ri).

This measure provides a couple of advantages with respect to BSI. First, the scenario conditioning our outcome
is not set, like in the BSI, as ”at least one firm being distressed”, but the model would identify which is the worst
scenario in terms of contagion of firms with a certain probability. Second, the measure should be risk averse,
so the expected number of firms distressed would be less informative if we do not know the specific scenario or
the probability of that scenario that we are using as conditioning event. Increases in the FSI could inform us,
not only about the rise of distress in the financial system but it would give us a better view about the triggering
institutions which could condition that escalation. Similarly to the FIJD, we could decompose the FSI into
contribution of each firm or subset of firms.

2.1.3 Vulnerability Index

Cortes et al. (2018) defines the Vulnerability Index (V I) as the sum of bivariate probability of stress between an
institution i and the rest of the sample, i.e.

V Ii = P (ri ≤ κi, rj ≤ κj) + · · · + P (ri ≤ κi, rM ≤ κM )

= P (ri ≤ κi|rj ≤ κj)P (rj ≤ κj) + · · · + P (ri ≤ κi|rM ≤ κM )P (rM ≤ κM ),

The contribution of firm j to the vulnerability of firm i (CV Ij→i)is defined as

CV Ij→i =
P (ri ≤ κi, rj ≤ κj)

V Ii
.

The main drawback of this measure if that if firm i is independent from the remainder institutions the CV I would
give you a positive contribution, while it should be zero. Note that P (ri ≤ κi, rj ≤ κj) = P (ri ≤ κi)P (rj ≤ κj)
if firm i and firm j are independent P (ri ≤ κi, rj ≤ κj) = P (ri ≤ κi) if the dependence is perfect and
P (ri ≤ κi, rj ≤ κj) = 0 if the dependence is perfect and negative.

Our contribution measure should be centered around zero, with negative contribution when the dependence
is negative and positive contribution when the dependence is positive. Hence, we redefine the vulnerability index
as the deviation of the joint probability with respect to the independence case, i.e.

V Ii = ∆j→iP (rj ≤ κj) + · · · + ∆M→iP (rM ≤ κM ) , (5)

where ∆j→i is the change in the probability of distress of firm i if institution j is distressed, i.e. P (ri ≤ κi|rj ≤ κj)−
P (ri ≤ κi). The contribution to the vulnerability index would be redefined as

CV Ij→i =
∆j→iP (rj ≤ κj)

V Ii
. (6)

Under the new definition of the vulnerability index, the ratio between the V Ii and the marginal probability of
distress for institution i provides the increase in probabilities of distress in the rest of institutions when firm i is
under stress, i.e.,

V Ii
P (ri ≤ κi)

=
∑
j∈L

∆i→j = ∆∗→j with i /∈ L.

2.1.4 Network of Expected Shortfall scenarios

The Expected Shortfall of a institution i is defined as the mean return when the return is below a threshold κ,
i.e.

ESi = E(ri|ri ≤ κi).

The Expected Shortfall could be divided into two component depending on a second entity j: 1) a section in
which both firms are in distress and 2) another fraction where only institution i is in distress, i.e.

ESi = E(ri|ri ≤ κi, rj ≤ κj)P (rj ≤ κj) + E(ri|ri ≤ κi, rj > κj)(1 − P (rj ≤ κj)).

The share γj→i =
E(ri|ri≤κi,rj≤κj)P (rj≤κj)

ESi
of the expected shortfall for entity i is materialized at the same time

than the stress scenario for institution j.
If we had a third institution we could continue the decomposition of the expected shortfall of entity i in three
portions.

ESi = E(ri|ri ≤ κi, rj ≤ κj)P (rj ≤ κj) (7)

+E(ri|ri ≤ κi, rj > κj , rk ≤ κk)(1 − P (rj ≤ κj))P (rk ≤ κk|rj > κj)

+E(ri|ri ≤ κi, rj > κj , rk > κk)(1 − P (rj ≤ κj))(1 − P (rk ≤ κk|rj > κj)).
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We can decompose the equation until reaching a certain number of institutions or a share of the expected shortfall,
for instance more than 90%, i.e.

∑
j γj→i ≥ 0.9. The selection of the order is important and we start with that

institution with higher probability of stress, so in Eq. (7) P (rj ≤ κj) > P (rk ≤ κk). By doing this decomposition
exercise for all the tail returns of the financial system, we can create a directed weighted network, where the
arrow j → i indicates that the scenario for the expected shortfall of institution i is the same than the stress
scenario for entity j. The weight γj→i indicates how important is that scenario to explain the expected shortfall
for firm i. From the network we can get a set of measure, like the weighted in-degree, which would indicate how
important is each institution to explain the tail returns for the rest of the financial system.

2.2 Modelling distribution

The goal of building a set of systemic risk indicators implies the need of the modelling the joint distribution of
some variables of interest (e.g. equity returns, log-changes in CDS spreads change,... ), which would act as a
proxy of co-movements in fundamentals of entities in the financial system.

Several systemic measures like CoVaR (Adrian and Brunnermeier 2016), SRISK (Brownlees and Engle 2017),
Co-Risk (Chan-Lau et al. 2009), Distressed Insurance Premium (DIP) (Huang et al. 2009), Banking Stability
Indicator (Segoviano and Goodhart 2010) can be written in terms of conditional distribution or some transfor-
mation of the joint distribution. The computation of the systemic risk measures is straightforward provided
that the joint distribution of the considered variables is well captured. The modelling of the distribution should
consider several stylised features of the financial data. First, higher moments (skewness and kurtosis) can have
a large impact on some tail measures like CoVaR or MES. Secondly, heterocedasticity and autocorrelation of
the data would be captured via a flexible parametrization of the conditional mean and variance. Regarding the
dependency structure, it should be flexible enough to capture tail joint dependence and asymmetries (e.g. higher
correlation in downturn periods), and it should evolve over time to replicate changes in the dependence structure.

These characteristics should match with a set of restrictions when selecting the right model. The modelling
should be simple enough for simulation and estimation, but realistic to capture the actual dependence pattern.
We estimate the marginal distribution via a ARMA-GJR-GARCH with innovations distributed following the
Hansen (1994)’s Skewed t distribution, which captures higher moments. The interdependencies between financial
institutions are modelled via a Skewed-t copula structure, which reflect tail dependence and asymmetric relation-
ships. To deal with the dimensional problem in large cross-section dataset, we assume a bifactoral latent factor
structure with a country factor and a global factor, which would drive the dependence between financial entities.
The bifactoral model is nested, in the sense than each set of firms in the same country relates with the domestic
latent factor, while the country latent factors for different regions comove via the global factor. Additional, we
add more flexibility to the model by allowing a time evolution of the correlation parameters via a Generalized
Autoregressive Score approach. More details about the marginal and dependence modelling is provided in the
next two subsections.

2.3 Marginal behaviour

We characterise the marginal densities of equity returns by an ARMA(p,q)-GARCH-GJR(h,k) model, i.e.

ri,t = µi,t + ϵi,t, (8)

ϵi,t = σi,tεi, (9)

µi,t = ϕ0 +

p∑
j=1

ϕjri,t−j +

q∑
k=1

ψkϵi,t−k, (10)

σ2
i,t = ω +

k∑
l=1

αlϵ
2
i,t−k +

h∑
q=1

βqσi,t−q + δ1ϵi,t−1<0ϵ
2
i,t−1 (11)

where ϕj and ψk are the parameters of the AR and MA components of the marginal model, ω, αl, βq and δ are
the components of the GJR-GARCH, which with the parameter δ allows for an leverage effect in the dynamics of
the variance, implying a higher increase when there are negative shocks. The standardized innovation εi follow
a Hansen (1994)’s skewed t distribution, which captures the skewness and excess of kurtosis that we might find
in financial returns. The density function is

f(εi;λi, νi) =


bc

(
1 + 1

νi−2

(
bεi+a
1−λi

)2)− νi+1
2

for εi < −a
b

bc

(
1 + 1

νi−2

(
bεi+a
1+λi

)2)− νi+1
2

for εi ≥ −a
b

, (12)
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where a = 4λic(
νi−2
νi−1

), b =
√

1 − 3λ2
i − a2 and c =

Γ(
νi+1

2
)√

π(νi−2)Γ(
νi
2

)
, the number of degrees of freedom νi must

be higher than 2 and the parameter of asymmetry λi could take a value between -1 and 1. This distribution
converge to the Gaussian distribution when λi = 0 and νi → ∞ and the symmetric Student-t when the number
of degrees of freedom are finite and λi = 0.

2.4 Dependence structure

We rely on a copula methodology (Sklar 1959) to capture the joint distribution of the returns. The joint cumu-
lative distribution function could be seem as a function build on the marginal cumulative distribution functions,
i.e. F (x, y) = C(Fx(x), Fy(y)) Where the function that links the marginal cumulative distribution function is
called copula C(. . . ). If we derive the joint cumulative distribution function with respect to its inputs, we get the
density function, which could be express also in term of a copula, i.e. f(x, y) = c(Fx(x), Fy(y))fx(x)fy(y). This
formula becomes very useful to define conditional distributions. For instance, the conditional density of y given
x would be: f(y|x) = c(Fx(x), Fy(y))fy(y) As a result of applying the Bayes’ theorem on the right side of the
equation. This highly simplifies the analysis of risk measures, as most of them are built in a conditional manner.

The copula approach also allows us to simplify the estimation in a two-step procedure (Joe and Xu 1996),
where we first estimate the marginal features and them, the dependence structure is built based on the the
pseudo-integral probability transformations of the standardized. More details about the estimation process are
provided in the corresponding subsection.

2.4.1 The Skewed Student-t copula

We estimate the dependence between financial entities using a Skewed Student-t copula. The Skewed Student-t
distribution has been widely employed to model financial and economic data (Lucas et al. 2014,Lucas et al. 2017,
Oh and Patton 2023,Oh and Patton 2018) due to the flexibility to capture different tail behaviours as shown by
Figures 1 and 2.

Figure 1: Copula density for different values of λ1 and λ2

These figures show the density copula of a Skewed Student-t copula with ρ = 0.8, ν = 5 and different
values for the asymmetric parameters as shown above each picture
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Figure 2: Simulation of a Skewed t copula

(a) Simulation of uniform variables with a
Skewed-t dependence structure (b) Isoquants of normal distributed variables

with a Skewed-t dependence structure

These figures show the simulation from a Skewed Student-t copula with uniform marginals (Figure 2a) and
Gaussian marginals (Figure 2b). The parameters selected for the Skewed-t copula are the same than in
Figure 1.

The N-variate Skewed Student-t distribution discussed in Demarta and McNeil (2005) ST (µ, P, λ, ν) has the
following density distribution:

fX(x) = c
K ν+N

2
(
√

(ν + d(x))λ′P−1λ) exp([x− µ]′P−1λ)

(
√

(ν + d(x))λ′P−1λ)−
ν+N

2 (1 + d(x)
ν

)
ν+N

2

, (13)

with c = 2−ν/2

Γ( ν
2
)πν|P |1/2 , d(x) = [x − µ]′P−1[x − µ] and Ka(b) being the modified Bessel function of the second

kind. The Skewed-t Student distribution becomes the Student-t distribution when λ = 0 and converges to the
Gaussian distribution when λ = 0 and ν → ∞. Note that for the Skewed-t distribution ν > 4 to have a defined
variance, while the restriction for the Student-t distribution is ν > 2.

The Skewed Student-t copula is a implicit copula (Smith 2023), in the sense that there is not an explicit
formula for this dependence but it is defined as the ratio between the joint distribution and the marginal dis-
tributions. In other words, given the definition of the joint distribution as the product of density copula and
marginal distributions, we defined the Skewed Student-t copula density as

cST (u, v) =
fST (F−1

X (u), F−1
Y (v))

fX(F−1
X (u))fY (F−1

Y (v))
,

where fST (x, y) is the Skewed-t bivariate distribution with parameters µ = [0, 0]′,P =

[
1 ρ
ρ 1

]
, λ = [λ1, λ2]′

and ν, fX(x) is an univariate Skewed-t distribution with parameters µ1 = 0, P = 1, λ = λ1 and ν and fY (y) is an
univariate Skewed-t distribution with parameters µ2 = 0, P = 1, λ = λ2 and ν. Appendix presents more details
about the Skewed-t copula, the assessment of conditional copulas and cumulative copulas, and some details about
the estimation of the Skewed Student-t copula within our framework.

The estimation of a n-dimensional Skewed Student-t copula could become complicated for large n, as the
number of parameters for correlation matrix are N(N−1)

2
. In other to solve this problem, we take the simplifying

assumption that the relationship between financial firms could be explained by a latent one-factor model, which
reduces the number of parameters in the correlation matrix to n. Also, the joint copula can be built as a
combination of bivariate copulas. Next subsection develops this modeling approach.

2.4.2 Nested factor copula

Factor copula. Let us assume that the joint behaviour of a matrix of N variables is explained by distribution
function with a correlation matrix P ,i.e. f(X;P ). This model implies estimating N(N−1)

2
parameters for the
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correlation matrix, i.e.

P =


1 ρ1,2 . . . ρ1,N
ρ1,2 1 . . . ρ2,N
. . . . . . . . . . . .
ρ1,N ρ2,N . . . 1

 .
Let us assume that a one-factor model is able to explain the dynamics of the dataset, dividing the stochastic
behaviour into a systematic part, driven by the factor, and a idiosyncratic part, e.g.

Xi = ρiZ + ϵi.

Consequently, the correlation between variable Xi and Xj becomes ρiρj , approximating the correlation matrix
by:

P̃Z =


1 ρ1ρ2 . . . ρ1ρN

ρ1ρ2 1 . . . ρ2ρN
. . . . . . . . . . . .
ρ1ρN ρ2ρN . . . 1

 .
Note that to estimate this model, we would maximize the joint distribution conditioned on the factor, i.e.
f(X|Z;P ) =

∏N
i=1 f(Xi|Z; ρi).

Hence, the estimation of P̃Z would depend on the factor Z that is chosen to explain the dynamics of the
matrix X. The best factor Z∗ to explain the joint behaviour of matrix X, would be that one that generates a
correlation matrix P̃ ∗ for which f(X; P̃ ∗) > f(X; P̃Z) for any factor Z ̸= Z∗. The key element explaining the
joint behaviour is P̃Z∗ , so we could try to estimate it directly, without explicitly selection any particular factor if
we make some assumptions about the distribution of the factor and the relationship between the factor and the
matrix X, i.e.

f(X; P̃ ∗) =

∫ ∞

−∞

N∏
i=1

f(Xi|Z; ρi)f(Z)dZ.

Krupskii and Joe (2013) proposes this approach to define the factor copula, where under the assumption of a
certain copula structure, the dependence structure could be estimated as

c(U ; P̃ ∗) =

∫ 1

0

N∏
i=1

c(ui, v; ρi)dv, (14)

where c(. . . ) is the density copula, U is the matrix of integral distribution functions for matrixX, i.e. U = F−1
X (X)

and v is the latent factor driving the dependency between the variables in the dataset.
Similarly, we could obtain the copula as

C(U ; P̃ ∗) =

∫ 1

0

N∏
i=1

C(ui|v; ρi)dv, (15)

where C(. . . | . . . ) is the conditional copula

Likelihood ratio test on the factor structure. The presentation of the correlation matrix as a result
of a factor model makes possible to distinguish a restricted model, where the factor is known, e.g. a financial
index, and an unrestricted model, where the factor is unknown or latent. This distinction between restricted and
unrestricted models reminds us about a likelihood ratio test. Actually, we could see the restricted model as a
realization of the factor. The issue with this test is similar to what Cai (1994) faced to test a Switching Markov
model with a model without structural change, i.e. the distribution function of the factor is not identified under
the null hypothesis, which.makes the distribution of the likelihood ratio unknown under the null hypothesis,
making the use of Monte Carlo techniques necessary to get this distribution. We apply the same idea to get the
distribution under the null hypothesis, i.e. there is no significant increase in the goodness of fit of the latent
factor, or in other words, the explicit factor is a realization of a stochastic variable with distribution f(Z).

The MonteCarlo exercise relies in the following steps:

1. Using the explicit factor and the estimated correlation matrix simulate w realizations of the matrix X, i.e.
X̃.

2. Estimate the correlation matrix for each of the w simulations of X by using the latent factor as shown in
Eq. (15). The likelihood of this model would be Sw

UR for each simulation w.

3. Estimate the correlation matrix for each of the w simulations of X by using the explicit factor. The
likelihood of this model would be Sw

R for each simulation w.

4. Compute the log difference log(SUR) − log(SR) for all the simulations, which would give us a distribution
of the likelihood ratio test under the null hypothesis (see Chart 1).
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5. Look at the corresponding value for a certain percentile of the distribution and compare it with the
likelihood-ratio statistic from the real data. If the likelihood statistic is higher than the corresponding
value for the selected percentile, we would reject the null hypothesis with a probability given by that
percentile.

Chart 1: Likelihood ratio statistics distribution under the null hypothesis

This chart shows the distribution of the likelihood ratio under the null hypothesis that the de-
pendence structure estimated from an explicit one-factor model is a realization of the dependence
structure from the latent factor. The chart is based on a simulation of 100 realizations for a dataset
of length T=1000 and N=24 institution

Nested bivariate factor structure The structured factor copula is introduced by Krupskii and Joe (2015),
where the dependence between variables in the bivariate case is explained by a common or global factor and a
group-specific factor. Krupskii and Joe (2015) suggests two ways to generate dependence in non-homogeneous
groups. The first approach would be assuming that the common factor and the group-specific factor are indepen-
dents, which in the case of modeling dependence between financial firms might be difficult to hold. The second
approach assume that the group-specific factors are correlated via the global factor. Probably the latter approach
would be more realistic to replicate the financial network structure. Financial firms within the same country or
region would be linked to a latent factor specific for that region, then the latent factors are linked between then
via a global factor. The link with the global factor makes that stress periods in some regions would happen at
the same time than stress scenario in other regions. In other words, the global latent factor proxies the current
state of the international financial system, which drives other factors, reflecting the situation of domestic financial
systems. These factors defines a dependence structure for the corresponding domestic financial entities.

Figure 3 shows an example for n Canadian financial firms and m US financial firms. Canadian firms are
related to a Canadian latent factor C, while US firms are connected to a US latent factor U . Both latent factors
are not independent as they are connected via a global latent factor G.
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Figure 3: Hierarchical dependence structure of a nested bivariate copula model.

C

c1 c2 . . . cn

U

u1 u2 . . . um

G

T1

T2

This figure shows the structure of hierarchical dependence for a nested bivariate copula. One that for variables in
the bottom the dependence is always explained by a one-factor model (either factor C or U) and the dependence
between the variables with a different factor comes from the dependence between those factor via a second factor,
i.e. global factor G, that drives the comovement between factor C and factor U . The estimation process starts
with the estimation of the dependence of the bottom layer T1, followed by the dependence in the top layer T2.

Eq. 15 could be rewritten to consider a set of G independent group-specific factor, i.e.

C(U) =

G∏
g=1

∫ 1

0

Ng∏
i=1

C(ui|vg)dvg,

where Ng is the number of institutions in group g and the factor copula becomes a product of factor copulas.
The parameters ρ and matrix P of the copula from Eq. (15) are deleted here to simplify the notation.

If the group-specific factors are not independent we should take into account this relationship in a dependence
structure. Hence, our previous equation becomes

C(U) =

∫
[0,1]G

G∏
g=1

Ng∏
i=1

C(ui|vg)cV (v1. . . . , vG)dv1 . . . dvg,

where cV (. . . ) is the density copula between the group-specific factors. As a simplifying assumption, the group-
specific latent factors are conditional independent given a global latent factor. This is a key assumption to remove
the G-dimensional integral from the previous equation, expressing the dependence structure into a double integral
formula. Hence, our previous equation becomes

C(U) =

∫ 1

0

 G∏
g=1

∫ 1

0

cV (vg, v0)

Ng∏
i=1

C(ui|vg)

 dvg

 dv0, (16)

where the inner parenthesis indicates the conditional probability given the specific-group factor and the global
factor, while the outer parenthesis indicates the conditional probability given the global factor. The density
copula would be

c(U) =

∫ 1

0

 G∏
g=1

∫ 1

0

cV (vg, v0)

Ng∏
i=1

c(ui, vg)

 dvg

 dv0. (17)

Note that the structure shown in Figure 3 allows us to estimate first the group-specific copula in T1, and then
estimate the global copula cV (. . . ) in T2, as the dependence between variables within the same group doesn’t
change because of the global copula, as the global copula just sets the dependence across different groups. The
estimation approach subsection presents more details about the optimization process.
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2.4.3 GAS dynamics

We consider that the parameters of correlation matrix in the Skewed Student-t copula are time-varying, following
a dynamic described by a general autoregressive score (GAS) model (Creal et al. 2013). The score driven model
reduces to many well-established models in financial econometrics, although capturing additional information
in the data. Koopman et al. (2016) finds that GAS specification leads to similar predictive performance than
state-space models, reducing the computational cost. GAS model outperforms autoregressive conditional models
(e.g. GARCH).

The updating equation in the GAS model is

fi,t+1 = ωi + αisi,t + βifi,t, (18)

where ωi, αi and βi are the parameters of the GAS model, si,t = Si,t∇i,t, Si,t is a scaling factor and ∇i,t is the

derivative of the loglikelihood function at time t with respect to the parameter fi,t, i.e. ∇i,t =
∂ log(c(ui,t,vt;fi,t))

∂fi,t
.

Thus, fi,t+1, is determined by an autoregressive updating function that has an innovation equal to the score
of the log-likelihood with respect to fi,t. We choose the scaling factor Si,t = Jt|t−1 where JtJ ′

t|t−1 = It|t−1

and It|t−1 = Et−1(∇′
t∇t). This scaling factor allows to standardize the value of ∇t with its standard deviation.

Another way to see this scaling factor is that we are using a steepest ascent method to update the value of fi,t,
where the direction is given by the gradient ∇i,t and size of the step in that direction is given by the Hessian,
which is approximated by outer product of the gradient. In other words, we use the local curvature of the log-
density to improve the step.
The parameter fi,t+1 is a transformation from the original parameter of correlation from the Skewed Student-t
copula ρi,t. The transformation should increase the feasible values that the parameter could take, so we do
not need to set some restrictions in the values of ωi, αi and βi. The transformation function fi,t = h(ρi,t) =

− log(
1−ρi,t
1+ρi,t

) makes that the original feasible values in the range (−1, 1) for ρi,t increases to the real line under

h(ρi,t). The score of the transformed parameters becomes

∂ log(c(ui,t, vt; fi,t))

∂fi,t
=
∂ log(c(ui,t, vt; fi,t))

∂ρi,t

∂ρi,t
∂fi,t

,

where
∂ρi,t
∂fi,t

=
(

∂h(ρi,t)

∂ρi,t

)−1

=
1−ρ2i,t

2
.

2.5 Estimation approach and computational details

We estimate the parameters of the model in two steps (Joe and Xu 1996): in a first step, parameters of the
marginal distribution are estimated by maximum likelihood, and in a second step, copula parameters are es-
timated by maximum likelihood using pseudo-sample observations from the marginals as given by the integral
probability transformations of standardized returns. In other words, the parameters of uniform margins are esti-
mated at the first step and dependence parameters at the second step with parameters of the univariate margins
fixed at the estimates obtained from the first step. The two-step estimation approach, also known as Inference
for Margins (IMF) significantly reduces the computation time, simplifying the estimation process.

The integral from Eq. (14) and the double integral from Eq. (17) could be easily approximated using a
Gauss-Legendre quadrature (Stroud et al. 1966) with a good precision using between 25 to 30 quadrature points.
The Gauss–Legendre quadrature approximates the integral as a weighted combination of integrands evaluated at
quadrature points, e.g., we could write Eq. (14) as

c(U ; P̃ ∗) ≈
nq∑
k=1

wk

N∏
i=1

c(ui, xk; ρi),

where xk are the nodes, wk are the quadrature weights and nq is the number of quadrature points. Eq. (17)
could be approximate as

c(U) =

nq∑
k1=1

wk1

G∏
g=1

nq∑
k2=1

wk2cV (xk2 , xk1)

Ng∏
i=1

c(ui, xk2).

An attractive property of Gauss–Legendre quadrature is that the same nodes and weights are used for different
functions to compute the integral quickly and with a high precision. The same nodes also help in smooth numer-
ical derivatives for numerical optimization.

We also follow an step-optimization approach where the dependence parameters of the copula model are
estimated in steps. For our nested copula model, shown in Figure 3, parameters for the group-specific copulas

Page 13



2.5 Estimation approach and computational details 14
BANK OF CANADA, June 25, 2024

are estimated using data from the corresponding sector, as shown in the row T1 from Figure 3. Within each
group, the data is modeled via a latent one-factor model so the estimation is fast are stable, as shown by Krupskii
and Joe (2015). Once, we have got the estimates for the group-specific copulas, we estimate the parameters of
the global copula, stage T2 in Figure 3, with the other parameters set equal to their estimates. This step-wise
approach allow to get the estimates in a quick way, however we would need to rely on resampling methods to
obtain the standard errors of the model, as this method would give us the standard errors conditional on the
previous step. The resampling method would also allow us to get the multivariate distribution of the parameters,
which would give us the chance to generate in-sample and out-of-sample forecast bands for the time-varying
parameters using the methods shown by Blasques et al. (2016).

Some additional restrictions are made for the estimation of the Skewed Student-t copula at each stage of the
process. First, we assume the same parameter λ1, λ2 and ν for all the variables modeled with the same factor.
This simplification would speed up the estimation because we would need to simulate realization of the Skewed-t
distribution, as there is not a closed formula for the inverse cumulative function of the univariate Skewed Student-t
distribution. Also for each copula the number of parameters to estimate would be N+3, where N are the number
of variables modeled within the same factor. A second restriction is the use of a ”variance targeting” approach
to alleviate the complexity of the estimation process (Oh and Patton 2023). In particular, this approach imply
using a two-step procedure where the estimates of the constant copula are estimated and, stationarity assump-
tion, the GAS dynamics are estimated. The constant copula gives us the estimation of the asymmetry λ, the
number of degrees of freedom ν and a vector of estimates ρ that defines the long-term relationship between the
variables and the latent factor. Similarly to the variance targeting in the GARCH literature, where the constant
term ω is estimated based on the long-run variance, in the GAS approach, under the stationary assumption,
the unconditional expectation of the loadings in Eq. (18) is f̄i = ωi

1−βi
as the expectation of the score is zero

(Blasques et al. 2022). The paraemters αi and βi are assumed to be equal to all the variables linked with the
same factor, to further simplify the estimation process.

For the numerical optimization of the the constant copula, we used a modified Newton-Raphson algorithm,
for which the first and second partial derivatives of the copula density with respect of the parameter vector are
needed. This method allows us to get good estimates for a large number of variables and parameters if we are
starting from a sensible starting point. The speed in convergence could increase if we obtain analytical expressions
for the gradient and the Hessian. Using the differentiation under the integral sign, we can build the first and
second derivatives with respect of the parameter vector. The appendix provides the analytical expressions of the
gradient and Hessian for the Skewed Student-t copula and some details on how this derivatives would match in
a factor copula framework.
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3 Data

We download from Refinitiv EIKON equity stock prices with dividends being reinvested in the same assets, i.e.
total return price, for financial firms in Canada, US, Europe (EA), Switzerland and United Kingdom.

The data has been filtered to keep only those assets that are traded enough during the period 2006-2024, as
it would allow to analyse the response to several periods of stress like the global financial crisis, the European
sovereign debt crisis and the COVID crisis. Also, subsectors like mutual funds, hedge funds, trust and venture
capital are deleted from the sample as they have a focused investment strategy (e.g. health care sector, high-
tech,...). Finally, only firms for which we can get balance-sheet information is considered.

The dataset is composed by 274 financial firms, which could be decomposed in 158 US firms, 53 EA firms, 24
Canadian firms, 21 UK firms and 18 Swiss firms. We present below some summary statistics, where the market
capitalization and number of institutions is disclosed by country and subsector. The subsector classification
follows the Refinitiv Business Classification (TRBC).

Table 1: Distribution of the number of financial firms by region and subsector

# Canada US UK Europe Switzerland

Banks 9 118 6 32 8
Insurance 9 28 4 15 6
Financial & Commodity Market
Operators & Service Providers

1 4 1 – 1

Consumer Lending 3 3 – – –
Investment Banking & Invest-
ment Services

2 5 10 5 3

Corporate Financial Services – 1 – 1 –
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Table 2: Distribution of the size of financial firms by region and subsector

Million CAD Canada US UK Europe Switzerland

Banks 620273 2249974 417722 1045503 38102
Insurance 258321 907748 43949 559402 201209
Financial & Commodity Market
Operators & Service Providers

10046 266189 84473 – 6234

Consumer Lending 3870 313874 – – –
Investment Banking & Invest-
ment Services

941 677175 117564 58457 145444

Corporate Financial Services – 1526 – 1524 –

Exchange Rate USDCAD GBPCAD EURCAD CHFCAD
1.3672 1.717 1.476 1.5074

Note: The table presents the market capitalization in millions of Canadian dollars at the end of sample, using the
corresponding exchange rate.
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4 Results

We present in this section some results of the four systemic risk measures aggregated at the region level. We
provided in the appendix a pseudo-code to simulate the systemic risk measures of FSI and FIJD, but also we
show the copula formulas to obtain the four types of systemic risk measures proposed in Section 2. We have also
performed the Likelihood Ratio type test proposed in section 2 for each region, using the static copula, where
the null hypothesis has been always rejected at 99% confidence level.

4.1 Financial Spillover Index

The Financial Spillover indicate the difference between the sum of the conditional probabilities and the sum of
the marginal probabilities of distress. The conditioning scenario is a joint stress scenario for a set of firms in
another region with a probability equal or higher than 4%.

We observe different patterns in the five regions. Canada, shown in the top left subplot in Chart 2, has a
peak in the period 2016-2018 although the series are quite stable between a FSI 15-20. The maximum possible
FSI would be 24 (the number of institutions in the sample), so these are high numbers which are decreasing after
2018, being at the end of the sample close to 10. The US financial sector is the region with the highest impact on
Canadian FSI with the EU being the one with a lowest impact. With respect to the role of Canadian institutions
as a conditioning scenario for the FSI of other regions, Chart 3 shows that up to six institutions under stress
during the global financial crisis (GFC) and 4-5 institutions during the COVID crisis. Banking Services and
Investment Banking and Investment Services are the two subsectors that defines the stress scenario for most of
the period, with the insurance sector being the less representative for the stress scenario in the FSI.

US FSI, shown the top center subplot in Chart 2, has two peaks corresponding to the GFC and the COVID
crisis with maximums around 80-100 and minimum around 20. The number of institutions are 158, which in-
dicate a very low FSI compared to the size of the financial system. The lowest exposure of US is to European
financial system and the highest exposure is to UK and Switzerland. Regarding the role of US financial firms in
the stress scenario, shown in Chart 4, the relevance of the different subsectors change over time. While in the
period of 2008-2010 the Commodity Market Operator (in purple) has the highest relevance in the design of the
stress scenario, while for the period 2010-2018 the banking sector is leading the stress scenarios for the FSI of
other regions. Finally, starting from 2018, the insurance (in green) has a higher relevance when designing the
stress scenario.
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European FSI presents a much more volatile pattern than Canada and US with the highest exposure to US.
The time series shows a maximum of 40 a minimum around 5. The number of European institutions in our
sample are 53, so the average degree of distress shown by the FSI is lower than US and Canada. Interesting, we
have some peaks that are not observable in other series. For instance there is a peak in 2012 coinciding with
the European sovereign debt crisis. The role of European financial firms as stress scenario for the FSI in other
regions is focused on banking and insurance companies, as shown by Chart 5.

UK FSI shows the highest exposure to a stress scenario in the US financial sector but the lowest exposure to
a distress event for EU financial firms. The path of the indicator presents several peaks, coinciding with crisis
and political events. For instance the peak in 2016 coincides with the Brexit pool. The range of values in the FSI
for UK goes from 2 to 15, which represents a large gap for a set of 21 institutions. Banks, Commodity Market
Operators and, in a third position, the insurance sector are the UK financial sectors that provides the highest
impact on the FSI of other countries according the Chart 6.

Finally, Swiss FSI shows the lowest value in comparison to its size. It shows a maximum at 8, which with a
set of 18 institutions shows a stress below 50%. The European stress scenario seems to generate highest impact,
together with the US, to the Swiss FSI. Chart 7 indicate that the banking sector, followed by the insurance
sector, are the Swiss financial sectors with highest impact on the remainder financial regions.

Chart 2: Financial Spillover Index

This chart shows the Financial Spillover Index as the sum of the difference between the conditional
and unconditional probability of distress. We have set a α=0.04, while the threshold κ that defines
the distress scenario is set at the empirical 5-th percentile of the unconditional marginal distribution.
Each subplot indicates the FSI for the country specify in the title, while the countries from which
the scenario A is generated appear in the legend. Charts 3, 4, 5, 6 and 7 presents the scenarios
disclosed by the subsector. Measures have been simulated using 100,000 realizations.
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Chart 3: Distress scenario for Canadian firms in the FSI measure

This chart shows the distress scenario for Canadian firms that generates the highest FSI for each of
the countries indicated in the title of the subplot. Each bar shows the number of institutions under
stress, with a decomposition by subsector with a joint probability higher than 4%.

Chart 4: Distress scenario for US firms in the FSI measure

This chart shows the distress scenario for US firms that generates the highest FSI for each of the
countries indicated in the title of the subplot. Each bar shows the number of institutions under
stress, with a decomposition by subsector with a joint probability higher than 4%.
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Chart 5: Distress scenario for European firms in the FSI measure

This chart shows the distress scenario for EU firms that generates the highest FSI for each of the
countries indicated in the title of the subplot. Each bar shows the number of institutions under
stress, with a decomposition by subsector with a joint probability higher than 4%.

Chart 6: Distress scenario for British firms in the FSI measure

This chart shows the distress scenario for UK firms that generates the highest FSI for each of the
countries indicated in the title of the subplot. Each bar shows the number of institutions under
stress, with a decomposition by subsector with a joint probability higher than 4%.
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Chart 7: Distress scenario for Swiss firms in the FSI measure

This chart shows the distress scenario for Swiss firms that generates the highest FSI for each of
the countries indicated in the title of the subplot. Each bar shows the number of institutions under
stress, with a decomposition by subsector with a joint probability higher than 4%.

4.2 Financial Index Of Joint Distress

The financial index of joint distress (FIJD), shown in Chart 8, is built using the market capitalization of each
company as a weighting factor of the index, with the returns shown in the domestic currency, so there is no FX
noisy the the pattern. Apart from the drops in 2008 and 2020, coinciding with the financial and health crisis,
we observe a drop in 2012-2013 for US, Europe and Switzerland, and a drop for Europe in 2016-2017. Note that
the pattern, and the stress scenarios, might be different than the ones shown by the FSI, as here we are using
the market capitalization to weight the relevance of each company within the financial system. The region with
lowest influence in the global financial system seems to be Europe, followed by Canada, whereas US present the
highest effect in the performance of the index for the rest of regions. US financial index seems to perform worse
when the stress scenario is built on the UK financial sector.

Concerning the stress scenarios, they are different from the scenarios shown for the previous measure as the
large size of the banking and insurance sector would put a higher weight in generating scenarios with a worse
outcome for them. For instance, in Canada, we see that the set of institution under stress for the US FIDJ shown
in Chart 9 is smaller during the GFC than in Chart 3. Also, the number of institutions stressed peaks 7 for the
COVID crisis for the FIDJ of all the regions. Swiss stress scenario for the Canadian FIDJ, shown in Chart 13,
diminishes the relevance of Commodity Market Operators with respect to banking and insurance sectors, which
have a higher relevance for Canada than in Chart 13.
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Chart 8: Financial Index of Joint Distress

This chart shows the Financial Index of Joint Distress using the market capitalization at each time as
weighting factor. We have set a α=0.04, while the threshold κ that defines the distress scenario is set
at the empirical 5-th percentile of the unconditional marginal distribution.Each subplot indicates the
FIJD for the country specify in the title, while the countries from which the scenario A is generated
appear in the legend. Charts 9, 10, 11, 12 and 13 presents the scenarios disclosed by the subsector.
Measures have been simulated using 100,000 realizations.
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Chart 9: Distress scenario for Canadian firms in the FIJD measure

This chart shows the distress scenario for Canadian firms that generates the lowest market return for
a certain set of firms, weighted by their market capitalization, aggregated by the regions indicated in
the title of the subplot. Each bar shows the number of institutions under stress, with a decomposition
by subsector with a joint probability higher than 4%.

Chart 10: Distress scenario for US firms in the FIJD measure

This chart shows the distress scenario for US firms that generates the lowest market return for a
certain set of firms, weighted by their market capitalization, aggregated by the regions indicated in
the title of the subplot. Each bar shows the number of institutions under stress, with a decomposition
by subsector with a joint probability higher than 4%.
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Chart 11: Distress scenario for European firms in the FIJD measure

This chart shows the distress scenario for European firms that generates the lowest market return for
a certain set of firms, weighted by their market capitalization, aggregated by the regions indicated in
the title of the subplot. Each bar shows the number of institutions under stress, with a decomposition
by subsector with a joint probability higher than 4%.

Chart 12: Distress scenario for British firms in the FIJD measure

This chart shows the distress scenario for British firms that generates the lowest market return for a
certain set of firms, weighted by their market capitalization, aggregated by the regions indicated in
the title of the subplot. Each bar shows the number of institutions under stress, with a decomposition
by subsector with a joint probability higher than 4%.
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Chart 13: Distress scenario for Swiss firms in the FIJD measure

This chart shows the distress scenario for Swiss firms that generates the lowest market return for a
certain set of firms, weighted by their market capitalization, aggregated by the regions indicated in
the title of the subplot. Each bar shows the number of institutions under stress, with a decomposition
by subsector with a joint probability higher than 4%.

4.3 Vulnerability Index

The Vulnerability Index is aggregated within the institutions in the same region, by using the market capitaliza-
tion as a weighting factor. Chart 14 shows the Vulnerability Index (VI) in the right side of the subplots for each
region, while the right side shows the contribution of the other regions to the corresponding vulnerability index
of the region indicated in the title of each subplot.

The US shows a dominant role as contributor, both to the US vulnerability index and foreign vulnerability
index. The contribution of Europe is higher for the European Vulnerability Index than the rest of regions.
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Chart 14: Vulnerability Index and its Contribution.

This chart shows the Vulnerability Index as defined by 5, aggregated by region using the market
capitalization of the financial firms as a weights. The Contribution to the Vulnerability Index, as
defined by 6, indicates the role of each country shown in the legend in the regional Vulnerability
Index indicated in the title of each subplot. Measures have been simulated using 100,000 realizations.

4.4 Network Of Expected Shortfall

We have done the decomposition of the Expected Shortfall (ES) up to 10 conditioning financial institutions (FIs)
or up to gather the full ES under stress scenarios for other FIs. When selecting the firms to decompose the Ex-
pected Shortfall, we start selecting the financial firm with higher conditional probability of distress. For instance,
if we have three institutions (A, B and C) and we want to decompose the Expected Shortfall of institution A,
i.e. E(rA|rA ≤ κA), we would start decomposing by firm B if P (rB ≤ κB |rA ≤ κA) > P (rC ≤ κC |rA ≤ κA). We
could graphically represent the connection between institution A and institutions B and C by two arrows going
out of A and reaching B and C. The arrow from A to B would have a width of P (rB≤κB |rA≤κA)E(rA|rA≤κA,rB≤κB)

E(rA|rA≤κA)
,

while the arrow from A to C would have a width of P (rC≤κC |rA≤κA,rB>κB)E(rA|rA≤κA,rB>κB ,rC≤κC)
E(rA|rA≤κA)

. Note that

the sum of the two arrows would have a width of 100% if tail loss for firm A happens always when institution B
or C is in their tail return, or it would be below 100% if there is a share of the Expected Shortfall for the returns
of firm A that are not materialized when firms B and C are not in stress, i.e. ;P (rA ≤ κA|rB > κB , rC > κC).

We present in Figure 4 the network of Expected Shortfall at the breakout of the COVID crisis, i.e. week of the
18 March 2020. The dots represents the financial firms in our sample (274 dots), with the color representing the
region of the firm. This picture show a key role of US for the financial system, with a secondary role of European
and Swiss financial firms. Then, in a second layer, outside the inner core of the network, we find Canadian and
British financial institutions.

We can plot this type of graph over time, but in order to capture information in a easier way, we con-
struct a weighted out-degree measure, e.g. we are summing the arrows we are summing the arrows going out
of Canadian Institutions weighted by the width of each arrow and the market capitalization share to each region.1

Figure 15 show the final outcome. The last subplot in the bottom right of the figure indicate the share of
the Expected Shortfall that we have been able to explain by using 10 institutions. For most of the regions we
reach close to 100%, only for Switzerland we find a coverage around 95% and a small drop at the beginning of
the sample for the UK financial system at 85%. Nevertheless, the coverage of the Expected Shortfall is always

1In the network literature the weight usually limits to the width of the arrow, however we are also applying the weight
of the market capitalization to get a value that sum up to 1 for each region, telling us about which are the regions for
which the stress scenarios could explain most of the ES in the financial system.
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above 80%. The US dominates the explanation of the Expected Shortfall of other countries, which is a similar
conclusion to the rest of the measures. European and Swiss financial systems presents a relevant decomposition
of their Expected Shortfall in domestic scenarios, while for UK and Canada we find foreign regions to be more
relevant in general. Interestingly, we find a couple of results that we haven’t seen in the other measures. First,
Canada becomes now relevant, in terms of scenarios, for the Expected Shortfall of US financial firms and Swiss
financial firms. The financial links with US and the size of the insurance sectors in Canada and Switzerland
might explain this results. Second, Switzerland is, after US, the region that have a higher share of the Canadian
Expected Shortfall happening at the same time than a distress scenario in this country.

Figure 4: Network of Expected Shortfall at the breakout of the COVID crisis (week of 18 March
2020)

This figure shows the decomposition of Expected Shortfall as defined in Eq. (7), where the colour
of the node indicate the region of the financial institution and the edge from A to B indicates that
the Expected Shortfall of A happens at the same time than the Expected Shortfall of B. The width
of the edge indicate which is the share of the Expected Shortfall of A happening at the same time
than the Expected Shortfall of B. Measures have been simulated using 100,000 realizations.
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Chart 15: Average weighted out-degree of each region

This chart shows the importance of each region to explain the Expected Shortfall of other regions
(shown in the legend). The importance is measure by the average of the weighted in-degree of
each region, where the in-degree indicates how many tail returns institutions from a certain region
happen at the same time than the tail returns of the firms in the region indicated in the title of
each subplot. The weight is given by the share of the Expected Shortfall that is explained, where
we also use the market capitalization to take into account the size of each firm. Measures have been
simulated using 100,000 realizations.
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5 Conclusion

The systemic risk literature has proposed several risk measures to identify the connection between financial in-
stitutions. Most of the measures set a scenario for a single institution to generate the probability space where
the measure is built. This limits the scope of the measure, as the institution and the numbers of institutions on
which we build the scenario might have a different probability of occurrence over time and a different effect on
the institutions under scope. In order to build a robust set of systemic risk measures, we need a methodology
flexible enough to adapt to different sets of conditioning scenarios. This article uses a bi-factor latent copula
approach to capture the joint dependence across institutions from different financial subsectors and regions. We
also employ a Skewed Student t copula to be able to capture in a better way the tail behaviour of financial
assets. This framework allows us to generate two systemic risk measures looking at conditional probabilities and
conditional returns with a flexible conditioning definition, setting the probability but leaving free the number
of institutions that would define the stress scenario. This modification will give us more information about the
scenario from which some institutions are more vulnerable and how that scenario changes over time, comple-
menting the information provided by the risk measure. We also proposed a decomposition of the tail loss of
the financial institutions in portions where other financial institutions are under distress too, which would allow
us to build network and analyse the centrality of some institutions in the network of stress scenarios between them.

We perform an empirical application using weekly equity data from 2006 up to 2023 for financial institutions
from 5 different regions (Canada, United States, Euro Area, United Kingdom and Switzerland). We found that
the role of US is predominant in terms of effect on the systemic risk measures for the rest of jurisdictions, but the
composition of the stress scenarios is changing over time. While US financial and commodity marker operator
companies are present in the stress scenarios for other regions in the period 2008-2010, the banking sector lead
the scenario composition in the period 2010-2018, while the US insurance sector starts having more relevance in
the design of stress scenario from 2018 onwards. Also we find different patterns, both for conditional probabilities
and returns, for the different jurisdictions, with a higher volatility of European systemic indicators compared
to American systemic risk measures and some idiosyncratic patterns captured by some regions, like the Brexit
event in the UK time series. Also, we find that the between 20 to 60% of the Expected Shortfall from the
US financial system is happening at the same time that the stress scenario of Canada, which reflect the great
symbiosis between these two jurisdictions. Canada also presents ties with Switzerland, being more than 40% of
the Swiss Expected Shortfall is ocurring at the same time than tail losses in Canadian financial firms. This link
could be explained by the role of insurance companies in two countries.

The proposed methodology opens the floor to analyse global spillovers from and to emerging economies by
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controlling the exchange rate effects, as the latent factor allow us to model the currencies through relationships
between latent factor. Also, the model could be employed to generate generalizations of some well-known mea-
sures like the CoVaR in a multidimensional framework, where the conditioning event would be defined by a set
of financial institutions.

The findings of this research have implications for several economic agents. Firstly, for the supervisory au-
thorities, who seek to monitor and track systemic risk and to identify scenarios that could generate large losses in
the financial market. Secondly, policy makers, who wish to understand the interactions between financial system
from different regions and how it could impact domestic economy. Thirdly, for risk management, investors and
traders, who might find this methodology interesting to reduce portfolio’s tail loss.
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Chan-Lau, J. A., M. Espinosa, K. Giesecke, and J. A. Solé (2009). Assessing the systemic implications of financial
linkages. IMF global financial stability report 2.

Cortes, F., P. Lindner, S. Malik, and M. A. S. Basurto (2018). A comprehensive multi-sector tool for analysis of
systemic risk and interconnectedness (SyRIN). International Monetary Fund.

Creal, D., S. J. Koopman, and A. Lucas (2013). Generalized autoregressive score models with applications.
Journal of Applied Econometrics 28 (5), 777–795.

Demarta, S. and A. J. McNeil (2005). The t copula and related copulas. International statistical review 73 (1),
111–129.

ECB (2009, December). The concept of systemic risk. Technical report, EuropeanCentral Bank.

Engle, R. and B. Kelly (2012). Dynamic equicorrelation. Journal of Business & Economic Statistics 30 (2),
212–228.
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Appendix

The Skewed t Distribution

The bivariate skewed t distribution discussed in Demarta and McNeil (2005) has the following stochastic repre-
sentation:

X = µ+ λW +
√
WZ (19)

where µ and λ are the mean and asymmetry vector parameter respectively , W is an inverse gamma distributed
random variable W ∼ IG( ν

2
, ν
2
) with ν being the number of degrees of freedom, Z is a multivariable normal

random variable Z ∼ N(0, P ) independent of W with P =

[
1 ρ
ρ 1

]
, i.e. Z = Lε with ε ∼ N(0, I) and

L =

[
L11 0
L12 L22

]
=

[
1 0

ρ
√

1 − ρ2

]
.

Note that E(X) = µ + ν
ν−2

λ and Cov(X) = Σ = ν
ν−2

P + 2ν2

(ν−2)2(ν−4)
λλ′, so ν > 4 to have a defined variance.

The bivariate distribution is:

fX(x) = c
K ν+2

2
(
√

(ν + d(x))λ′P−1λ) exp([x− µ]′P−1λ)

(
√

(ν + d(x))λ′P−1λ)−
ν+2
2 (1 + d(x)

ν
)
ν+2
2

,

with c = 2−ν/2

Γ( ν
2
)πν|P |1/2 , d(x) = [x − µ]′P−1[x − µ] and Ka(b) being the modified Bessel function of the second

kind. We use the approximations from Yang and Chu (2017) when b is close to zero and b is large. In particular

lim
b→0

Ka(b) = 1
2
Γ(a)

(
b
2

)−a
and lim

b→∞
Ka(b) =

√
π
2b

exp(−b)
(

1 + 4a2−1
8b

(
1 + 4a2−9

16b

))
. As shown by Lucas et al.

(2014), this approximation allows us to cancel the exponential term multiplying the modified Bessel function,
adding numerical stability for the skewness effect in the far tails.
Note that Eq. (19) conditioned to a realization of W is normally distributed, i.e.

X|W ∼ N


[
µ1

µ2

]
+W ⊗

[
λ1

λ2

]
︸ ︷︷ ︸

µX|W

,W ⊗
[
1 ρ
ρ 1

]
︸ ︷︷ ︸

ΣX|W





where ⊗ is the Kronecker product. Eq. (13) could be rewritten as

fX(x) =

∫ ∞

0

ϕX|W (x|W )fW (w)dw, (20)

where ϕX|W )(. . . ) is the normal probability distribution function with mean µX|W and variance matrix ΣX|W
and fW (. . . ) is the probability distribution function of the inverse Gaussian with all parameters equal to ν

2
.

Eq. (20) allows us to write the cumulative distribution function of the skewed t distribution as

FX(x) =

∫ ∞

0

ΦX|W (x|w)fW (w)dw, (21)

where ΦX|W )(. . . ) is the cumulative normal probability distribution function with mean µX|W and variance ma-
trix ΣX|W .

We obtain the copula from the ratio between the joint density function and the product of the marginal
distributions. The univariate density of the skewed t distribution is

fX(x) = c
K ν+1

2
(
√

(ν + d(x))λ2

σ2 ) exp
(

(x−µ)

σ2 λ
)

(
√

(ν + d(x))λ2

σ2 )−
ν+1
2 (1 + d(x)

ν
)
ν+1
2

, (22)

with c = 2
1− ν+1

2

Γ( ν
2
)(πν)

1
2 σ

and d(x) = (x−µ)2

σ2 , and where σ.2 is given by the diagonal elements of P . The copula

density function is defined implicitly via

c(u, v) =
fX(F−1

X1
(u), F−1

X2
(v))

fX1(F−1
X1

(u))fX2(F−1
X2

(v))
. (23)

Copula function could be easily obtained from Eq. (21) as C(u, v) = F (F 1
1 (u), F−1

2 (v)), i.e.,

C(u, v) =

∫ ∞

0

ΦX|W (Φ−1
X1|W (u),Φ−1

X2|W (v)|w)fW (w)dw. (24)

The conditional copula could be obtained following Eq. (21) as

C(u|v) =

∫ ∞

0

Φ

(
F−1
X1

(u) − µX1|X2,W

σX1|X2,W

)
fW (w)dw. (25)

with Φ (. . . ) being the standardized normal cumulative distribution function and

µX1|X2,W = µX1|W +
σ12|W

σ2
X2|W

(
F−1
X2|W (v) − µX2|W

)
with σ12|W being the element in column 1 row 2 from matrix ΣX|W and

σX1|X2,W =

√√√√σ2
X1|W −

σ2
12|W

σ2
X2|W

Derivatives of the factor copula model

The minus loglikelihood function is defined as

S = −
T∑

t=1

log(c(ut, vt; Θ)),

where Θ is the set of copula parameters. The gradient with respect to the parameters Θ would be

∂S

∂Θ
= −

T∑
t=1

∂ log(c(ut, vt; Θ))

∂Θ
.

Note that using the chain rule we can find the following relationship

∂ log(c(ut, vt; Θ))

∂Θ
=

1

c(ut, vt; Θ)

∂c(ut, vt; Θ)

∂Θ
. (26)



The one-factor copula is defined

c(u, v; Θ) =

∫ 1

0

cu,z(u, z; θu,z)cv,z(v, z; θv,z)dz

where Θ = [θ′u,z, θ
′
v,z]′. In the skewed t framework we would have six parameters, i.e. Θ = [ρu,z, λu, ρv,z, λv, λz, ν].

Obviously, the factor model would provide a good alternative for the estimation when the number of variables N
is large (N >> 2). Following Leibniz integral rule, we can apply the differentiation under the integral sign, e.g.,
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For the derivatives under the integral sign we follow Eq. (26) to get the derivative of the copula as

the product between the derivative of the log-copula multiplied by the copula density, e.g.
∂cu,z(u,z;θu,z)

∂ρu,z
=

∂ log(cu,z(u,z;θu,z))

∂ρu,z
cu,z(u, z; θu,z). Once we get the derivative of the factor copula with respect to the param-

eter, we apply again Eq. (26) to get the derivative of the log-copula with respect to the parameter, e.g.
∂ log(c(ut,vt;Θ))

∂ρu,z
= 1

c(ut,vt;Θ)
∂c(u,v;Θ)

∂ρu,z
.

The computation of the derivative of the log-copula hugely simplifies the analytical assessment of the gradient
vector. The next subsection presents the analytical derivatives with respect to the parameters of the static copula
model, as they are needed to compute the static factor copula for a large dimensional dataset. We use a modified
Newton-Rapshon method to estimate the constant factor copula, as suggested by Krupskii and Joe (2015), to
be used as ”variance targeting” to anchor the long-term dependence like Oh and Patton (2023) and Lucas et al.
(2014).

Derivative of the GHST log-copula

The log-likelihood copula is defined as

log (c(ut, vt; Θ)) = log
(
f(F−1

X1
(u), F−1

X2
(v); Θ)

)
− log

(
f(F−1

X1
(u); Θ)

)
− log
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fX2(F−1

X2
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)
, (27)

with its derivative being

∂ log (c(ut, vt; Θ))

∂Θ
=

∂ log
(
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X2
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−
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−
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)
∂Θ

, (28)

with f(. . . , . . . ; Θ) and f... provided by Eq. (13) with N=2 and N=1 respectively.
We provide the derivative of the log-likelihood with respect of each parameter for the marginal and the joint
distribution.

Derivative of the joint distribution with respect to the GHST parameters.
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with x1 = F−1
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(v), A = a1 + a2 + a3 with a1 = (x1−µ1)
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Derivative of the joint distribution with respect to the correlation parameter.
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Derivative of the joint distribution with respect to the asymmetric parameter of the

first variable. The derivatives ∂x1
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Derivative of the joint distribution with respect to the asymmetric parameter of the

second variable. The derivative ∂x2
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=
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is computed numerically.
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Derivative of the joint distribution with respect to the number of degrees of freedom
González-Santander (2023) shows that the n-th derivative of the modified Bessel function of the second kind is
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where cosh is the hyperbolic cosine. For n=1, we can find a closed-form solution for non-integral ν (see Brychkov
2016, González-Santander 2018) defined as
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where pFq is the generalized hypergeometric function and ψ(. . . ) is the digamma function. The derivatives
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Hessian of the factor copula model

We could apply the rule of chain on Eq. (26) to get the second derivative

∂2 log(c(ut, vt; Θ))
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We apply again the differentiation under the integral sign as we did for the gradient to obtain the second derivative
with respect to the parameters of the Skewed t distribution. For numerical minimization in a high dimensional
dataset we need the gradient and hessian to use a modified Newton-Raphson algorithm, where the gradient
indicates the direction to follow to minimize the minus log-likelihood and the hessian indicates the size of the
step in that direction.



Construction of systemic risk measure

Simulation-based

Pseudo-code of the computation of the systemic indicators by simulation (1/4)

U=rand (W,M+6); % simu la t e W r e a l i z a t i o n s o f M firms , 5 r e g i ona l l a t e n t f a c t o r s
% and one g l o b a l l a t e n t f a c t o r

for t =1:T+1 % for each time per iod o f l e n g t h T and the one−week f o r e c a s t o f
% the model

Uf=Cinv (U( : , end−5:end−1) ,U( : , end ) ) ; %genera te the dependence pa t t e rn
% between the 5 r e g i ona l l a t e n t f a c t o r s and the g l o b a l l a t e n t f a c t o r

for k=1:5 % for each reg ion we ge t the dependence s t r u c t u r e o f the
% corresponding f i n a n c i a l f irms , M g i s a vec t o r i n d i c a t i n g the
% number o f i n s t i t u t i o n s under each reg ion so sum(M g)=M

Ui ( : ,1+sum(M g ( 1 : k −1)) :sum(M g ( 1 : k ) ) ) = . . .
Cinv (U(: ,1+sum(M g ( 1 : k −1)) :sum(M g ( 1 : k ) ) ) , Uf ( : , k ) ) ;

end
for k=1:M % now fo r the f i n a n c i a l f i rms ge t the re turns , app l y ing the

% inve r s e marginal cumula t ive d i s t r i b u t i o n func t i on and the
% mean and standard d e v i a t i on from the ARMA−GARCH−GJR

R( : , k)=Finv ( Ui ( : , k ) ) sigma ( t , k)+mu( t , k )
end
% now we s t a r t b u i l d i n g the FSI
for i s c e n =1:5 %for each region , we c r ea t e a s e t o f s c enar i o s

s e t s h o c k e d r e g i o n s = [ 1 : 5 ] ;
s e t s h o c k e d r e g i o n s ( i s c e n ) = [ ] ; % we cons ider the e f f e c t o f a reg ion

% on the r e s t o f the r eg i ons
for i s hocked=s e t s h o c k e d r e g i o n s

pts=ones (M g( i s c e n ) , M g( i s c e n ))∗100 % we s e t a h igh t h r e s h o l d
% such t ha t the p r o b a b i l i t y o f be ing be low the
% th r e s h o l d i s c l o s e to 100%

for j =[1 :M g( i s c e n ) ]
pts ( j , j )=kappa (1 , j+sum(M g ( 1 : i s c e n −1) ) ) ;
% kappa i s a vec t o r 1xM ind i c a t i n g the uncond i t i ona l l owe s t
% 5− th p e r c e n t i l e o f r e tu rns

end
% each row o f p t s i n d i c a t e s a scenar io and the columns i n d i c a t e
% the i n s t i t u t i o n s in d i s t r e s s on t ha t scenar io
P=zeros (1 ,M g( i s c e n ) ) % vec to r where we w i l l ga ther the

% p r o b a b i l i t y o f t h a t scenar io
for j =[1 :M g( i s c e n ) ]

P( j )=sum( a l l (R(: ,1+sum(M g ( 1 : i s c e n −1)) :sum(M g ( 1 : i s c e n ) ) ) < . . .
pts ( j , : ) , 2 ) ) . /W;

end
g r o u p f e a s i b l e=find (P>=alpha th r e sho ld ) ’ ; % we would cons ider on ly

% those s cenar i o s where the p r o b a b i l i t y o f occurance
% i s h i ghe r than a lpha th re sho l d , which in our
% empi r i ca l e x e r c i s e we s e t a t 4%

n g=s ize ( g r o u p f e a s i b l e , 1 ) ; % here we aggrega t e the number o f
% f e a s i b l e s c enar i o s to be cons idered

pts=ones ( n g , M g( i s c e n ) )∗1 0 0 ;
check max = [ ] ; % sum of c ond i t i ona l

% p r o b a b i l i t i e s
check re turn = [ ] ; % index re turn o f the

% weighted−average f i n a n c i a l f i rms
f i l t e r s i m = [ ] ; % r e a l i z a t i o n s where the cond i t i on ing event i s

% ma t e r i a l i z e d



Pseudo-code of the computation of the systemic indicators by simulation (2/4)

for j =[1 : n g ] % for each o f the f e a s i b l e s c enar i o s
pts ( j , g r o u p f e a s i b l e ( j , : ) ) = kappa (1 , g r o u p f e a s i b l e ( j , : ) + . . .

sum(M g ( 1 : i s c e n −1) ) ) ; %genera te the s t r e s s scenar io
Index=(ww(end−(TT+1)+t ,1+sum(M g ( 1 : i shocked − 1 ) ) : . . .

sum(M g ( 1 : i shocked ) ) ) ∗ (R(: ,1+sum(M g ( 1 : i shocked − 1 ) ) : . . .
sum(M g ( 1 : i shocked ) ) ) ’ ) ) ’ ;

% we bu i l d the index f o r the f i rms to genera te the FIJD
% we use the market cap in ww as we i gh t ing f a c t o r
f i l t e r s i m=find ( a l l (R(: ,1+sum(M g ( 1 : i s c e n − 1 ) ) : . . .

sum(M g ( 1 : i s c e n ))<pts ( j , : ) , 2 ) ) ; % we keep the r e a l i z a t i o n s
% wi th in the W s imu la t i on s where the scenar io i s happening

check max ( j )=sum(sum( [R( f i l t e r s i m , 1 + . . .
sum(M g ( 1 : i shocked −1)) :sum(M g ( 1 : i shocked ) ) ) < . . .
( ones ( length ( f i l t e r s i m ) , 1 )∗ kappa . ( names f l { i 1 } ) ) ] , 1 ) . / . . .
length ( f i l t e r s i m ) ) ;

% we ge t the sum of c ond i t i ona l p r o b a b i l i t i e s
check re turn ( j )=mean( Index ( f i l t e r s i m , 1 ) ) ;
% we ge t the performance o f the f i n a n c i a l index
% under the s e l e c t e d scenar io

end
% now we keep the scenar io t ha t genera t e s the maximum sum of
% cond i t i ona l p r o b a b i l i t i e s
% ( f o r the FSI ) and the minimum return ( f o r the FIJD)
p o s b e s t f s i=min( find ( check max==max( check max ) ) ) ;
s e t f s i b e s t=max( check max ) ;
p o s b e s t f i j d=min( find ( check re turn==min( check re turn ) ) ) ;
s e t f i j d b e s t=min( check re turn ) ;
s e t f s i g r o u p=g r o u p f e a s i b l e ( p o s b e s t f s i ) ;
s e t f i j d g r o u p=g r o u p f e a s i b l e ( p o s b e s t f i j d ) ;
% we use a coup le o f i n d i c a t o r s to s t a r t a loop to l ook f o r the
% opt imal scenar io f r o the FSI and the FIJD
g o s e t f s i =1;
g o s e t f i j d =1;
% we s t a r t the search o f the scenar io f o r the FSI

while g o s e t f s i==1
g=length ( s e t f s i g r o u p ) ;
comb set =[1 :M g( i s c e n ) ] ;
comb set ( s e t f s i g r o u p ) = [ ] ;
n g=length ( comb set ) ;
pts=ones ( n g , M g( i s c e n ) )∗1 0 0 ;
P= [ ] ;
for j =1: s ize ( pts , 1 )

pts ( j , [ s e t f s i g r o u p , comb set ( j ) ] ) = . . .
kappa ( [ set . f s i . group . ( names f l { i 1 } ) , comb set ( j ) ] + . . .
sum(M g ( 1 : i s c e n ) ) ) ;

P( j )=sum( a l l (R(: ,1+sum(M g ( 1 : i s c e n − 1 ) ) : . . .
sum(M g ( 1 : i s c e n )))< pts ( j , : ) , 2 ) ) . /W;

end
g r o u p f e a s i b l e=find (P>=alpha th r e sho ld ) ’ ;
% i f we don ’ t f i n d any f e a s i b l e scenar io we l e a v e the loop
i f isempty ( g r o u p f e a s i b l e )

g o s e t f s i =0;
else

n g=s ize ( g r o u p f e a s i b l e , 1 ) ;
comb set=comb set ( g r o u p f e a s i b l e ) ;
pts=ones ( n g , M g( i s c e n ) )∗1 0 0 ;
check max = [ ] ;
f i l t e r s i m = [ ] ;
% we s t a r t ana l y s ing the e v o l u t i on o f the c ond i t i ona l
% p r o b a b i l i t i e s under the f e a s i b l e s c enar i o s



Pseudo-code of the computation of the systemic indicators by simulation (3/4)

for j =[1 : n g ] ;
pts ( j , [ s e t f s i g r o u p , comb set ( j ) ] ) = . . .

kappa ( [ s e t f s i g r o u p , comb set ( j ) ] + . . .
sum(M g ( 1 : i s c e n −1) ) ) ;

f i l t e r s i m=find ( a l l (R(: ,1+sum(M g ( 1 : i s c e n − 1 ) ) : . . .
sum(M g ( 1 : i s c e n )))< pts ( j , : ) , 2 ) ) ;

check max ( j )=sum(sum( [R( f i l t e r s i m , 1 + . . .
sum(M g ( 1 : i shocked −1)) :sum(M g ( 1 : i s choked ) ) ) < . . .
( ones ( length ( f i l t e r s i m ) , 1 )∗ kappa ( 1 + . . .
sum(M g ( 1 : i shocked − 1 ) ) : . . .
sum(M g ( 1 : i s choked ) ) ) ) ] , 1 ) . / length ( f i l t e r s i m ) ) ;

end
% i f the new scenar io i s not b e t t e r than the f i r s t
% one we s top the loop
i f max( check max)< s e t f s i b e s t

g o s e t f s i =0;
else

p o s b e s t f s i=min( find ( check max==max( check max ) ) ) ;
s e t f s i b e s t=max( check max ) ;
s e t f s i g r o u p =[ s e t f s i g r o u p , comb set ( p o s b e s t f s i ) ] ;

end
end
i f M g( i s c e n)==length ( s e t f s i g r o u p )

g o s e t f s i =0;
end

end
% now we f o l l ow the same proces s f o r the FIDJ
while g o s e t f i j d==1

g=length ( s e t f i j d g r o u p ) ;
comb set =[1 :M g( i s c e n ) ] ;
comb set ( s e t f i j d g r o u p ) = [ ] ;
n g=length ( comb set ) ;
pts=ones ( n g , M g( i s c e n ) )∗1 0 0 ;
P= [ ] ;
for j =1: s ize ( pts , 1 )

pts ( j , [ s e t f i j d g r o u p , comb set ( j ) ] ) = . . .
kappa ( [ set . f i j d . group . ( names f l { i 1 } ) , comb set ( j ) ] + . . .
sum(M g ( 1 : i s c e n −1) ) ) ;

P( j )=sum( a l l (R(: ,1+sum(M g ( 1 : i s c e n − 1 ) ) : . . .
sum(M g ( 1 : i s c e n )))< pts ( j , : ) , 2 ) ) . /W;

end
g r o u p f e a s i b l e=find (P>=alpha th r e sho ld ) ’ ;
% i f t h e r e i s no f e a s i b l e s cenar io anymore , we s top the loop
i f isempty ( g r o u p f e a s i b l e )

g o s e t f i j d =0;
else

n g=s ize ( g r o u p f e a s i b l e , 1 ) ;
comb set=comb set ( g r o u p f e a s i b l e ) ;
pts=ones ( n g , M g( i s c e n ) )∗1 0 0 ;
check re turn = [ ] ;
f i l t e r s i m = [ ] ;
for j =[1 : n g ] ;

pts ( j , [ s e t f i j d g r o u p , comb set ( j ) ] ) = . . .
kappa ( [ s e t f i j d g r o u p , comb set ( j ) ] + . . .
sum(M g ( 1 : i s c e n −1) ) ) ;

f i l t e r s i m=find ( a l l (R(: ,1+sum(M g ( 1 : i s c e n − 1 ) ) : . . .
sum(M g ( 1 : i s c e n )))< pts ( j , : ) , 2 ) ) ;

check re turn ( j )=mean( Index ( f i l t e r s i m , 1 ) ) ;
end
% i f adding another i n s t i t u t i o n doesn ’ t inc rea se the
% l o s s e s o f the index , we s top the loop



Pseudo-code of the computation of the systemic indicators by simulation (4/4)

i f (min( check re turn )> s e t f i j d b e s t )
g o s e t f i j d =0;

else
p o s b e s t f i j d = . . .

min( find ( check re turn==min( check re turn ) ) ) ;
s e t f i j d b e s t=min( check re turn ) ;
s e t f i j d g r o u p =[ s e t f i j d g r o u p , . . .

comb set ( p o s b e s t f i j d ) ] ;
end
i f M g( i s c e n)==length ( s e t f i j d g r o u p )

g o s e t f i j d =0;
end

end
end
% we save the measures
FSI ( t ) . ( sprintf (” CountryUnderStress %i ” , i s c en ) . . . .

( sprintf (” CountryAf fected %i ” , i s ho c k ed ) . . . .
s c e n a r i o=s e t f s i g r o u p ;

FIJD( t ) . ( sprintf (” CountryUnderStress %i ” , i s c en ) . . . .
( sprintf (” CountryAf fected %i ” , i s ho c k ed ) . . . .
s c e n a r i o=s e t f i j d g r o u p ;

FSI ( t ) . ( sprintf (” CountryUnderStress %i ” , i s c en ) . . . .
( sprintf (” CountryAf fected %i ” , i s ho c k ed ) . . . .
outcome=s e t f s i b e s t ;

FIJD( t ) . ( sprintf (” CountryUnderStress %i ” , i s c en ) . . . .
( sprintf (” CountryAf fected %i ” , i s ho c k ed ) . . . .
outcome=s e t f i j d b e s t ;

end % t h i s c l o s e s the loop over the cond i t i oned c on t r i e s
end % t h i s c l o s e s the loop over the s t r e s s r eg i ons

end % t h i s c l o s e s the loop over time

Based on the copula structure

The probability of a subset A in Eqs. (2) and (4) is defined as

P (A) =

∫ 1

0

∏
i∈A

C(u∗
i |vg)dvg, (30)

where we assume that the institutions in the set A are within the same regional latent factor. u∗
i = Fi(

κi−µi,t

σi,t
).

If the set of institution were in different M regional latent factors the formula would be

P (A) =

∫ 1

0

∫ 1

0

∏
i∈A1

C(u∗
i |va1)c(va1 , vG)dva1 · · ·

∫ 1

0

∏
j∈AM

C(u∗
i |vaM )c(vaM , vG)dvaM dvG.

The formula for the FSI in terms of copulas would be

FSI =
1

α

∑
j∈B

∫ 1

0

∫ 1

0

C(u∗
j |vb)c(vb, vG)dvb

∫ 1

0

∏
i∈A

C(u∗
i |va)c(va, vG)dvadvG. (31)

The formula for the FIJD in terms of copulas would be

FIJD =
∑
j∈B

ωjE(rj |A)

1

α

∑
j∈B

ωj

∫ 1

0

[
F−1
j (uj)σj,t + µj,t

] ∫ 1

0

∫ 1

0

c(uj , vb)c(vb, vG)dvb

∫ 1

0

∏
i∈A

C(u∗
i |va)c(va, vG)dvadvGduj , (32)



where ωj is the weight of institution j in the set B.

The vulnerability index is defined in Eq. (5) as the sum of the pairwise probability of distress. If two
institutions i and j belong to the same regional latent factor, i.e. i, j ∈ A, the formula would be

P (ri,t ≤ κi, rj,t ≤ κj) =

∫ 1

0

C(u∗
j |va)C(u∗

i |va)dva, (33)

where u∗
j = Fj(

κj−µj,t

σj,t
) and u∗

i = Fi(
κi−µi,t

σi,t
). If two institutions i and j belong to different regional latent

factors, e.g. i ∈ A and j ∈ B, the formula would be

P (ri,t ≤ κi, rj,t ≤ κj) =

∫ 1

0

∫ 1

0

C(u∗
i |va)c(va, vG)dva

∫ 1

0

C(u∗
j |vb)c(vb, vG)dvbdvG. (34)

The Expected Shortfall decomposition in Eq. (7) relies in the conditional probability E(ri|ri ≤ κi, rj ≤ κj)
and the conditional expected return P (rj ≤ κj |ri ≤ κi). If two institutions i and j belong to the same regional
latent factor, i.e. i, j ∈ A, the formula for the conditional probability would be

P (rj,t ≤ κj |ri,t ≤ κi) =
1

u∗
i

∫ 1

0

C(u∗
j |va)C(u∗

i |va)dva, (35)

while the formula for the conditional expected return is

E(ri,t|ri,t ≤ κi, rj,t ≤ κj) =
1∫ 1

0
C(u∗

j |va)C(u∗
i |va)dva

(36)

∫ u∗
i

0

[
F−1
i (ui)σi,t + µi,t

] ∫ 1

0

c(ui, va)C(u∗
j |va)dvadui.

If two institutions i and j belong to different regional latent factors, e.g. i ∈ A and j ∈ B, the formula for
the conditional probability would be

P (rj,t ≤ κj |ri,t ≤ κi) =
1

u∗
i

∫ 1

0

∫ 1

0

C(u∗
i |va)c(va, vG)dva

∫ 1

0

C(u∗
j |vb)c(vb, vG)dvbdvG, (37)

while the formula for the conditional expected return is

E(ri,t|ri,t ≤ κi, rj,t ≤ κj) =
1∫ 1

0

∫ 1

0
C(u∗

i |va)c(va, vG)dva
∫ 1

0
C(u∗

j |vb)c(vb, vG)dvbdvG
(38)

∫ u∗
i

0

[
F−1
i (ui)σi,t + µi,t

] ∫ 1

0

∫ 1

0

c(ui, va)c(va, vG)dva

∫ 1

0

C(u∗
j |vb)c(vb, vG)dvbdvGdui.
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