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Abstract 

Given the importance of climate change and the increasing severity of extreme weather events, we analyze the main drivers of 

high food prices in Colombia, focusing on extreme weather shocks such as a strong El Niño. We estimate a non-stationary 

extreme value model for Colombian food prices. Our findings suggest that perishable foods are more exposed to extreme 

weather conditions compared to processed foods. In fact, extremely low precipitation levels account for high prices in perishable 

foods. The risk of high perishable food prices is significantly greater during low rainfall levels (dry seasons) than during high 

precipitation levels (rainy seasons). This risk gradually leads to higher perishable food prices. Furthermore, our results indicate 

that the risk associated with changes in weather conditions is trending upward and is non-linear. This risk is also significantly 

greater than that linked to changes in the US dollar-Colombian peso exchange rate and fuel prices.  

  Keywords: El Niño and La Niña weather effects, Food inflation, Extreme value theory.  

  JEL: C32, C50, E31. 

 

1. Introduction 

 

One of the greatest challenges facing humanity in the 21st century will undoubtedly be the fight against climate change. It has been reflected 

by a significant increase in literature related to this topic in both the natural sciences and social-economic framework. In fact, climate 

change has become a genuinely macroeconomic anomaly due to its global nature and a recent spread in extreme weather events seen recently. 

In 2016 we witnessed the warmest year on record since 1850 and some weather episodes have shown greater intensity and duration. For 

instance, in 2015-2016, as reported by the National Oceanic and Atmospheric Administration (NOAA), mankind also faced the most severe 

weather phenomenon El Niño of the last century. 

 

According to the Food and Agriculture Organization of the United Nations (FAO), more than 60 million people around the globe are 

affected by the El Niño Southern Oscillation (ENSO) cycle,2 and its impact varies depending on the geographical region.3 FAO (2016a) 

 
1 The results and opinions are exclusive responsibility of the authors and those do not commit the Banco de la República nor its board of directors. Email addresses: 
lmelovel@banrep.gov.co (Luis Fernando Melo-Velandia), corozcva@banrep.gov.co (Camilo Andrés Orozco-Vanegas), dparraam@banrep.gov.co (Daniel Parra-
Amado)   
2 ENSO is a recurring climate pattern involving changes in the temperature of waters in the central and eastern tropical Pacific Ocean. The oscillating warming (El 
Niño) and cooling (La Niña) pattern, referred to as the ENSO cycle. For example, when the El Niño (La Niña) happens, the sea surface temperatures are greater than 
average. On the contrary, in a La Niña phase temperatures are lower than average. 
3 Depending on the geographical area and the phase of the climatic phenomenon (El Niño or La Niña), the countries face droughts, floods and extreme hot and cold 
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indicates agriculture is the most influenced sector, absorbing around 84 percent of the whole economic impact. Although there is no exact 

estimation of the economic costs of the ENSO in 2015-16, the World Bank (WB) established that the second strongest ENSO in 1997-98 

killed almost 21,000 people and caused damage to infrastructure worth US$ 36 billion4. 

 

ENSO not only has a significant impact on weather conditions, but it also affects agricultural production and food prices which has been 

broadly evidenced in the economic literature ((Laosuthi & Selover, 2007), (Tol, 2009), (Dell et al., 2014), (Smith & Ubilava, 2017)). In 

developing countries5, the ENSO warmer phase known as El Niño is associated with drops in agricultural production and increases in food 

prices ((Cashin et al., 2017), (Acevedo et al., 2020)). WB (2015) shows how the global commodity price markets are affected by ENSO, 

emphasizing that its impact is highly heterogeneous across regions and types of commodities. For instance, Brunner (2002) estimates that 

a one-standard deviation weather shock during El Niño generates an increase of between 3.5% and 4% on real agricultural commodity 

prices. Ubilava & Holt (2013) analyze the world prices for vegetable oil and its relationship with ENSO; they report evidence of increasing 

prices during El Niño. On the contrary, Ubilava (2017) concludes that a shock of El Niño results in a decrease of world wheat prices, and 

Ubilava (2012) and Sephton (2019) find that El Niño shock is linked to a reduction of coffee prices.   

 

It is important to bear in mind that food prices can be affected by both the ENSO cycle and the weather patterns related to local rainfall 

and temperature, which can be affected by patterns of ENSO itself. Although there is no consensus on the direct relationship between 

ENSO and precipitation or temperature,6 many studies find that ENSO patterns also affect rainfall patterns in various ways ((Dai & Wigley, 

2000)7, (Indeje et al., 2000), (Giannini et al., 2000), (Yang & Huang, 2021), (Yun et al., 2021)). The interruption of rains usually occurs 

early during the El Niño and later in La Niña phases. However, the rainfall patterns are not clear and show both late and early onset during 

ENSO episodes, and that relationship also depends on the geographical location ((Ropelewski & Halpert, 1987), (Ropelewski & Bell, 

2008)). In addition, the literature has also shown evidence of linkages between ENSO, rainfall, and food production ((lizumi et al., 2014), 

(Liu et al., 2014), (Anderson et al., 2017), (Generoso et al., 2020)). According to FAO, agriculture is the demanding primary sector of 

water resources that can be obtained from rainfall or rivers and lakes. So, the direct relationship between weather conditions and 

agricultural production emerges from the irrigation process.8 

 

Iizumi et al. (2014) was one of the first that present a global map of the impacts of ENSO on the yields of major crops. They show a complex 

 
weather. According to NOAA, The El Nino Southern Oscillation (ENSO) cycle is a periodic climatic phenomenon that refers to a warming of the Central and Eastern 
Pacific, affecting the atmosphere and weather patterns. 
4 https://reliefweb.int/report/world/2015-2016-el-ni-o-wfp-and-fao-overview-2-february-2016 
5 This is particularly true for countries located in the equatorial region. 
6 The consensus emerges when ENSO has extreme phases like a strong El Niño, and the local weather conditions are significantly affected. For example, a strong El 
Niño is associated with a phase of droughts which can decrease rainfall levels. Then, the rainfall pattern can generate an extreme observation located in the left tail of 
its distribution. 
7 The authors state that ENSO is the most relevant determinant and dominant factor that explain the global precipitation variability. 
8 The FAO estimates that irrigation takes about 90% of developing countries’ water withdrawals. Pereira (2017) presents the challenges for agricultural production due 
to climate change and its uncertainty related to droughts and the growing competition for water resources. 
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relationship pattern between weather conditions and agricultural production, which depends on geographical locations, type of crop, the 

season and phases of ENSO, and the different technology crop-producing areas adopt. Although the authors estimate improvements between 

2.1% and 5.4% in global-mean soybean yield during El Niño, the opposite occurs in the case of maize, rice, and wheat crops, where the yield 

change by -4.3 to +0.89. Anderson et al. (2017) show local ENSO-induced yield anomalies in North and South America. They quantify that 

the variability of the maize, soybean and wheat production in those regions could be affected by around 72%, 30% and 57%, respectively, by 

weather conditions. 

 

The literature supports the idea that the global ENSO cycle affects the local rainfall distribution in different countries, impacting agricultural 

production. In particular, when there is a strong El Niño the yield of crops shows a reduction in productivity, leading to a decrease in the 

expected agricultural production. Cirino et al. (2015) use a three-stage approach linking the ENSO measured by Sea Surface Temperature 

(STT), Brazilian municipalities’ weather conditions, and crop yields in those locations. As the main result, the authors show evidence that an 

increment in the Pacific temperatures (El Niño 3.4 region) leads to increase temperatures and diminished the rainfall level in Brazilian 

municipalities, and less crop yield. Antonio et al. (2021) find similar results to Argentina, where ENSO supports a way to anticipate the 

rainfall conditions and then could be seen as a signal of the productive potential of the main rain-fed crops. Moeletsi et al. (2011) find that 

maize production benefits from increases in land productivity due to more cumulative rainfall during La Niña events. On the contrary, when 

the dry season happens (El Niño), the maize has a shorter growing period, thus tending to decrease productivity in South Africa. Finally, Haile 

et al. (2021) states that ENSO events lead to changes in local rainfall distribution and crop production at varying magnitude over different 

spaces and times. In particular, El Niño is linked with a yield reduction in wheat, barley, and maize. 

 

Although there is extensive literature on weather patterns and international food prices (like the previous ones), there are few studies of 

weather implications on local prices and local weather conditions. For example, a stylized fact is that food inflation in developing countries 

rises more than in developed countries (WB, 2015), which is probably due to a larger impact of ENSO on local weather conditions in more 

isolated local food markets compared to those foods that could be obtained in the international markets. In fact, Brown & Kshirsagar 

(2015) show evidence that weather shocks tend to have a greater effect on domestic prices in a significant number of maize markets in 

developing countries. In particular, the authors find that around 20% of local market prices were affected by domestic weather disturbances 

in the short run and 9% affected by international price changes between 2008 and 2012. Given the global nature of ENSO and its linkages 

with local weather conditions, in the present study we decide to focus on a local weather variable and we take the level of precipitation 

from the national average of the Colombian territory.9 Moreover, we select local food prices instead of international commodities prices, 

and we focus on the Colombian food Consumer Price Index (CPI) which can be divided in two groups: perishable and processed goods. 

  

 
9 Similar results were obtained with the ENSO variable measured as the El Niño 3.4 region Sea Surface Temperature (SST) data, which was part of a robustness exercise 
proposed by one of the anonymous evaluators. Those results can be obtained upon request. 
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On the other hand, a large range of literature suggests that in the course of the current climate change, extreme weather events are more 

likely to occur ((Hao et al., 2013), (Herring et al., 2018), (Wang et al., 2019)). To model this, scientists usually use methodologies like 

Extreme Value Theory (EVT) which provides the basis for estimating the magnitude and frequency of hazardous events (Coles et al., 

2001). EVT allows to classify extreme events which can be defined by either very small or very large values and, then, it enables to model 

and measure those events which occur with a very small probability. Subsequently, before approaching to the empirical framework some 

issues must be pointed out: i) How do you define which observation is an extreme event?, ii) Which assumptions allow modeling weather 

patterns in a more appropriate way taking into consideration climate change context? and iii) How can risk be measured? 

 

First, EVT consists of two fundamental methods to select an extreme value which are Block Maxima (BM) and peak-over-threshold 

(POT). On the one hand, BM identifies the maximum of all recorded values in a given period. For example, for an annual block, the 

sample size of observations defined as extreme events is equal to the number of years of data. On the other hand, POT is used to describe 

extremes above a predefined threshold. In order to fit a stochastic model for those extreme observations, the former method uses the 

Generalized Extreme Value distribution (GEV), while the latter utilize the Generalized Pareto distribution (GP). In section 3.1, we review 

the main features of EVT and the type of distribution used in this article. 

 

Second, EVT works on the assumption that events under study are independent and identically distributed which is framed within the 

stationarity analysis. However, this assumption has been criticized and questioned in the current climate change environment because the 

global warming process is not only changing the temperature and weather patterns around the world (on average), but it is also changing 

the magnitude, frequency and intensity of extreme events ((IPCC, 2007), (Malesios et al., 2020)). (Milly et al., 2008) have promoted the 

idea of moving away from stationary models to guarantee that the changing properties of the extremes are captured. Therefore, the presence 

of non-stationarities must be included into the analysis when climate change is incorporated into local weather patterns. It is important to 

point out that the conjunction between EVT and non-stationarities is very useful in climatic and hydrologic fields ((Cooley, 2009), (Cooley, 

2013), (Salas & Obeysekera, 2014) and (Salas et al., 2018))10. In section 3.2, we present how the statistical distribution changes in both 

the stationary and non-stationary cases. 

 

Third, policy makers improve their process of decision-making by assessing and mitigating risk, and incorporating critical information 

for policy design. These extreme values are relevant given that risk assessment is based on events located in the tails of the distribution of 

losses. Given climate change evolution, we expect an increase of extreme weather events in both global and local conditions which could 

lead to a considerable deterioration in agricultural production (losses). A very common tool is risk assessment which includes concepts 

such as Value at Risk, Return period or Return level. In section 3.3, we show the risk measures used in this article 

 
10 Olsen et al. (1998) introduced the approach of return period and flood risk under non-stationary conditions which could be the first attempts to extend the usual 

analysis of stationary risk. 
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   Our research contributes to the growing literature in the field of economics and climate by modelling the presence of a relationship 

between Colombian food prices and the domestic weather events measured by Colombian rainfall levels.11. In this context, the present 

study tries to shed light on the main drivers of high Colombian food prices by using the information of precipitation and other traditional 

drivers found in economic literature such as fuel prices ((Tadesse et al., 2014), (Taghizadeh-Hesary et al., 2019)) and exchange rates 

((Gilbert, 2010), (Baffes & Dennis, 2013)). 12 In other words, our main objective is focusing on how extreme weather events impact 

Colombian food prices and quantifying a measure of risk of such events in the medium and long term. Simultaneously, we investigate the 

impact of several exogenous variables on high Colombian food prices. Considering the non-stationary setting of weather events in the 

climate change context, as it was mentioned before, another important feature to highlight regarding our contributions is that we estimate 

a non-stationary EVT model which helps to understand some determinants of high food prices in Colombia. We focus on two groups of 

local food prices: Perishable and Processed foods. 

To the best of our knowledge, there are no documents that model weather variables and their impact on local food prices using a non-

stationary extreme value approach, 13 neither measuring the relative risk of a high food prices caused by extreme weather 

events. 14 Unlike many studies, we focus our attention on local conditions in Colombia both in terms of domestic food prices and its own 

weather patterns which are affected by ENSO15 and the global warming process. Overall, a lot of policy institutions not only need to 

understand climate change and weather patterns but they also need to assess how those changes are related to economic variables such as 

local food prices as well as the implications of extreme weather events over time on the economy. In section 4, we offer some findings 

and statistics in this field by taking Colombia as a case study. 

 

This article is organized as follows. In the next section, we show empirical evidence from Colombian data and its links with weather 

conditions. In section 3, we introduce the methodology and present the measure of Return level which is used to assess high Colombian 

food prices caused specifically by extreme weather events. In section 4, we introduce the data, the model and its empirical approach, test 

for fit accuracy and the main results and findings. Our conclusions are drawn in the final section. 

 

 
11 Statistical models that introduce precipitation are notably useful for study ing issues related to those that arise with cl imate change (Karimi et a1. (2021)) or 
explanations of trends in the weather patterns around the world ((Moberg & Jones, 2005), (Alexander et al., 2006), (Groisman et al., 2012)). 
12 We include other exogenous drivers such as: i) US dollar- Colombian peso exchange rate and ii) Colombian fuel prices (gasoline and others). Although there may 
be other drivers, we believe those are the most relevant in terms of how they affect the variability of food prices, especially on extreme events. First at all, a high 
proportion of the inputs used for crops are imported, such as fertilizers, which in turn are affected by the exchange rate. Secondly, the cost of transporting food between 
rural areas and cities also affects the food prices at country level. In order to include them, we use the fuel prices as a proxy for those costs. 
13 Most articles use EVT under the assumption of stationarity. There are few studies that blend non-stationarities and EVT in the economic and finance field. For 
example, Tiakor et al. (2017) and Dey et al. (2020) use a nonstationary extreme value approach to model crude oil prices. Other applications on stock and future prices 
are Romyen et al. (2019) and Zhao et al. (2020). 
14 A measure of the risk of a certain event happening in one group compared to the risk of the same event happening in another group. In the section 4.6, we will explain 
how we measure the relative risk in our context. 
15 Despite the fact that ENSO is a global phenomenon, throughout this article we mention it because it has a great impact on the weather patterns of Colombia's rainfall 
levels. 
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2. Weather events and Colombian economy 

 

Although climate change has impacts on a global level,16 there are disparities between regions with regard to the way these impacts are 

transmitted to the environment, which can be determined by seasonal patterns, geographic location or any other country particularity. In 

the Colombian case, the most common weather phenomenon is ENSO, which occurs irregularly17 but whose presence generates significant 

impacts on the economy and society. In fact, it has the greatest impact on the weather patterns of Colombia's rainfall levels. 

 

ENSO shows a pattern of positive Sea Surface Temperature (SST) anomalies (anomalous warming) over the east tropical Pacific and 

negative SST anomalies (anomalous cooling) in the west. Regarding Climate and Colombian weather aspects, Córdoba-Machado et al. 

(2015) state that El Niño is associated with a significant decrease in rainfall over the northern, central, and western Colombia, while 

temperatures increase with the presence of this phenomenon. On the contrary, the cooler phase (La Niña) is linked with positive 

precipitation anomalies. In terms of physical mechanisms, there is a lot of evidence which explains how this phenomenon affects hydro-

climatologic patterns in that region ((Restrepo & Kjerfve, 2000), (Poveda et al., 2001a), (Poveda et al., 2003), (Tootle & Piechota, 2006)). 

All these studies have revealed a relationship between the ENSO phenomenon and climate of Colombia, they conclude that ENSO has an 

earlier and stronger effect on rivers in western, northern and central Colombia, in contrast to a later and reduced effect on rivers in the 

eastern and southeastern regions of the country.18 

 

Given the above, there are several socio-economic channels throughout ENSO which impact the Colombian economy. Droughts during 

El Niño are linked with lower agriculture production and higher food prices. Colombian agricultural economic authorities state that the El 

Niño shocks reduce agricultural production by almost 5%, which has a share of 6.5% of the Colombian Total Gross Domestic Product 

(GDP) (MinAgricultura, 2006). In this context, farmers face uncertainty that affects income, employment and production which in turn is 

reflected at a macroeconomic level. For instance, during the strong El Niño in 1997-1998, Colombia experienced a severe drought in over 

90% of its territory and the flow of the main rivers was significantly reduced in comparison with the previous 50 years (CAF, 2000). 

 

It is important to note that the El Niño in 2015-2016 was the strongest ENSO in the last century, being greater in magnitude and duration 

compared to that observed at the end of the nineties. In particular, Melo et al. (2017) find that Colombia might have lost around 3.1 billion 

pesos (930 million in US dollars) in that period. By using Colombian input-output matrices, the authors estimated an increase in the 

electricity prices of 4.5% and a decrease in the total GDP of approximately 0.6% caused by a 20% reduction in water flow in rivers due 

 
16 It is important to note that climate change is a much more general topic than specific weather events such as El Niño phenomenon, but without a doubt climate change 
has affected and exacerbated the intensity and magnitude in which other weather events occur (hurricanes, droughts or floods). For example, Mason (2001) and Yeh et 
al. (2009) show evidence on the relationship between climate change and the El Niño phenomenon. 
17 According to the National Oceanic and Atmospheric Administration (NOAA), El Niño occurs roughly every 2 to 7 years, lasting from 6 to 24 months. Additionally, 
El Niño arises more frequently than La Niña 
18 Restrepo & Kjerfve (2000) conclude that ENSO explains around 64% of the variation in discharge of the Magdalena River which is the main river in Colombia 
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to El Niño in 2015-2016. Additionally, Martínez et al. (2017) state that the coffee crops, potatoes and rice were mainly affected due to a 

strong El Niño during 2015 and 2016. The authors noted that coffee growers lost around 90 thousand cultivated hectares which represents 

18% of the total of Colombian's coffee crops. Something similar happened with the rest of the crops, as it is estimated that the loss was 

around 2 million hectares. To avoid confusion, the authors are not implying the concept of crop failures, they mention these estimations 

in order to show a significant reduction of agricultural production compared to what would have been expected in a neutral ENSO phase.19 

 

Overall, other consequences on the Colombian economy are: i) El Niño leads to a drop of the national hydropower system, resulting in a 

rise of electricity prices and their volatility (Pantoja-Robayo, 2012), ii) an increase in SST during El Niño brings more warmer and drier 

conditions than average which weaken the behavior of fishing activities at both sea and river locations due to shifts in the salinity level of 

the water ((Blanco et al., 2006), (Blanco et al., 2007), (Whitfield et al., 2019))20 and iii) regarding health, ENSO generates an increase in 

several human diseases ((Poveda et al., 2001b), (Ordoñez-Sierra et al., 2021)). 

 

Concerning Colombian food prices, the Central Bank (Banco de la República) has estimated that both the increase and volatility of 

the Total National Consumer Price Index (CPI) are explained between 30% and 40% by weather shocks during ENSO episodes (Caicedo, 

2007). In particular, during the last strong El Niño between 2014 and 2016, 21 Colombian households were affected by losing part 

of their purchasing power when food inflation went from 3.2% in 2014 to 11.6% in 2016 (on average). Given the high share of food 

in the Total CPI,22 Colombian Total inflation was over the 3% target of the Central Bank. It was 6.7% and 5.8% in December 2015 and 

2016, respectively. Taking this into account, weather shocks become a risk at a macroeconomic level for the Central Bank and in this 

article, we try to assess the medium- and long-term risks. 

 

Focusing on 2015 and 2016, there are a couple of empirical facts to highlight that motivate this article (Figure 1). First, international 

food prices known as agriculture commodites remained low despite the ENSO weather shock. Similarly, international crude oil prices 

also had a fall in 2015 and 2016 compared to 2014. Second, the Colombian fuel prices showed a drop which is closely linked to 

international prices. It enabled keeping transportation costs low at the local level, however, due to the fall in prices, national colombian 

income diminished because it depends on oil exports. 

 

 
19 Crop failure is when all crops on a farm are lost or at least 80% less than average production years. Adverse climatic conditions will probably top the list of the 
causes of crop failure by floods (or droughts). The risk of crop failure events due to weather conditions has been studied in Webber et al. (2016) and Goulart et al. 
(2021) 
20 Colombian Caribbean coast experienced rainfall at less than 25% of normal levels between April and October 2015, and more than 150% above normal levels from 
April to October 2016. 
21 According to NOAA, the El Niño started in October 2014 and ended in April 2016. 
22 In the base 2008, the share of food in Total CPI was about 30%, but this included some items called meals outside the home. In the base 2018, some items were 
distributed and the Food group was left in a more basic version with two groups: Perishable and Processed foods. The new classification has a share of 15% in the 
Total CPI. Within that Food CPI group, perishable and processed foods have a share of 20, 9% and 79, 1%, respectively. 
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Third, lower oil revenues brought macroeconomic vulnerabilities that were reflected by an increase in country's risk premiums and 

later in a strong devaluation of the exchange rate. For instance, the US dollar-Colombian peso exchange rate had an average 

depreciation of 24% during those two years. It affected farmers through the increase in the cost of imported inputs such as fertilizers, 

but the evidence in this regard is scarce. As it was mentioned before, Colombian food prices rose in this period but the interesting 

feature was the composition within the Colombian food CPI basket. Fourth, perishable food goods were more strongly affected than 

processed food goods during 2015 and 2016. For instance, Colombian consumers observed an annual increase close to 20% in those 

years. In other words, during that period they lost a fifth of their purchasing power related to those goods. Keeping in mind this 

diversity, we study the prices of both subgroups in order to understand the disparities inside food prices which might be unnoticed at 

an aggregate level. 

 

Recent literature on this subject is still sparse, but it has increased the concerns of the Colombian monetary authorities about weather 

shocks. For instance, Abril-Salcedo et al. (2016) show evidence of transitory and asymmetric behaviour in the relationship between 

Colombian food prices and ENSO. The authors point out that El Niño has greater impacts on Colombian food prices than La Niña. 

They show impulse response functions for three ENSO's intensities: Strong, moderate and weak; they only find significance for 

Strong and moderate intensities. Additionally, although ENSO impacts are greater in El Niño episodes, the duration of weather 

shocks is greater in La Niña events. Bejarano-Salcedo et al. (2020) estimate forecasting models using both global and domestic 

variables of weather shocks as a proxy for ENSO.23They find nonlinearities between weather variables and relative food prices due 

to changes in the patterns of ENSO and its intensity, and they provide optimal out-sample forecasts by using different scenarios of 

weather variables. In this line, Abril-Salcedo et al. (2020) find nonlinearities24, transitory and asymmetric impacts of weather shocks 

on food prices. They also show significant responses of Colombian food inflation growth which have an accumulated elasticity 

close to 730 basis points on food prices between five to nine months after a strong El Niño shock. Unlike this literature that estimates 

short-term impacts, we try to provide quantitative statistical evidence and shine light on long run risks of high Colombian food 

prices due to extreme weather events, local fuel prices and US dollar-Colombian peso exchange rates. 

 

To summarize, according to the literature presented in this section and the introduction, and based on the scheme presented by the 

FAO (2015), we present a diagram that summarizes the connections between causes and effects of climate change, weather 

conditions and ecosystems, agricultural production and household well-being (Figure 2). In particular, we mark the boxes in gray 

and the dotted red line to explicitly list the variables that we will assess in this research. Our objective is to evaluate how the 

Colombian rainfall level and some other relevant economic variables (Fuel prices and exchange rate) are the determinants that help 

to explain the high food prices. Our model is a reduced form and it does not consider all the possible transmission channels, so our 

 
23 The authors use the Oceanic Niño Index (ONI) measured by the National Oceanic and Atmospheric Administration (NOAA), and the Colombian rainfall level 
measured by the Colombian Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). 
24 The authors estimate a Smooth Transition Regression model (STR) between ENSO and Colombian food inflation growth where the critical threshold corresponds 
to a strong El Niño intensity. 
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results exclude the measurement of the impact of climate on the productivity of the land ((Anderson et al., 2017), (Haile et al., 

2021), (Antonio et al., 2021)), the role of international food trade ((Burgess & Donaldson, 2010), (Baldos & Hertel, 2015), (Davis 

et al., 2021)),25 or the consequences in terms of food security ((Devereux, 2007), (Koo et al., 2021))26. 

 

3. Methodology 

 

In this section, we explain the methodology used to analyze the impacts of extreme weather events on perishable and processed 

Colombian food prices. To do that, we give a brief introduction of Extreme Value Theory (EVT) in both the usual stationary and 

non-stationary case including covariates which help to understand the dynamics of extreme values or high values for Colombian 

food prices. Although weather patterns measured by Colombian rainfall level mainly explain high values of food prices, we also 

bring into the analysis other covariates such as US dollar-Colombian peso exchange rates and the fuel price index. Then, we present 

some measurements to assess risk like Return level and the probability of an extreme event under a non-stationary EVT approach. 

 

3.1 Extreme Value Anal ysis using Block Maxima 

 

EVT quantifies the stochastic behavior of rare events which can be considered relatively huge to the bulk of observations by fitting 

adequate stochastic models or probabilistic distributions to those extreme events. In this context, EVT estimates the probability of 

occurrence of those kinds of values that are characterized by having a low probability (Coles et al., 2001). This methodology focuses 

its attention on the tail of the data distribution instead of the bulk of observations. 

 

In order to define the extreme values of a series, EVT has two main approaches: Block Maxima (BM) and Peaks Over the Threshold 

(POT) as we mentioned in the introduction. In this paper, we employ the former.27 BM method splits the time series into equal time-span 

groups where the largest value in each of them is picked to fit a GEV distribution. Some advantages are that its implementation is simple 

and the series of observations cataloged as maximums is independent. On the contrary, its main weaknesses are related to the possible 

 
25 The Colombian agricultural economy is strongly oriented to the local food market, with little industrialized production and a reasonably informal labor market 
(Barrientos-Fuentes & Torrico-Albino, 2014). For example, it is estimated that more than 50% of the local demand for food is met by the production of rural 
households (Garay et al., 2010). According to OECD (2021), the agriculture sector maintains its importance where it contributes approximately for more than 17% of 
employment, 7% of GDP and 20% of all exports. Regarding to international food trade, Colombia has maintained a net commercial surplus. While exports are 
concentrated in primary products for consumption and industry, imports are linked to processed products for intermediate consumption and industry (See Figure E.9 
and Figure E.10 in Appendix E). 
26 According to FAO (2016b), issues related to food security and nutrition affect 40.8% of the Colombian population. This situation is more severe in rural locations 
where this percentage is increased to 57.5% in comparison with urban zones (38.4%). On the other hand, Colombia has many particularities regarding the 
specialization of the agricultural sector and the use of available agricultural areas that affect food security analysis. For instance, Urrego-Mesa (2021) sheds light on 
this discussion by showing how Colombia has been changing the determinants and crop patterns according to world trade dynamics, climatic factors typical of the 
tropics and the interaction of the countryside and the armed conflict that the country has had for more than 50 years. 
27 POT method needs a larger sample size in order to adequately fit the parameters of Generalized Pareto distribution and its complexity in terms of the estimation 
process being than BM. Additionally, POT method often violates the i.i.d assumption. There a lot of studies about POT method and its comparison with BM 
((Engeland et al., 2004), (Jarušková & Hanek, 2006), (Bezak et al., 2014),(Szubzda & Chlebus, 2020)). Although there is no consensus about which method is 
preferred, POT is preferable for quantile estimation, while BM is preferable for return level estimation (Bücher & Zhou (2018)) 
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loss of information, small sample size when the data record is short, and selection of lower observations that were chosen as maximum 

in a period in which the time series irregularly or atypically had a behavior below the mean. There are extensive studies that acknowledge 

the strengths and weaknesses mentioned previously ((Ferreira et al., 2015), (Gomes & Guillou, 2015), (Rypkema & Tuljapurkar, 202l)). 

 

3.1.1  Generalized Extreme Value distribution 

 

Let 𝑋!,			.		.		.		, 𝑋"	 be the sequence of random variables that are independent and identically distributed. So, the maximum of this process, 

𝑀" = max	(𝑋!,			.		.		.		, 𝑋"), has the following distribution: 

         

𝑃 -
𝑀" − 𝑏"
𝑎"

⩽ 	z3 → G(z)	

 

where {𝑎" > 0} and {𝑏"}  are sequences of normalizing constants, and G is the generalized extreme value (GEV) distribution function 

with the form: 

 

𝐺(𝑧) = 𝑒𝑥𝑝 ?− @1 + 	𝜉 D
𝑧 − 	𝜇
	𝜎 GH

#!/%
I 

( 1) 

                                                                                                                            

 where 𝜇, 𝜎, and 𝜉 are the location, scale, and shape parameters, respectively, with   𝜎 > 0 . When 𝜉 > 0	the distribution is heavy-tailed 

Fréchet. If  𝜉 < 0, the distribution is upper bounded Weibull and belongs to the Gumbel family if 𝜉 = 0. 

 

3.2 The non-stationary case 

 

There are some cases when the extremes, {𝑀"} do not follow a stationary process and change through time due to shifts in driving forces, 

regimes or patterns. In the non-stationary EVT context, the parameters of the GEV can be expressed as a function of covariates  

(Galiatsatou & Prinos, 2011). It implies that the dynamics of the series of maxima can be explained through those covariates and the 

equation (1) is expressed as: 

 

𝐺(𝑧) = 𝑒𝑥𝑝 K−L1 + 	𝜉 M
𝑧 − 	𝜇(𝑡)

	𝜎 OP
#!/%

Q 

( 2) 
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where: 

𝜇(𝑡) 	= 	𝜇& 	+	𝑿'𝛽 

( 3) 

 

with 𝛽 as 𝑘	 × 	1 coefficients vector, and 𝑿' as the design matrix with the covariates data at time t. 

 

With the purpose of understanding how the blocks are constructed for the endogenous variable and its covariates, let's assume that there 

are monthly data and annual blocks, therefore the endogenous variable is finally defined as the maximum value per year but the values of 

covariates are not necessary their annual maximum values. In fact, the observations of the covariates are those which belong to the moment 

𝑡 when the extreme value of the endogenous variable is observed. For instance, in a given year if the annual maximum value of endogenous 

variable occurred in April, the covariates values used in the estimation are those observed in April regardless of whether those are their 

annual maximums. 

 

3.3 Return levels 

 

In this article, we use the measure Return level in order to assess the risk of extreme weather events on Colombian food prices. In the 

stationary case, the return level with a T-year return period28 usually represents an event that has a 1/T chance of occurrence in any given 

year (on average), it is also known as the probability of exceeding (𝑞). To be clear, given annual blocks with monthly data and a return 

period of five years (𝑙 = 5); a return level with value 𝑹 implies that the endogenous variable would be greater than 𝑹 once every 5 years. 

 

The probability of exceeding some quantile is 𝑞 = 𝑃(𝑋 > 𝑥() =
!
(
 where 𝐺(𝑥() = 1 − 𝑞,  𝑥(	represents the return level, the return period, 

with 0 < 𝑞 < 1. Hence, the 𝑙-return level can be expressed as: 

 

𝑥( = \
𝜇 +

𝜎
𝜉
][−𝑙𝑛(1 − 𝑞)]#% − 1a; 				for	ξ ≠ 0	

𝜇 + σ ln[− ln(1 − 𝑞)#!	] ; 					for			ξ = 0	
 

( 4) 

 

The shape of the plot of the function 𝑥(for different values of 𝑙 depends on the values of 𝜉. Following Gilleland et al. (2016), this shape 

 
28 This tool shows that such a significant flood or drought could occur in any year, multiple years in a row, or not at all. 
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is a straight line, concave or convex when  𝜉 = 0, 𝜉 < 0 or 𝜉 > 0 , respectively. 

 

3.3.1 The non-stationary case 

 

As Parey et al. (2007) mention, the return levels are a sequence of values which depend on the covariates when the EVT specification is 

non-stationary. Those can be defined as follows: 

 

𝑥( = \
𝜇(𝑡) +

𝜎
𝜉
][−𝑙𝑛(1 − 𝑞)]#% − 1a; 				for	ξ ≠ 0	

𝜇(𝑡) + σ ln[− ln(1 − 𝑞)#!	] ; 					for			ξ = 0	
 

( 5) 

    

Where 𝜇(𝑡) is given by equation (3). 

 

   Following Cheng et al. (2014) and Cheng et al. (2015) the return levels can also be estimated for specific values of the covariates. 

In this sense, 𝜇(𝑡) is fixed in a given 𝑡. 

 

3.4 Probability of an extreme event 

 

Using (1) and following the methodology of Dey et al. (2020) under EVT stationary case, we can define the probability of an extreme 

event as: 

 

𝑃(𝑋 > 𝑥) = 1 − 𝑒𝑥𝑝 ?− @1 + 	𝜉 D
𝑥 − 	𝜇
	𝜎 GH

#!/%
I 

( 6) 

 

 

 

where 𝑥 is the extreme quantile. 

Analogously, the probability of an extreme event in a non-stationary specification is given by: 
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𝑃(𝑋 > 𝑥) = 𝑒𝑥𝑝 ?−k1 + 	𝜉 l
𝑧 −	𝜇m
	𝜎 no

#!/%

I 

( 7) 

where 𝜇m is defined by the equation (3) given some specific values of the covariates (𝑿𝒕) in a fixed period of time i. 

 

4. Data and empirical results 

4.1 Data and empirical approach 

 

As determinants of high Colombian food prices we use Colombian rainfall level, the fuel price index and US dollar-Colombian peso 

exchange rates as covariates. For the endogenous variables we use the monthly Consumer Prices Index of perishable and processed food 

prices in Colombia from June 1985 to December 2020 which are obtained from the National Statistics Department of Colombia (DANE) 

(Appendix D). We use the fuel price index from the same source as the first covariate variable. We have taken the data of US dollar-peso 

exchange rates from the Central Bank of Colombia as the second covariate variable. Finally, the rainfall level corresponds to the third 

covariate variable and it was obtained from the Colombian Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). 

All variables are measured by annual variation, with the exception of rainfall series which is expressed in millimeters (mm) and it is 

the average monthly rainfall for 26 cities more representative in Colombia. 

 

Although all variables are collected with monthly frequency in the first stage, we use BM with a block size of 6 months to select the 

extreme values of Colombian food prices, which are defined as the greatest value per semester. We called it Biannual Maximum Perishable 

(BMPER) and Processed (BMPRO) food prices. Given this, the values of their covariates are taken from those dates where food prices 

are the highest. So, in the second stage, we rearrange the data on a semi-annual frequency in order to fit the EVT model (equations 1 and 

2). 

 

Regarding the empirical strategy, Maximum Likelihood Estimation (MLE) methods are used to estimate the non-stationary EVT model. 

Next, we assess their goodness-of-fit of the models in several ways.29 First, in order to verify and justify the choice of the model, we 

compare the specification under stationary assumption and non-stationary case. Second, we run and compare many specifications of 

covariates in equation 3 by including different lags.30 Accordingly, we select the best model by using BIC values. Finally, we present 

some graphical statistical measures of goodness-of-fit (See Appendix A). 

 
29 The data analyses are done by statistical programming language R with packages for extreme value analysis such as extRemes and evd. 
30 In the first stage, if the biannual maximum inflation is reached in April (moment 𝑡), the covariate values will correspond to those seen in April (moment 𝑡). Then, 
in a second stage, we try other specifications that consider possible lagged effects of covariates on food inflation peaks. Following the previous example, now we 
could select the values of the covariates from March (moment 𝑡 − 1), February (moment 𝑡 − 2) or January (moment 𝑡 − 3) and so on in the equation 3. Finally, we 
compare all possible combinations of models by using the statistical criteria 𝐵𝐼𝐶 and then, we select the best fit. 



14  

 

Figure A.6 and Figure A.7 show density and Q-Q plot for BMPER and BMPRO, respectively. Overall, Figure A.6a and Figure A.7a 

illustrate that both the perishable and processed food models yield a good fit and the modeled data is close to the empirical observations, 

therefore our models can capture the variability of the endogenous variables. On the other hand, Figure A.6b and Figure A.7b exhibit Q-

Q plots that confirm our models goodness-of-fit. At first sight, the BMPER model seems to be more suitable than the BMPRO model 

because its Q-Q plot is approximately a 45-degree line. Although a couple of points between observed and modeled data have small 

deviations from the 45-degree line, particularly for the BMPRO model. 

 

In addition, we check the likelihood-ratio test between non-stationary (equation (2)) and stationary -restricted- models (equation (1)) for 

the two explanatory variables: BMPER and BMPRO. In other words, for both variables, we compare the EVT model under stationary 

and non-stationary behavior in order to assess the relevance of including covariates in the estimation. Under the null-hypothesis there is 

no difference between the log-likelihood values of those two specifications. The results show that there is empirical evidence to reject the 

null hypothesis for BMPER and BMPRO models (Table 1). These results support the inclusion of covariates in the location parameter for 

both BMPER and BMPRO models because covariates improve the log-likelihood value significantly. In this sense, the non-stationary 

models are preferred to the stationary ones. 

 

4.2 Non-stationary EVT estimated model 

 

Given those extreme values and their covariates, we estimate the non-stationary EVT model of equations (2) and (3) using Maximum 

Likelihood (MLE). In each estimated model, the endogenous variables are BMPER or BMPRO and their covariates are rainfall levels, 

exchange rates and fuel prices. Regarding those covariates, we try different lags in the model specification from 0 to 6, and choose 

the ones with the lowest BIC. 31 As a result, we show in Table 2 the estimated coefficients for the selected model in each group of 

Colombian food prices. 

 

Viewing the results for Colombian BMPER, all the coefficients are significant and have the expected signs. Colombian rainfall level 

shows a negative estimated parameter which implies that we probably observe high perishable food prices in dry seasons. Those extreme 

values are linked with a strong ENSO (El Niño, particularly) and it is consistent with the literature mentioned before where agricultural 

production falls and food prices rise due to weather conditions ((Bejarano-Salcedo et al., 2020), (Abril-Salcedo et al., 2020)). Likewise, 

the estimated coefficient of rainfall level indicates that a unit decrease in this variable results in an estimated increase of 1.53% in the 

 
31 The final model for perishable includes the following monthly lags of covariates: Colombian Rainfall (𝑟𝑎𝑖𝑛!"#), exchange rate (𝑒𝑥𝑟𝑎𝑡𝑒!), fuel prices (𝑓𝑢𝑒𝑙!"$). 
Similarly, the final model for processed has the covariates with these monthly lags: 𝑟𝑟𝑎𝑖𝑛!"#, 𝑒𝑥𝑟𝑎𝑡𝑒!"% and 𝑓𝑢𝑒𝑙!"%. In other words, these lags correspond to the 
monthly series, but the EVT model is estimated by using the biannual maximums. Therefore, that monthly lagged series change to semi-annual by selecting the 
maximum per semester. 
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mean level of the biannual maximum annual variation of the perishable food prices while the other covariates remain fixed. On the other 

hand, the extremes values of the perishable prices are influenced positively at unit increases of the exchange rate and the fuel price index. 

Although we do not have a structural model, we believe that a strong exchange rate depreciation makes food more expensive through two 

channels: i) increasing the prices of imported food and ii) increasing the costs of inputs (fertilizers) in dollars that are finally transmitted 

to the consumer. Similarly, fuel prices are related to transportation costs which in turn raise food prices from rural to urban areas. 

 

In the case of Colombian BMPRO, all the parameters associated with covariates are statistically significant. Regarding the rainfall 

variable, the coefficient is positive which indicates that those prices could be related to La Niña. In particular, the maximum biannual 

processed food prices increase 0.664% when the rainfall level increases one unit and the other two covariates are held constant. The other 

covariates have the same effects sign on processed food prices. Overall, the estimated parameters of covariates in the BMPRO model 

have a lower magnitude in comparison to the BMPER model which is another result to highlight. Thus, the most vulnerable food prices 

are that of perishable food in extreme weather conditions. 

 

4.3 Robustness exercises 

 

As an additional exercise, regarding to the weather series as covariate variable in the EVT model, we use the ENSO measured by Sea 

Surface Temperature (SST) in region 3.4 (Global variable) instead of the local rainfall variable. 

 

We find that the EVT model using ENSO as a covariate has a larger lag structure than the one found with Colombian rainfall. In these 

exercises, ENSO leads the Colombian rainfall dynamics for at least one semester. 32 On the other hand, we find that the Colombian rainfall 

seems to be more highly correlated with domestic food prices than with the variable ENSO. 

 

Comparing the two EVT models with ENSO and the local rainfall as covariate variables, the best model is the one that includes the 

Colombian precipitation level (local rainfall) instead SST data (ENSO) according to selection criteria such as AIC and BIC. Also, the 

statistical significance of the coefficients associated with Colombian rainfall is greater than the ones obtained with the ENSO variable.33 

Additionally, the coefficients related to exchange rate and fuel prices show similar magnitudes with the expected signs and they are 

significant regardless of the two specifications of the weather variable. 

 

 
32 Using correlograms and Granger causality tests, we find evidence that ENSO leads the Colombian rainfall series for at least one semester. Then, in the EVT model, 
we use different specifications using lags between one to twelve months for ENSO and lags between one to six months for the Colombian rainfall series. The results 
of those exercises can be obtained from the authors upon request. 
33 In some models the ENSO coefficients were not statistically significant. 
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In terms of forecasting evaluation, we conduct a pseudo-out sample forecast exercise for the prices between 2005 and 2020, given two 

EVT models. One includes the ENSO series, and the other includes the local rainfall variable. We compute different forecast evaluation 

metrics such as MAFE (Mean Absolute Forecast Error), Mean Absolute Percentage Forecast Error (MAPFE), and Root Mean Squared 

Forecast Error (RMSFE). Although there are more minor forecast errors in most models that use the ENSO series compared to the ones 

that use the rainfall variable, these improvements are not statistically significant according to the predictive accuracy test of Diebold & 

Mariano (2002). The results of those exercises can be obtained from the authors upon request. 

Then, given the previous results regarding to the weather series as covariate variable, we prefer to use the local rainfall series instead of 

the ENSO variable in the non-stationary EVT model. 

 

4.4 Effective Return Level 

 

We compute the effective return levels based on equation 5, which are the values expected to be exceeded on average once every 𝑙-years, 

given the values of the covariates at each biannual block. Figure 3a and Figure 3b display the observed biannual maximum perishable and 

processed food prices and the non-stationary return levels at 5-, 10-, 25-, and 50-year return-periods. As mentioned before, Colombian 

food prices are affected by ENSO -especially by a strong El Niño-, therefore we include the vertical gray shades to highlight previous 

periods of strong El Niño according to NOAA. 

 

The effective return-levels let us interpret how extreme the biannual maximum values of the Colombian food prices are. To avoid 

misunderstandings, we should point out that although the whole black points in Figure 3a and Figure 3b were chosen as maximum values 

by using the Block Maxima method, those are not necessarily defined as extreme. In fact, we can classify these maximums and declare 

that an event is extreme and atypical when one of those values reach any return level line. For instance, perishable prices have four 

moments when their values are really extreme and atypical, which are: 1988-1 to 1988-2, 1992- l to 1992-2, 2008-1 to 2008-2, and 2016-

2. The extreme and atypical events for the processed food prices are only presented at the biannual ranges 1987-1 to 1988-1, which is 

consistent with an ENSO season, and at 1994-2 and 1995-234. Overall, Figure 3a shows how there is a relationship between the annual 

variation of the Colombian perishable food prices and a strong ENSO. Note that in most of the cases when a strong ENSO occurs, the 

maximum values of the BMPER tend to increase at a later date. On the contrary, BMPRO does not show the same relationship (Figure 

3b). 

 

Focusing on the Colombian biannual maximum perishable food prices in 2016-2 after the strongest ENSO in the last century, the peak of 

 
34 Although the weather conditions were favorable in 1995, in that year there was a depreciation of the exchange rate and a significantly high growth in fuel prices 
(two standard deviations with respect to its mean). 
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BMPER (black line) is above the return level lines at both 5-years and 50-years (Figure 3a). It implies that the Colombian maximum 

perishable food prices in 1988 and 2016 were 50-year events which means those amounts of perishable food prices are expected to occur 

once in 50 years. Although both events share similarities such as the presence of an El Niño phenomenon and exchange rate depreciation, 

the difference can be seen in 1988 when there was a significant increase in fuel prices. Thus, if we take into account the values of all the 

covariates jointly, the 1988 event has a higher relative risk than the 2016 event (Table C.3 in Appendix C).35 However, if we only compare 

the rainfall level while the other covariates remain constant (at 50th percentile), we find that the probability that BMPER would exceed 

an annual variation of 35% under 2016 weather conditions is almost twice than that those observed in 1988. 

 

4.5 Return level scenarios and sensitivity analysis 

 

We perform a sensitivity analysis in order to study how return levels and return periods can be affected by changes in extreme precipitation 

while the remaining covariates hold constant. To do that, we compute return levels for different return periods by taking the percentile 

50th and 95th of exchange rates and fuel prices. It implies that we change the covariates values from average conditions to an extreme 

positive event. Speaking in the economic context, this means that we move from average conditions to a scenario in which there is high 

depreciation and high fuel prices, which raises the costs of imported inputs (fertilizers), food imports and transportation. As can be seen 

in figures 4 and B.8, the return levels of perishable and processed food prices increase for each return period when the conditions change 

from scenario one to scenario two, regardless of the quantiles of different rainfall levels (0.01, 0.05, 0.1).36 In other words, under a dry 

season when we observe high exchange rate depreciation and high fuel prices, it increases the risk of high values for food price inflation. 

 

Focusing attention on the prices of food most exposed to weather conditions, perishable foods, in Figure 4a we consider the rate that 

would be exceeded once every 𝑙-years when the covariates exchange rate and fuel prices take the median value, and there is an extremely 

low rainfall level which is linked with the El Niño phenomenon (the most important weather pattern that affects the Colombian economy). 

For instance, if we take the precipitation quantile (0.01), we expect that perishable food inflation would have to reach a rate of 39.6% 

once every 10 years (20 semesters) or 47% once every 50 years (100 semesters). Furthermore, when we change the economic conditions 

through the increase of the exchange rate depreciation and fuel prices (Scenario 2 in Figure 4b), we observe that perishable food inflation 

would have to reach a rate of 46% once every 10 years (20 semesters) or 55% once every 50 years (100 semesters). It is important to note 

that those rates are higher when the rainfall level is lower which is linked to a dry season (El Nino).37 

 
35 The relative risk ratio is less than one, which can be seen in the last column of the Table C.3. To understand the table, let’s take a particular example, in this case 
the sixth row associated with the probability of exceeding an annual variation of 25% in perishable food prices. Thus, when the covariates take the values observed in 
2008 (fifth column linked with La Niña-rainy season), the probability of having values above this 25% is 12%, and that probability increases to 55% with the values 
observed in 2016 (fourth column linked with a El Niño-dry season). Then, the relative risk ratio (eighth column) is &.##

	&.$)
= 4.5 which means 2016 was 4.5 times riskier 

than 2008. 
36 In Figure 4a and 4b, the red, yellow, and blue lines indicate the returns that would be obtained when the covariate rainfall takes the values of the 0.01, 0.05, and 0.1 
quantiles of its monthly distribution, respectively. 
37 The red lines have a magnitude greater than yellow and blue lines. 
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Finally, we show the non-stationary exceedance probabilities associated with perishable food prices (Figure 4c). To do that, we fix 

the values of covariates exchange rates and fuel prices in their monthly median and we present the quantiles 0.01 and 0.05 of the monthly 

rain series. The x-axis represents the value of the annual variation of the perishable food prices, while the y-axis indicates the probability 

of exceeding those quantiles. Under these assumptions, we find that the possible realizations of the high perishable food prices would 

have an observed gap between regular weather context and dry season scenarios like a strong El Niño which can be seen as observation 

below the quantile 0.01. Although the average gap is no greater than 13%, this gap is wider around 25% for values of annual price 

variations located between l0% and 20%.38 For example, the probability of exceeding an annual price variation of 20% in a regular context 

(median values) is 27%, while that probability increases to 52% when weather conditions get worse. In other words, in this comparison 

there is a higher probability around 25% in which an annual variation of the prices of perishable food reaches 20% When the rainfall is 

located at 0.01 quantile. 

 

Regarding processed food prices, although exchange rates and fuel prices are drivers of high prices as in the perishable case, the weather 

conditions are not a determinant of high prices (Figure B.8c in Appendix B). It is important to note that changes in the exchange rate and 

fuel prices affect the return levels of processed food prices more than the perishable ones. For example, taking into consideration the case 

of 10—year return-levels, we see that the returns levels change on average 8.54% for the processed foods while the perishable ones change 

6.62% when covariates change from scenario one to two.39 

 

4.6 Relative Risk Ratio for Perishable foods 

 

Keeping in mind that climate-affected foods are mainly perishable, we focus on analyzing the Relative Risk ratio (RR) for different 

conditions in those food prices. In finance, the RR is traditionally used as an alternative measurement of risk. It is the ratio of the 

probability of an outcome in an exposed group to the probability of an outcome in an unexposed group. We use it in order to compute 

the probability of high perishable food prices occurrence due to changes in weather conditions. In particular, we quantify the impact 

of certain weather conditions on the occurrence of extreme perishable food prices by the ratio of the probability of low a precipitation 

level (dry season) to the probability of average weather conditions as: 

 

𝑅𝑅(𝑥) =
Φ*(𝑥)
Φ+(𝑥)

 

( 8) 

 
38 This gap is the difference between the red and blue lines. 
 
39 Those measurements come from comparing Figure B.8a vs B.8b and Figure 4a vs 4b 
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where Φ*(𝑥) = 𝑃(𝑋 > 𝑥|𝑡*-year level of exchange rate, fuel prices and Rainfall event) and Φ+(𝑥) =	𝑃(𝑋 > 𝑥|𝑡*-year level of exchange 

rate and fuel prices event but 𝑡+-year level of Rainfall event). For example, 𝑡*-year is the baseline year that implies all covariates values 

are the observed values in 2016 which was the year of the strongest El Niño and 𝑡+-year could be any year between 1985 and 2020 where 

weather conditions are different from a dry season. Also, we can define 𝑡*-year or 𝑡+-year as the values observed in a certain quantile of 

variables. We compute those probabilities Φ*(𝑥) and Φ+(𝑥) by using the equation 7 when the location parameter µ(𝑡*)	or µ(𝑡+)	 is 

represented by the linear function of covariates in equation 3. 

 

In order to show the risk sensitivity of return levels related to changes in weather conditions, in Figure 5a we compare different weather 

condition scenarios while exchange rate and fuel prices are fixed at their quantile 0.5 (median). To be clear,	𝑡*-year takes the observed 

value of the rainfall level in 2016 and the median of the remaining covariates, then we compare it with 𝑡+-year which takes the observed 

value of the rainfall level of different periods and the precipitation median between 1985 and 2020. In addition, we illustrate the relative 

risk of high perishable food prices due to changes in weather conditions in both extremes defined as a low precipitation level linked 

with a dry season and the El Niño phenomenon, and a high precipitation level associated with a rainy season and the La Niña (e.g., year 

2010). 

 

Under those scenarios and focusing our analysis on the particular case of 35% in annual variation of perishable food prices, our main 

findings are: i) 2016 had 2.7 times higher risk compared to the rainfall median value, ii) 2016 had 3.9 times higher risk compared to 2010 

which was a year linked with a strong La Niña, and iii) the strongest El Niño in 2015-16 had less than twice the risk compared to other 

levels of rainfall episodes that have reached return levels from 5-year to 50-year return periods (1988, 1992, 2008). Overall, the risk 

gradually increases for higher annual variations. 

 

Finally, we compare the same five scenarios and we change the values of the exchange rates and fuel prices by those actually observed 

in years 1988, 1992, 2008, 2010 and the baseline year 2016. As can be seen in Figure 5b, El Niño is significantly riskier than La Niña in 

terms of generating high perishable food prices. Taking the years 2010 (La Niña) and 2016 (El Niño) as example, 2016 has 5.37 and 19.37 

times higher risk of occurring perishable annual variation of 20% and 35%, respectively, compared to 2010. The risk gradually increases 

for higher annual variations and its increase is not necessarily linear. A fact to underline is that 1988 was riskier than 2016; although both 

years share El Niño weather conditions, exchange rate depreciation and fuel price growth were greater in 1988 in comparison to 2016. 
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5. Final remarks 

 

Climate change has affected the patterns of different weather conditions around the world, increasing the severity and periodicity of 

extreme weather events. Understanding the relationship between these extreme weather conditions and food prices is a relevant topic in 

the design of policies that reduce their consequences. In this article, we contribute to the empirical literature of weather and economics 

by analyzing the main drivers of high food prices in Colombia, focusing on the impacts of extreme weather shocks like a strong El Niño. 

 

We use a non-stationary EVT model for perishable and processed food prices in Colombia and include exchange rate, fuel prices and 

rainfall levels as covariates in the econometric model. As expected, our results suggest that those covariates affect the dynamics of high 

Colombian prices for both perishable and processed foods. We also find that the risk of a high perishable food price is significantly larger 

for low rainfall levels (dry season) compared to high precipitation levels (rainy season). Although we do not have a structural model to 

help us explain our results, it is generally accepted that perishable foods are more exposed to the extreme weather conditions in comparison 

to those processed foods due to the nature and physical characteristics of those foods. 

 

We found that in scenarios associated with the lower quantiles of Colombian rainfall distribution (dry season), perishable food price 

inflation could possibly reach values between 35% and 40% once every five to ten years which affects the well-being of households due 

to the loss of their purchasing power. Our findings also show a gap in the probability that perishable food price inflation exceeds certain 

values (5% to 40%) when we compare weather scenarios related to dry seasons and normal weather conditions. Although the average gap 

is no greater than 13%, this gap is wider around 25% for values of annual price variations between 10% and 20%. In other words, under 

a low precipitation level scenario (0.01 quantile), it is 25% more likely that the prices of perishable foods will have an inflation of more 

than 20% compared to a scenario of normal conditions. In addition, we quantify a measure of risk of extreme events by using relative risk 

ratios to compare different scenarios by changing covariate values and different moments of time and their effects on annual food price 

variations. In particular, El Niño in 2016 had more than twice the risk of increasing food prices in comparison to the rainfall median value. 

Moreover, the results let us conclude that the risk related to changes in weather conditions has an uptrend and is not necessarily linear. 

This risk is also significantly larger than the one linked with changes of the US dollar-Colombian peso exchange rate and fuel prices. 

Given the above, ENSO can affect the well-being of citizens in Colombia by reducing the welfare of households. 

 

Our research improves the understanding of ENSO implications on local weather conditions and consumer food prices, which can be 

useful in different ways. For instance, the return level and return period estimates can be used in the evaluation of agricultural risk policies 

by assessing the risk of extreme events. We present a range of return levels by computing probabilities of occurrence of an event in a 

particular scenario (e.g., 5%, 10% or 50% quantiles), but policy makers can select the upper bound (high risk in dry seasons linked with 
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El Niño) or the lower bound (low risk in rainy seasons related to La Niña) depending on the weather risk assessment and simulations of 

policy scenarios. 

 

In addition, given that food prices play an important role in the overall inflation dynamics, Central Banks can also include scenarios with 

different exchange rate depreciation and fuel prices by choosing the upper bound (low risk) or the lower bound (high risk) which are other 

factors that explain inflationary pressures. In other words, our model can be used as an input for the design of public policies to mitigate 

the effects of weather changes depending on the application at hand. 
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Figure 1: Commodities food prices (IMF), Colombian fuel and food prices (CPI) and US dollar-Colombian peso exchange rate (Annual variation) 
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Figure 2: FAO schematic representation of the cascading effects of climate change impacts on food security and nutrition 
 
 
 

 
 

Source: FAO (2015) and author's additions 
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Figure 3: Effective return-levels for food prices 
 

(a) Perishable items 

 
 
 

(b) Processed items 

 
 
 

 

Notes: The black solid line represents the biannual maximum values of the annual variation of prices of each aliment group. The blue, green, brown and red dashed lines represent the 
non-stationary etfective-return levels at 5 —, 10—, 25 —, and 50—year return periods, given the values of the covariates: rainfall level, fuel price index and US dollar-peso exchange rate. Gray 
shaded areas represent the periods of strong ENSO seasons. 
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Figure 4: Sensitivity analysis of rainfall level on return levels and return periods for Perishable food prices. 
 

(a) Scenario 1: Remaining covariates at quantile 0.5 

 
 

(b) Scenario 2: Remaining covariates at quantile 0.95 
 

 

 
(c) Inflation quantile probabilities with remaining covariates at quantile 0.5 

 
 

 
 
 
 
 

Notes: Figures a and b present the return-levels of the biannual maximum values of the annual variation of prices for the perishable aliment group, when the values of the covariate rainfall 
level are fixed at quantiles {(0.01, 0.05, 0.1} and the remaining covariates are fixed at quantile 0.5 (figure a). The latter assumption is changed for the quantile 0.95 in figure b. Figure c 
presents the exceedance probabilities for perishable food prices, with fixed covariate values at quantile 0.5. 
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Figure 5: Relative risk ratio for Perishable foods (2016 baseline year) 
 

(a) Rainfall level sensitivity with remaining covariates fixed at quantile 0.5 
 

 

(b) Comparison of observed values for different periods 
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Appendix A. Diagnostic checking 
 

Figure A.6: Density and Q-Q plots for the Perishable food prices model 
 

 

 

 

 
 
 
 

Figure A.7: Density and Q-Q plots for the Processed food prices model 
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Appendix B. Return level scenarios and sensitivity analysis for Processed food prices 
 

Figure B.8: Sensitivity analysis of rainfall level on return levels and return periods for Processed food prices. 
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   Appendix D. Food prices by category   
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Appendix E. Agricultural Colombian trade composition 
 

 
 
 
 
 
 
 

Figure E.10: Colombia: Agro-food trade

 
 

                                                                                           Source: OECD (2021). 

 
 

 


