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ABSTRACT
Central banks and international supervisors have identified the difficulty of obtain-
ing climate information as one of the key obstacles impeding the development of
green financial products and markets. To bridge this data gap, the utilization of
satellite information from Earth Observation (EO) systems may be necessary. To
better understand this process, we analyze the potential of applying satellite data
to green finance. First, we summarize the policy debate from a central banking
perspective. We then briefly describe the main challenges for economists in dealing
with the EO data format and quantitative methodologies for measuring its eco-
nomic materiality. Finally, using topic modeling, we perform a systematic literature
review of recent academic studies to uncover in which research areas satellite data
is currently being used in green finance. We find the following topics: physical risk
materialization (including both acute and chronic risk), deforestation, energy and
emissions, agricultural risk and land use and land cover. We conclude providing
a comprehensive analysis on the financial materiality of this alternative source of
data, mapping these application domains with new green financial instruments and
markets under development, such as thematic bonds or carbon credits, as well as
some key considerations for policy discussion.
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1. Introduction

Since the publication of the initial report from the Network for Greening the Finan-
cial System (NGFS 2019), there is consensus among central banks and international
supervisors that closing existing data gaps and obtaining reliable data is crucial to
analyze climate-related risks and opportunities. Although much effort has been made
in this direction, as evidenced by, for example, the improvement in climate-related
corporate disclosures (Diwan and Amarayil Sreeraman 2023; van Bommel, Rasche,
and Spicer 2023; Singhania and Saini 2023), the need for better climate-related data
remains true today. This is illustrated, for instance, by the recent publication by the
European Central Bank (ECB) of a new set of experimental climate-related statistical
indicators to narrow the climate data gap (ECB 2023), or the recent effort from the
International Monetary Fund (IMF) to strengthen its climate information architecture
(Ferreira et al. 2021).



In the financial system, it is noteworthy that the challenge of collecting and main-
taining high-quality, granular climate data involves not only financial institutions, but
also central banks, which are consequently increasing efforts to integrate sustainabil-
ity and climate-related considerations into their operations (Dikau and Volz 2021;
Durrani, Rosmin, and Volz 2020; Delgado 2023; Volz 2017). This includes investment
decisions (NGFS 2019; ECB 2021b; BdE 2023; Bundesbank 2023), monetary policy
tools (ECB 2021a), financial stability assessments through climate stress tests (Bat-
tiston et al. 2017; Acharya et al. 2023; European Central Bank 2022; Alogoskoufis
et al. 2021), and the supervision of financial institutions (Kedward, Ryan-Collins, and
Chenet 2023; Heynen 2022; ECB 2022).

As pointed out by NGFS (2022), however, gaps in climate-related data encompass
three dimensions: availability (e.g., coverage, granularity, and accessibility), reliability
(e.g., quality, auditability, and transparency) and comparability (as there is not yet a
unique official reporting standard).1 In some instances, relevant ground-based datasets
are not available.2 In other cases, the data exists but lacks the appropriate granular-
ity, cannot be verified, or is of poor quality. Finally, in some cases, the available data
sources are incomparable or inconsistent. Beyond data needs and gaps, climate-related
data sources that do exist are underexploited by finance professionals. This can oc-
cur for a number of reasons: The specific data formats might not be immediately
tractable for economic modeling, as it might require expert domain of its parametriza-
tion, complex pre-preprocessing pipelines to generate interpretable information, or it
might simply not be widely known enough.

Satellite data is a potential candidate to help alleviate these challenges. Satellite
data sources, also referred to as Earth Observation (EO) systems, could significantly
narrow existing data gaps: This data source, collected by satellites orbiting Earth, is
highly granular and has an important spatial component. As some satellites are able
to capture high-resolution images with resolutions as little as 30 by 30 meters, they
can provide consistent, objective, and close to real-time information – all while cov-
ering virtually the entire world. These unique characteristics of satellite data address
common issues of using official (administrative) statistics for climate finance, such as
publication time lags, data quality issues (especially in Global South economies), and
the spatial heterogeneity of the real effects of climate change.3

The information contained in satellite data can be used to measure different features
of the Earth’s surface or atmosphere, such as temperature, terrain, or pollutants,
which in turn could be helpful to build indicators for environmental health, land use,
deforestation rates, and more. The recent and widespread availability of this (largely
free) data source opens unique pathways for researchers and practitioners to track
economically relevant activity.4

In the context of economic modeling for developing economies, remotely sensed

1Though, notably international organizations like the International Financial Reporting Standards (IFRS)

and the European Financial Reporting Advisory (EFRAG) are working on it thoroughly, e.g.: IFRS (2024);

EFRAG (2024).
2Ground-based data refers to data not collected remotely, e.g., by sensors or satellites.
3We will discuss spatial heterogeneity in more detail later on. At this point, we are referring to the fact

that the effects of catastrophic climate events are not spatially or geographically homogeneous. The Global

South suffers much stronger adverse effects than the North, and even within continents, countries, or counties,

transition and physical risks as well as repercussions are different. Depending on the level of granularity of
the official statistic in question, these heterogeneities cannot be captured by administrative datasets and the

associated common modeling techniques, such as spatially invariant regressions.
4See for instance private sector initiatives like Planet Labs, DrivenData Labs, or GMV
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data has been used for quite some time.5 In the context green finance, however, its use
began in the insurance market, where it has been suggested and, in some instances,
successfully implemented as a productive tool for claims settlement or risk estimation
(e.g., Stigler and Lobell 2020; Nagendra et al. 2022; Nagendra, Narayanamurthy, and
Moser 2022).

In new domains of sustainability and green finance, the application of satellite data
and remote sensing expands far beyond traditional use cases like catastrophes’ in-
surance. Simultaneously, however, satellite data has its limitations, all of which pose
significant barriers to entry for newcomers to the field. For instance, the databases
with the highest-resolution images tend to be private, the matching to external data
sources is complicated, it might be difficult to track long periods of time.

Blindly using more data – even if it has high quality and/or granularity – is not
in itself sufficient to conduct robust climate risk analyses (WWF 2023). Notably, this
requires an investment with a considerable upfront cost, including the acquisition of
new information technology resources and training employees with multidisciplinary
skillsets, in order to be able to shift international capital flows towards more environ-
mental friendly objectives (Elderson 2023). All in all, a sound understanding of how to
integrate climate-related information with financial asset-level data is imperative. This
general notion is acknowledged by the principle of double materiality, which describes
the two reciprocal facets of climate change (Gourdel et al. 2022): the materiality, or
impact, of economic activity on the environment on the one hand, and how the mate-
rialization of climate change affects businesses’ financial well-being on the other hand.
6

The establishment of the Innovation Hub of the Bank of International Settlements
in 2019 (BISIH) showcases how important data quality and availability – as well as
the technology required to analyze it – are for green finance in central banking. While
not being the sole priority area, since the inception of this joint initiative led by the
international community of central banks, green finance has been at its core. The
goal of this collaborative platform is to exchange knowledge between its members and
experiment using different technologies, such as Natural Language Processing (NLP)
or blockchain, to help solve current issues in (sustainable) finance.7 In this respect,
the BISIN working group on green finance8 identifies satellite data as one the main
technologies which could assist both scaling up the availability of climate-related data
and assessing its environmental materiality, which in turn could enable the creation of

5See, e.g., Rangel-Gonzalez and Llamosas-Rosas (2019) or Beyer, Hu, and Yao (2022)
6To comprehend the financial materiality of a climate event, it is crucial to convert an environmental measure

(e.g., droughts, forest area coverage, greenhouse gas emissions) into an economic indicator (e.g., employment

rates, inflation rates, industrial production growth, Gratcheva et al. 2021), and consequently its impact on

corporates and financial institutions performance. This requires appropriate data modeling techniques which
are capable of illustrating complex environmental-financial relationships. Examples include causal machine
learning techniques (Giannarakis et al. 2022; Iglesias-Suarez et al. 2024), which enable the identification and
analysis of cause-effect relationships between climate variables and economic outcomes, and other econometric
approaches which facilitate understanding the immediate response of economic variables to climate shocks

(such as the Local Projections Method, see Jordà 2005).
7For instance, the Eurosystem Center of the BISIH is exploring the use of Large Language Models (LLMs) to

automate the collection and management of climate-related information from corporates at scale (Project Gaia),

while the Hong Kong Center has finalized Project Genesis 1.0 and 2.0, which aim to help gauge how distributed

ledger technologies (DLT) could aid the development of digital green bonds. Meanwhile, the Singapore Center
has conducted Project Viridis, a digital dashboard which tracks the exposure of banks to extreme weather

events.
8The BIS created the Innovation Network in 2021 (BISIN) to track technological trends and developments

with relevance to the thematic areas of the BISIH.
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digital measurement, reporting and verification (MRV) systems, for instance (BISIN
2023).

Therefore, we aim to investigate the potential of satellite data for green finance.
To this end, Section 2 provides background information on financial innovation and
bridging sustainability data gaps at the policy level. In Section 3, we introduce the
main characteristics of satellite data formats and the limitations of satellite data, and
we discuss the main econometric modeling challenges. We devote Section 4 to a survey
of the academic literature on satellite data for different applications in economics and
finance, such as development economics or quantitative trading strategoes. Herein, we
identify a gap in the prior literature on green finance. Based on this finding, our main
contribution will be presented in Section 5, where we use NLP techniques to uncover
new domains of satellite data application for sustainable finance. We do so in collecting
and sorting a large set of over 17,000 scientific sources in a semi-automated fashion.
Based on a final sample of over 200 relevant sources, we use topic modeling analysis
to uncover the specific domains of (sustainable) finance and economics where satellite
data has been explored to date. Finally, we provide concluding remarks including our
assessment of why this time (i.e., the case of green finance) might be different for the
successful and productive use of the potential offered by satellite data in Section 6. .

2. The role of technology to bridge climate data gaps

Central banks and international financial authorities are faced with the question of
the role they can play in improving the availability, reliability and comparability of
climate-related data. A survey conducted by the Irving Fisher Committee (IFC) on
Central Bank Statistics found that central banks are increasingly focusing on climate-
related data in particular, but also sustainable finance data issues as a whole, pointing
to the following main recommendations for central banks (IFC 2021):

(1) One prerequisite for sustainable finance is to identify the data needed by central
banks to support their policy objectives in order to fulfill their mandates at both
the micro- and macro-prudential levels.

(2) Given the novelty of the subject, central banks should cooperate with traditional
and new stakeholders to close data gaps, dealing with new environmental infor-
mation providers; and working on acquiring new skillsets at working staff level,
either through dedicated training or inter-disciplinary hiring.

(3) In addition, central banks should lead by example in that they improve the usage
of the new data being collected.

As pointed out by the IFC Bulletin “Post-pandemic landscape for central bank statis-
tics”, the statistical sources and tools have to be continuously refined to match the
landscape of ever-evolving challenges (IFC 2023). Furthermore, the IFC stresses that
the quantity and quality of sustainable finance data need to be increased to assess
climate-related risks in the financial sector and monitor the green transition.

To narrow the existing climate data gap and fulfill the commitments of its climate
action plan, the European Central Bank (ECB) has published a first set of climate-
related statistical indicators (ECB 2023).

However, these indicators are experimental. As such, they comply with many, but
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not all of the quality requirements of official ECB statistics. The three main areas
covered are: an overview of green debt products, analytical indicators of carbon emis-
sions financed by financial institutions, and indicators on the impact of physical risk
events, such as the impact of natural hazards (e.g., floods, wildfires, or storms) on
investment portfolios. Nevertheless, this factual information is not sufficient to enable
forward-looking analysis of climate-related risks. Also, to ensure that these indica-
tors are accessible and replicable, the authors use existing data from the European
System of Central Banks (ESCB) or other publicly available data where possible. An-
other example in the field of natural capital and ecosystems is the work of Giglio et al.
(2023), who aim to measure biodiversity risk exposure using a novel set of information.
However, all of the proposed metrics are collected from company disclosures or opin-
ions elicited from professionals. Both of these examples demonstrate how the inherent
challenges of using novel data sources can be exacerbated by regulatory requirements
which impede the speedy adoption of new environmental data types and sources for
the green transition.

More recent work postulates that the path towards more and better climate-related
information underpins technological innovation (Ofodile et al. 2024). Going forward,
it is likely that central bank statistics need to rely heavily on the use of data science
techniques to perform their traditional tasks and adhere to their missions. Therein,
they would have to acknowledge that – while largely unparalleled in terms of quality
– ground-based (administrative) datasets might not be suitable, or enough, to gain
scalability in many types of sustainable finance applications. Consider this example:
One company may have hundreds of assets connected to tens of thousands of sites
through global supply chain processes. Therefore, in the absence of prohibitively costly
ground-based data collection methods, actors might decide to turn to geospatial or
remotely sensed alternatives for insights at scale (WWF 2023).

Among geospatial data sources, we particularly focus on the use of Earth Observa-
tion (EO) systems, leaving out of this study uses of satellite information for astronom-
ical purposes, navigation or communications. Indeed, we define EO systems as data
collected by satellites which orbit the Earth, including both land imagery and sensor
data, such as greenhouse gas (GHG) emissions or heat loss. This type of data adds a
new layer of valuable information for economists and financial analysts by including
geolocated observations at a neutral stance. Therefore, the data is also reliable and
objective. Importantly, the use of satellite data for official statistics is subject to some
limitations which need to be considered. E.g.: we discuss the format of satellite data
and its limitations in more detail in Section 3.

3. What is satellite data

The data collected by satellites from outer space varies depending on its orbital al-
titude, which influences both coverage area and travel speed. Typically, satellites are
classified into four main types according to their function: Communication, Earth Ob-
servation, Navigation, and Astronomical. In this paper, our focus is primarily on Earth
Observation satellites. These can be further divided into categories such as Weather
satellites, which are crucial for monitoring and forecasting weather patterns, and pro-
viding up-to-date meteorological data. Another category, known as Remote Sensing
satellites, is vital for environmental monitoring and geographic mapping. Notably,
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three outstanding primary sources for medium resolution imagery, which are available
for public use, are Landsat data from the USGS Earth Explorer, Sentinel data from the
Copernicus Open Access Hub, and MODIS data from the NASA Earth Data website.

Furthermore, a single satellite can have multiple instruments, and each instrument
can have multiple sensors. Each sensor can detect light in one or more spectral bands,
i.e., specific ranges of wavelengths of light, at one or more levels of spatial resolution.
This means that one pixel corresponds to some geographic area at units such as “meters
per pixel”. Complete images have a total size which is often referred to as a frame.

Finally, satellite instruments can be passive, meaning that they simply collect the
photons radiating from the Earth or bouncing off it from the Sun; or active, meaning
that they send some form of signal down to the Earth’s surface or atmosphere and
measure how it is reflected back. Active sensors help overcome certain limitations of
passive sensors because they can penetrate clouds and capture images at night.

The information thus captured by satellites can be used to measure different features
of the Earth’s surface or atmosphere, such as temperature, terrain, or pollutants. Sig-
nals from sensors can be combined to form a wide variety of images, from (i) “natural
color” images, resembling what we humans might see if we were in orbit, to (ii) false-
color images, which either show light we cannot perceive or enhance certain types of
features, to (iii) videos, even. In Box 1, we explain how meaningful metrics can be
obtained from this information. In the example cases shown in Box 1, the parameters
can be used to measure the impact of economic activity on the ecosystem with the
Normalized Difference Vegetation Index (NDVI), inspect wildfires using the Normal-
ized Burn Ratio (NBR), or assess water scarcity with the Normalized Difference Water
Index (NDWI).

The recent and widespread availability of this data source opens unique pathways for
researchers and practitioners to track economically relevant activity. As seen in Box 1,
metrics derived from satellite data allow us to estimate indicators on environmental
health, land use, and deforestation rates in a consistent and objective fashion, in
real-time, and with coverage of virtually the entire world. These unique traits hold
enormous potential for economics and finance, as we show in the large-scale literature
review (Sections 4 and 5).

Notably, these unique opportunities are mirrored by unique challenges not only in
terms of data access, cleaning, and pre-processing, but also econometric modeling.
When acquired by satellite sensors and downloaded to ground stations, data is in raw
format. Most use cases will, however, require different treatments of this raw EO data
to ensure its interpretability. To evaluate the potential of EO data for sustainable
finance, we identify and discuss data formats and (econometric) modeling as the two
major challenges to its economic materiality.
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Understanding Satellite Color Bands and building metrics

Landsat collects 8 color bands:

• B1 captures deep blue and violet light.

Useful for identifying aerosol particles which scatter short wavelengths like deep blue and violet.
• B2 Captures blue light.

Helps differentiate between water bodies, as water reflects blue light more effectively.

• B3 Captures green light.
Green light is strongly reflected by healthy vegetation, aiding in its assessment.

• B4 Captures red light.

Essential for identifying plant types and assessing their health.
• B5 Captures near-infrared light.

Biomass content: Indicates the health and density of plants.

• B6 Captures shortwave infrared light (SWIR 1).
Useful for differentiating moisture levels in soil and vegetation.

• B7 Captures shortwave infrared light (SWIR 2).

Maps geological features and vegetation through vapor penetration for clearer images.

• B8 Captures panchromatic light.

Offers a broad wavelength range for detailed landscape imagery.

Each pixel of the image holds a value for each band. These values can be combined to create detailed

layers depicting various features such as vegetated areas, burned areas, water extents, and urban

zones. Some examples of metrics we can build are:

NDVI (Normalized Difference Vegetation Index) = Band5−Band4
Band5+Band4

Primarily measures vegetation health by contrasting near-infrared and red light. NDVI is useful for

monitoring vegetation over time, including pre- and post-fire conditions to assess recovery. Healthy

vegetation typically shows NDVI values from 0.3 to 0.8, with values greater than 0.3 indicating

vegetated areas.

NBR (Normalized Burn Ratio) = Band5−Band7
Band5+Band7

Specially designed for identifying burned areas and estimating burn severity, utilizing near-infrared

and shortwave infrared bands. Lower NBR values indicate higher burn severity, making it ideal for

analyzing fire impacts and severity. Threshold adjustment should be based on specific burn severity

levels and regional ecosystem characteristics.

NDWI (Normalized Difference Water Index) = Band3−Band5
Band3+Band5

Optimized for water body detection by highlighting liquid water absorption and reflectance. NDWI is

used to monitor changes in water content of leaves and is also particularly effective in delineating open

water features. This index helps differentiate between water bodies and other types of land cover.

Each pixel will have a value for these metrics. Using these indices, we can create detailed maps and

areas from satellite images, enabling the assessment of vegetation health, water body extents, or burned

area extents, among others.

3.1. Data format and parametrization

EO systems have a set of technical parameters that can be tuned to extract rele-
vant information, and defines the quality of the data obtained. In general, some key
parameters of EO data are resolution, size, and frequency (or refresh time, ESA 2020).

The spatial resolution of an image relates to the level of detail that can be retrieved

7



from a scene. Image resolution can be measured in several ways; one of the most
common, the Ground Sample Distance (GSD), is the distance between adjacent pixel
centers measured on the ground. The lower this number is, the finer the detail that can
be interpreted from the image. High resolution images will be required, for instance,
to collect data for high precision agriculture, while lower resolutions are enough for
applications such as weather forecasting.

The size of the scene to be observed is another important parameter. EO sensors
on board satellites are characterized by their swath. The swath of an instrument is
the width of the path or the strip on the ground it can image when the satellite orbits
around the Earth. The swath depends on the features of the instrument and on the
orbit of the satellite. Generally, the higher the spatial resolution, the lower the swath
of the instrument.

Finally, the revisit time of a satellite system is a decisive factor of choice. It is defined
as the length of time to wait for the satellite system to be able to observe the same
point on Earth. This parameter is closely linked to the type of orbit of the satellites.

There is an inherent trade-off between spatial resolution and refresh rate. To have a
high refresh rate, the satellite needs to orbit the Earth quickly. But to capture a high-
spatial-resolution photo, the satellite needs to collect data from each tiny area which
takes longer. Though, it shall be noted that more technical parameters might further
govern the usefulness and quality of an EO image, such as bit depth, off-nadir angle,
and cloud cover. This required parametrization of the data might be seen, therefore,
as a challenge in itself for official statistical offices which require climate-related data
to be fully transparent, and comparable (NGFS 2022).

3.2. Econometric Modeling

Recent advances in the rapidly growing literature on remote sensing and EO systems
offer a plethora of solutions for spatial analysis. However, it is crucial to recognize
that for quantitatve analysis, we must first translate the spectral band data collected
by satellites into meaningful metrics. This process involves several steps, as outlined
in the boxes ”Understanding Satellite Color Bands and Building Metrics” and ”From
Parametrization to Environmental Metrics and Economic Materiality.”
Quantitative modeling has been significantly aided by the widespread availability and
use of machine learning (ML) and artificial intelligence (AI) algorithms, such as neural
networks, which are uniquely equipped to handle prevalent issues in (climate) finance,
such as non-linearity, heterogeneity, and clustering issues (Alonso, Carbó, José Manuel,
and Marqués, J Manuel 2023).9 The Local Projections Method constitutes an alterna-
tive econometric approach to obtain the impulse response to shocks (Jordà 2005). This
method can enable a solid policy discussion of climate change, as it utilizes the same
language as applied economics in the context of estimating the dynamic causal effects
of policy interventions (Jordà 2023). Such interventions would traditionally refer to
new fiscal policies (Jordà, Schularick, and Taylor 2020), but can now also be adap-
ated to climate events such as natural disasters or temperature anomalies (Dieppe,
Kilic Celik, and Okou 2020; Nie, Regelink, and Wang 2023).

Notably, two satellite data-specific characteristics tend to cause econometric model-

9Such as, e.g., in the development of the geographical random forest (Hengl et al. 2018; Santos, Graw, and
Bonilla 2019; Georganos et al. 2021; Georganos and Kalogirou 2022)
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ing challanges which need to be addressed: spatially interdependent data and spatially
heterogeneous estimators. A multidisciplinary, growing stream of the scientific liter-
ature deals with addressing these issues in order to obtain consistent and unbiased
spatial estimates (Hengl et al. 2018; Georganos and Kalogirou 2022; Kopczewska and

Ćwiakowski 2021). In the following, we briefly outline these two issues of spatial data:

(1) Spatial dependency and autocorrelation: Violating the basic assumption
of independence (which tends to be required by the usual econometric models),
geolocations in close proximity to one another are unlikely to be independent
from one another. For instance, two neighboring areas of a forest are likely to be
exposed to similar, if not the same, environmental stressors captured by satellite
images. Therefore, models which fail to correct for spatial dependence and (auto-
)correlation can produce biased estimates.

(2) Spatial heterogeneity or spatial non-stationarity: the relation between
predictor and outcome variables in spatial settings tend to vary spatially, i.e.,
different estimates are required for different areas or locations (Georganos et al.
2021). For instance, the relationship between precipitation and flood risks differs
for adjacent urban neighborhoods depending on their distance from bodies of
water, building quality, or their proximity to disaster relief services.

Spatial weights matrices help address both of these major issues by incorporating
the geographical structure of the data into the econometric model (Anselin 2022).
However, deriving appropriate weights can be challenging, as the choice of weighting
scheme relies on assumptions and increases model complexity. Though, approaches
that address both spatial autocorrelation and spatial heterogeneity simultaneously,
however, tend to increase computational complexity and cost beyond the computa-
tional capacities of regular machines (Ahn, Ryu, and Lee 2020).

Beyond these two major concerns specific to geospatial data, analyses leveraging
satellite data can additionally suffer from statistical issues analogous to those of non-
spatial models. For instance, endogeneity is common in spatial analyses, and including
spatially endogenous variables further complicates the modeling process (Brady and
Irwin 2011). Additionally, satellite data is also prone to suffering from sparsity and
missingness. Importantly, these gaps tend to be non-random, i.e., systematically in-
formative, and thereby impact results (see, e.g., Khan et al. 2017).

3.3. Limitations for bridging the climate data gap

As pointed out by the NGFS “Final Report on Bridging Data Gaps” (NGFS 2022),
gaps in climate-related data encompass three dimensions: availability (e.g., coverage,
granularity, and accessibility), reliability (e.g., quality, auditability, and transparency)
and comparability. Despite the tremendous potential of satellite data for (sustainable)
economics and finance, some key limitations remain, which can affect their capacity
for bridging these data gaps:

(1) Temporal consistency: Some environmentally relevant datasets might have
poor temporal consistency due to missingness. This issue tends to compound
over time, affects coverage and through this impacts availability, which in turn
makes long-term environmental monitoring more challenging.
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(2) Accuracy: The precision of readily available spatial datasets varies significantly,
which affects their reliability. There are two main categories of spatial datasets:
vector files and raster files. Vector files consist of geometric shapes used to repre-
sent man-made delineations such as country boundaries or biodiversity protected
areas. Raster files, on the other hand, are composed of grid cells (or pixels), each
assigned a specific value to represent information like flood risk or forest loss.
Discrepancies between these datasets, particularly in terms of boundary defini-
tions, are not uncommon and often necessitate costly ground truth validation to
ensure data accuracy. This situation suggests a possible impact on accessibility
due to cost barriers, and affects reliability due to potential errors and the need
for external validation. Additionally, merging datasets involves aligning spatial
scales (e.g.: geocoding economic data), while maintaining the integrity over time,
which is by itself challenging (e.g.: an asset’s area may change over time from
being non-protected to protected). This impacts auditability and adds layers of
complexity in ensuring data reliability. Finally, identification of the region of
interest (RoI) might therefore be a challenge in itself. This underscores a signif-
icant issue affecting both reliability and comparability due to ambiguous data
interpretations.

(3) Spatial resolution: Almost all publicly available raster datasets tend to have
low spatial resolution (above 500 square meters), limiting the relevancy of the
tasks which could be applied to (e.g.: deforestation and land degradations usu-
ally require finer resolution). This underscores a significant issue affecting both
reliability and comparability due to ambiguous data interpretations. Data in-
terdependence: newly available datasets often draw observational points from
different datasets, with the possibility of compounding previous errors.

(4) Relevancy: Parametrization of information makes it technically difficult to
quantify variables of some economically relevant topics (e.g.: Normalized Dif-
ference Vegetation or NDVI and Normalized Burn Ration or NBR are usually
applied in to study the impact of wildfires, though depending on the time of
the year, type of vegetation and atmospheric conditions one metric might be
better than the other.); therefore several studies tend to be biased towards the
most technically feasible metrics. This can lead to issues in comparability when
different studies or datasets use different parameters or indices based on their
technical feasibility rather than their applicability.
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From Parametrization to Environmental Metrics and Economic Materiality

Analyzing the Economic Impact of a Wildfire (Galicia, 14/10/2017)
Computing the impact on local firms and collateral can provide a tangible measure of economic ma-

teriality. However, this process is challenging due to the need for high-resolution data and accurate

economic modeling that can translate environmental damage into financial terms

Parametrization and Region of Interest (RoI) Identification:

• Satellite choice is key: Landsat’s finer resolution (30 meters per pixel) is balanced against its 16-
day revisit time, while MODIS offers broader coverage with daily updates at a coarser 250-500
meters per pixel resolution, impacting the detail and timeliness of data.

• RoI alignment is critical: Landsat’s swath of 185 km might not match the ROI exactly, leading
to data gaps, Particularly in areas outside the direct pass. A defined RoI like a 20 km radius
can provide a focused view but may miss some impacts outside this range. Techniques like data
interpolation, using overlapping satellite passes, or integrating data from multiple satellites
could help mitigate these gaps.

• Preprocessing complexities: Switching between Landsat and MODIS can present challenges,

particularly in cloud-prone regions like Galicia. While manual cloud masking is necessary for

certain satellites, automatic cloud masking by others like MODIS is available, but the resulting

cloud-free data sample is not daily and may compromise data frequency.

Environmental Metrics:

• Selecting the right metrics like NDVI and NBR is essential for quantifying fire damage and
vegetation health. It is also important to understand historical values of those metrics in the
RoI, and expected variations. A 10% or 20% change could be way to big or small. A threshold
must be chosen based on the normal variability and ecological characteristics of the region,
factoring in seasonal variations.

• Additional indices like EVI or SAVI could provide deeper insights in specific scenarios, such as

regions with high biomass or varying soil reflectance, enabling a tailored approach to environ-

mental impact assessment.

Economic Materiality:

• The economic impact analysis is not only about the direct damages such as property loss, but
also indirect effects like supply chain interruptions, affected collateral in loans, and tourism
downturns. This analysis requires an integration of fire damage data with local economic met-
rics.

• Specifically, it is vital to evaluate spatial dependence. This dependence often reflects the physical
spread of the fire. The physical spread of a fire can differently affect adjacent sectors such as
agriculture, collateral securities and tourism.

• Addressing spatial dependency involves employing spatial econometric models that can dissect
and quantify these intertwined impacts. Techniques like spatial autoregressive models (SAR)
or spatial error models (SEM) could be employed to correct for spatial autocorrelation in the
data, ensuring that the estimated economic impacts accurately reflect the localized nature of
the fire’s damage.

• Collaboration with local authorities ensures that findings are grounded in reality

4. Literature review: satellite data in economics and finance

Satellite data has emerged as a powerful tool in some specific domains of economic and
financial research, offering novel insights and harnessing different methodologies across
various domains. In others, however, it remains underexploited. This literature review
aims to segment and categorize those streams of the scientific literature which have
successfully used satellite data. Generally, the successful application of satellite data
tends to sit in two primary areas: (i) development economics, for tracking economic
growth in developing countries or tumultuous times, such as the Covid-19 pandemic;
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and (ii) capital markets, e.g., in commodities trading (including estimating oil reserves)
as well as equity trading. An illustrative example of such applications can be retail
expenditure forecasting using satellite imagery in commercial areas such as parking
lots.

First and foremost, satellite data has proven invaluable in monitoring and under-
standing economic growth in developing regions. Studies such as Ebener et al. (2005),
Ghosh et al. (2009), Henderson, Storeygard, and Weil (2012), and Pinkovskiy and
Sala-i Martin (2016) have utilized nighttime lights data as a proxy for economic activ-
ity, demonstrating its efficacy in capturing changes in GDP and economic development
over time. Moreover, the use of high-resolution satellite imagery has facilitated the as-
sessment of urbanization patterns, infrastructure development, and land use changes,
offering nuanced insights into regional economic progress.

The nascent literature has also identified limits to satellite data. Specifically, it is
noted that this data source tends to lose its informative power for advanced economies
generally situated in the Global North (Sutton et al. 2007; Chen and Nordhaus 2011),
as when a country grows, night-time luminosity tends to de-correlate from produc-
tion and consumption metrics. This induced a move towards hitherto less frequently
used types of remotely sensed data, such as NO2 pollution for nowcasting industrial
production (e.g., Bricongne, Meunier, and Pical 2021; Jiang et al. 2020; Zhou, Zhou,
and Ge 2018). Since this substream of the literature suggests a direction of causality
in which economic activity drives pollution, this link can also be used to detect large
economic recessions that lead to a drop in NO2 pollution. Castellanos and Boersma
(2012) study the reduction in pollution in Europe during the global financial crisis
of 2008. Similarly, Russell, Valin, and Cohen (2012) offer similar insights for the US,
as do Du and Xie (2017) for China. More recently, Tob́ıas et al. (2020) use pollution
data to assess the impact of the lockdowns during the Covid-19 pandemic in Europe,
and Le et al. (2020) and Beyer, Franco-Bedoya, Sebastian, and Galdo, Virgilio (2021)
provide analogous findings for China and India, respectively.

For Global South economies, previous studies such as Kerimray et al. (2020) and
Keola and Hayakawa (2021) document that changes in NO2 pollution followed lock-
down policies. Related to this, Franke et al. (2009) and de Ruyter de Wildt, Eskes, and
Boersma (2012) use satellite imagery to track shipping lanes and study world trade
patterns.

Satellite data has also influenced capital markets, for instance in the field of com-
modities trading, by offering insights into supply chains, market trends, and natural
resources availability. As an example, satellite imagery has been used to monitor oil
storage facilities and track tanker movements, providing crucial information for as-
sessing global oil supply and demand dynamics, as well as oil spill detection Tysiac,
Strelets, and Tuszyńska (2022).

Moreover, the literature on consumer spending estimation has been revolutionized
by satellite imagery: Feng and Fay (2022) and Kang, Stice-Lawrence, and Wong (2021),
for instance, use satellite images of retail parking lots to estimate consumer spending.
By counting cars in the lots, the researchers were able to accurately predict store-level
sales, demonstrating the potential of satellite data in retail analytics and economic
forecasting. This, in turn, gives rise to an application in equity trading where in-
ternational retail company revenues can be estimated ahead of quarterly earnings
announcements for market timing strategies. Notwithstanding, Katona et al. (2018)
suggest that access to this source of alternative data might have had an impact on

12



information asymmetry among market participants without enhancing price discovery.

In the field of green finance, insurance markets are a prominent example of the pio-
neer usage of satellite data. In particular, this type of data has led to promising results
in agricultural risk management through its potential to reduce monitoring costs and
alleviate moral hazard as well as adverse selection issues Nagendra et al. (2022). Ex-
ploiting satellite data, insurers can efficiently price complex weather index insurance
policies, protecting small farmers against crop damage De Leeuw et al. (2014). Hedg-
ing the risk of weather shocks, they can also increase their agricultural productivity
Enenkel et al. (2019), which enables ethical decision-making in agricultural insurance
claim settlement. The latter is crucial from a social perspective, as beneficiaries of
these claims tend do be ‘poor and powerless’, as Nagendra, Narayanamurthy, and
Moser (2022) put it.

Finally, as predictive analytics are increasingly being recognized as pivotal tools
for climate finance, with applications reaching beyond insurance markets and catas-
trophe management (Alonso, Carbó, José Manuel, and Marqués, J Manuel 2023). As
detailed by Ofodile et al. (2024), addressing the hurdles associated with data qual-
ity, model uncertainty, regulatory complexities, and the integration of climate-related
factors in financial decision-making processes requires interdisciplinary collaboration
and ongoing technological and financial innovation. This encompasses a wide range
of techniques and information sources including novel climate models and satellite
imagery.

In the context of the previous literature on satellite data for finance and economics,
our proposition is as follows: While the data source is not new and has seen some
success in specific domains, it remains under-utilized in others. We will subsequently
analyze systematically whether the substream of the literature concerned with green
finance can benefit from novel studies using satellite data. To this end, we briefly
introduce Latent Dirichlet Allocation (LDA) in Section 5. The LDA model helps us
uncover thematic clusters in a comprehensive dataset of scholarly papers on sustainable
finance which already use satellite data. The use cases not uncovered by our analysis
can inform us where future efforts of central banks, statisticians, and scholars may be
targeted to effectively aid the green transition.

5. Topic modeling: satellite data in green finance

5.1. Latent Dirichlet Allocation (LDA)

As pointed out above, we rely on the LDA algorithm for the topic modeling task
(Blei, Ng, and Jordan 2003). In selecting the most suitable methodology for topic
modeling within this study, the choice of LDA over alternatives like BERTopic or
Topic2vec is underpinned by several key considerations. For instance, while BERTopic
(Grootendorst 2022) and Topic2vec (Niu et al. 2015) exhibit commendable perfor-
mance in capturing semantic relationships and contextual understanding, the choice
of LDA is rooted in its interpretability, scalability, and established track record in
topic modeling (Jelodar et al. 2019). LDA, a generative probabilistic model, allows for
a clear interpretation of topics as probability distributions over words, enabling a more
straightforward comprehension of underlying themes within textual data. Addition-
ally, LDA’s computational efficiency and scalability make it well-suited for handling
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large corpora, offering a pragmatic advantage in processing substantial volumes of text
data commonly encountered in empirical studies. Moreover, the widespread use and
extensive literature on LDA provide a robust foundation for comparison, evaluation,
and benchmarking against prior research, enhancing the reliability and interpretability
of the findings derived from the topic modeling exercise within this study.

The key practical advantage of LDA is that it allows to treat documents like a mix-
ture of different topics, while topics are presented as a mixture of words. Furthermore,
no label of the documents is required. This makes it highly flexible and applicable to a
wide range of domains and datasets, which fits the reality observed in climate finance
studies, since different topics can partially overlap within a document. Interestingly,
LDA is based on a generative probabilistic model, learning the topic-word distribu-
tions and the document-topic proportions from the data. Last but not least, LDA is
easily scalable, as it handles large-scale datasets efficiently, which makes it valuable to
fulfill our task at hand.

The procedure for extracting the topics consists of a variety of steps required for
training, tuning, and applying the resulting LDA model to the corpus, as an unsu-
pervised learning technique. We include a detailed description of this process in the
Appendix, Section A.

5.2. Data collection

To conduct a systematic literature review, we use Harzing’s Publish or Perish, a free
application which enables large-scale literature searches. The user interface resembles
Google Scholar and similar applications, and thereby allows searching by authors,
years, journals, titles, and keyword combinations. The application also enables searches
of various databases, among them Google Scholar, CrossRef, Pubmed, and others.

For the literature review, we use Google Scholar, CrossRef, OpenAlex, Semantic
Scholar, and Scopus. Based on domain expertise, we decide on a list of keywords for
our search. All combinations of these keywords, including mandatory mentions within
titles and/or abstracts of the found papers as well as optional mentions, are considered.
This means that, for instance, we use both “satellite data” and “climate finance” as
well as satellite data climate finance separately as a combination of search terms.

The resulting total number of search word combinations is 112. We search each of
the aforementioned databases (Google Scholar, CrossRef, OpenAlex, Semantic Scholar,
and Scopus) for each of these terms. Within each search, we choose a maximum number
of papers to be returned of 200. There are important differences between the matching
paper results returned by each database: First, Google Scholar has taken precautions
against automated data extraction so that we needed to limit the number of maximum
returned papers in order to prevent our IPs being blocked. Second, Scopus only returns
papers which fit the search well enough instead of returning all papers in decreasing
order of “fittingness”, which differs from the other platforms. Third, the scopes and
information retrieval systems of all databases differ, as is made evident by the fact
that the returned lists of papers do not overlap fully. The latter is one main reason
why we use four databases, namely, to limit the results being influenced (or biased)
by a single database’s characteristics, and in turn maximize the number of results.

Due to these differences, the initial and final samples of papers do not consist of
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Table 1. List of databases used for data collection

Database Initial sample
Unique-observation
sample

CrossRef 22,400 5,016
Semantic Scholar 22,400 4,842
OpenAlex 20,700 3,748
Scopus 3,681 1,822
Google Scholar 2,419 1,799
Total 71,600 17,227
Final sample after filtering 226

equal shares from each database. To obtain our final sample of papers relevant to
our research question, we take several filtering steps. Table 1 illustrates the sample
decomposition before and after filtering and across databases.

The first step after collecting all papers is to remove duplicates. This step changes
the sample from the initial sample to the unique-observation sample (i.e., sample
without duplicates). Subsequently, we remove results with empty author information,
results which author information contains only non-Roman letters, are published in
appropriate media, and whose abstracts contain (i) satellite- or remote sensing-specific
terminology as well as (ii) finance- or economics-specific terminology. The last filtering
step is the most restrictive and ensures we only consider adequate papers for our
analysis. During this work, we also add any papers which we come across “manually”
and deem fitting for our purposes. The resulting final number of papers is 226. With
this final sample, we conduct the NLP analyses described in the following sections.

5.3. Uncovering thematic areas

There are two main challenges when it comes to clustering topics in a corpus of texts.
First, there is no one-size-fits-all approach to finding the optimal number of topics,
i.e., the process always includes some trial and error. To aid the parameter selection
process, the literature suggests several metrics, such as the perplexity (Blei, Ng, and
Jordan 2003) and coherence scores (Röder, Both, and Hinneburg 2015). Increasing the
number of topics usually improves these statistical measures during topic modeling.
Simultaneously, however, a higher number of topics is associated with higher compu-
tational cost during training. In our case, we decide to estimate an LDA model with
five topics, informed by the rate of perplexity change following Zhao et al. (2015).10

A further challenge is selecting a number of topics which not only “make sense” to
the ML algorithm, but also to humans. To ensure a human-interpretable labeling of
the resulting topics, we conduct a qualitative review with human expert judgment,
in which we verify that the words associated with each topic align roughly with the
experts’ domain knowledge of the established climate finance literature. Upon estimat-
ing the LDA model, we label the topics using a two-step approach: firstly, we examine
the tokens with the highest probability for each topic, as detailed in Table C1. Then,
a more thorough analysis of the clusters (see more details in the Appendix, Section
B) allows us to identify the following set of topics: Topic 1 as Physical risk, Topic 2

10Figure C1 in the Appendix displays the relevant metrics and training times for model versions ranging from

one to ten topics.
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as Deforestation, Topic 3 as Energy and emissions, Topic 4 as Agricultural risk, and
Topic 5 as Land use and land cover.

For illustrative purposes, we outline the iterative, human-in-the-loop process of how
we arrive at our final number and demarcation of topics. After reviewing the most fre-
quent terms for each topic (see Table C1 in the Appendix), we assess the topics based
on the relevance metric 11. For instance, Figure 1 displays the intertopic distance
map, which we use to fine-tune the topic selection of our LDA model. The visualiza-
tion presented in this map is indicative of topic differentiation, i.e., a wider distance
corresponds to a stricter differentiation. The term-relevance chart, which shows the
importance and the relevance metric of single terms for the selected topic, can be seen
on the right-hand side of Figure 1. For Topic 1, we find significant emphasis on terms
such as “weather”, “temperature”, “rainfall”, and “drought”. This emphasis enables
a distinction of Topic 1 from the other topics, underscoring its semantic concentration
on the impacts of extreme weather events and acute or chronic physical risks. Con-
sequently, we categorize this topic as Physical risk. A similar methodology is applied
to the remaining topics, with term-relevance charts analogous to Figure 1 provided in
Figures C2 through C6.

Figure 1. Intertopic distance map, and Top30 most relevant terms for Topic1.

Uncovering one topic can inform the labeling of others due to their interconnected
nature. This interconnectedness enable us to address their practical implications in the
field of green finance, where each of our topics aligns with emerging financial products
in the field. For example, weather forecasting (Topic 1: Physical risk) is crucial for
renewable energy trading (Ghoddusi, Creamer, and Rafizadeh 2019), which is closely
linked to the discussions in Topic 3 (Energy and emissions). In addition, as highlighted
by Topic 3, assessing carbon emissions over the value chain is essential for creating
effective carbon tax policies and facilitating carbon offset trading in secondary markets,
(Borowski 2021) and (TSVCM 2021). This assessment is a critical step in the design

11Using λ = 0.6 and the PyLDAvis Python library proposed by Sievert and Shirley (2014)
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and implementation of financial mechanisms that aim to reduce carbon footprints.

On another note, the emphasis on ecosystem health as the main indicator in nature
finance (see, for instance, TNFD 2023; Schimanski et al. 2023), aligns with the research
focus of Topic 2 (Deforestation) and Topic 5 (Land use and land cover). Their practical
implication is exemplified by the partnership of World Bank and ESA, which leverages
satellite data to monitor deforestation activities in the Peruvian Amazon. Insights
from this collaboration could potentially help developing green finance products, like
Sustainability-Linked Bonds (ESA 2023), or enabling the verification of commitments
in blue bonds (Thompson 2022).12

Lastly, our results support the application of satellite data to better assess agri-
cultural risk (Topic 4). This is particularly relevant for a just transition where small
farmers must adapt to current changes in climate. The importance of this facet is
underscored by, for instance, the joint venture between IFAD and ESA (IFAD 2023)
and the Catalogue of Geospatial Tools and Applications for Climate Investments of
IFAD (2022).

6. Conclusion and policy discussion

International central banks have identified the need to bridge climate-related data
gaps to enable green finance to scale up. This need comes at a time where pressures on
financial institutions are increasing along three major dimensions: Calls for increased
voluntary and mandatory disclosure and regulation (e.g., the launch of EU Taxonomy,
CSRD, and SFDR); the need to address “double materiality”, which recognizes not
only the financial materiality to companies arising from climate risks and opportunities
but also the materiality for society and the environment arising from the companies’
operations, which in turn can result in financial risks (Gourdel et al. 2022), and the
growing importance for central banks around the topic of the “environment” (WWF
2023), and biodiversity (NGFS 2023).

A potential candidate to assist covering climate-related data gaps as defined by
NGFS (2022) is satellite data. This data source comprises spatio-temporal information
retrieved from satellites and sensors that orbit the Earth. EO systems might poten-
tially open bottlenecks in several operational problems by increasing the widespread
availability of climate-related data, adding new layers of information (geo-location) to
currently available data, and/or enhancing the reliability of self-reported data from
corporates. However, they also faced important challenges and decisions that need to
be addressed in order to use this information. We point out potential limitations of
satellite data in addressing climate data gaps: availability (e.g., coverage, granular-
ity, accessibility), reliability (e.g., quality, auditability, transparency), and compara-
bility (due to the absence of a unified reporting standard). While EO systems can
enhance data availability, accessibility remains limited, with barriers such as propri-
etary databases and high costs for newcomers needing to process raw data.

On the other hand, satellite data boasts impressive advantages, such as general high
quality, auditability, and transparency, positioning it as a viable candidate to improve
digital measurement and reporting systems especially in the field of green finance.
However, the fact that parametrization needs to be undertaken individually by each

12Water resources, including rivers, oceans, floods, etc., occur in Topics 1, 4, and 5 of our LDA model.
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user and use case, complicates the comparability of results based on spatial analysis.

We have already seen the use of this information in several cases. In emerging
countries, information such as night-time luminosity has proven valuable for fore- and
nowcasting indicators such as GDP growth and beyond. Similarly, in times of turmoil
such as the COVID-19 pandemic, satellite imagery was useful to track urban mobility
and estimate the effect of fiscal subsidies to boost economic activity locally. Within the
financial literature, remote sensing has been used to estimate oil reserves, count cars
in parking lots to estimate consumer spending at large retailers, and assist investors in
market-timing strategies for such retailers’ stocks. In the domain of green finance use
cases, satellite data has been somewhat established in the insurance sector. However,
we propose that today, there are more urgent thematic areas where researchers are
researchers could harness this novel and largely free data source to solve a variety of
problems.

In order to provide a more systematic analysis of the potential of this data for
sustainable finance we use a semi-automated review of the scientific literature on the
application of EO systems for green finance. To this end, we collect a corpus of scien-
tific studies and, using NLP techniques (LDA), we uncover five application domains
where researchers are exploring the value of EO systems. In particular, we find that (1)
physical risk materialization (including both acute and chronic risk), (2) deforestation,
(3) energy and emissions, (4) agricultural risk, and (5) land use and land cover, are
core areas where satellite data might enable new green financial products and markets,
such as sustainability linked bonds or blue bonds, nature finance, or voluntary carbon
markets. Our results are echoed by innovative private sector players (e.g., DrivenData-
Labs (2023)) who offer services based on artificial intelligence and new data types from
EO systems in different business areas, such as natural resource management, disaster
resilience, biodiversity conservation, energy efficiency, or upstream services.

We conclude by stating that satellite data shall not be an isolated area of research to
fill in climate data gaps. It can work together with improved observational data, lever-
aging new technologies like machine learning or landscape audio. Used in this fashion,
it can enable and new layers of information, and thereby boost new insights from
ground-based data. Overall, although EO systems in green finance are still emerging,
their potential has piqued the interest of central banks, as a potential public good,
prompting exploration and collaboration on international platforms like the NGFS or
BISIH to experiment, monitor, and track new developments.
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Appendix A. LDA: topic modeling

A necessary first step in topic modeling is processing the corpus of documents by
tokenizing each document into a collection of their individual words where order is
unimportant (i.e.: each document is treated as a “bag of words”). Then, stopwords
that have no topic context (such as “and”, “of”, “the”), are removed, as well as
common terms that are highly repeated in the corpus, which we identify because they
appear in more than half of the documents, or rare terms for which we set a threshold
of being in less than two documents. We deem that both categories of terms contain
little meaning to contribute to a relevant topic.13 Remaining words in a document are
lemmatized to generate the words’ root, and accurately capture unique terms usage.14.
For simplicity, we keep our analysis to single word tokens as we find that it allows us
to easily label the topics at the final stage.

Once the corpus is preprocessed, we count with D documents that together contain
N unique tokens that we can represent by an N x D matrix W with entries wn,d,
which in turn are the number of occurrences of token n in document d. Thus, the
total number of tokens in document d is Nd =

∑N
n=0wn,d. The LDA model consists

of two matrices, βN×K and θK×D, where K is the total number of topics. For topic
k, the vector βk contains the N token weights, which act as the probabilities P (n|k)
that the token n contribute to a document’s bag of words, conditional on the topic
k contributing to the document. That is, P (n|k) = βk , i.e.: the weight of token n

in topic k. Therefore,
∑N

n=1 βn,k = 1. For document d, the vector θd contains the
K topic weights – which act as the probability P (k|d) that topic k appears in the
document. Thus, P (k|d) = θk,d, i.e.: the weight of topic k in document d. Similarly,∑N

n=1 θk,d = 1. When these probabilities are significant, we may say that a topic k is
relevant in document d. Finally, this setting allows us to decompose the probability of
a token n occurring in a document d in the following equation (Hofmann 2001):

P (n|d) =

K∑
k=1

P (n|k) · P (k|d) =

K∑
k=1

βn,k · θn,d (A1)

Topic modeling involves reducing the dimensions of these matrices to end up with
the same number of rows (documents) but a restricted number of columns which
represent the topics. To this purpose LDA assumes a particular Dirichlet distribution
that can be used to produce probability vectors βk and θd, that allow an assumption
to be made about how topics are distributed across tokens and documents. Using two
external inputs, α and β, as Dirichlet priors, we can determine the generative process
in the LDA (Blei 2012; Blei, Ng, and Jordan 2003). α determines θd or per-document
topic distribution, and the β parameter determines βk or per-topic token distribution.

The LDA posteriors are a result of the trade-off between two inherently conflicting

13We decide not to include bi-grams or tri-grams in this process as we deem that common candidates like

“climate change” or “green bonds” would fall under the definition of common terms when split into two.
Therefore, we do not expect to change our results. Though, further research could be carried out to perform

this robustness check.
14While stemming consists on the removal of suffixes without considering the context or the actual meaning of

the word, which can sometimes lead to the generation of non-interpretable words, lemmatization is the process
of grouping together different forms of the same word, allowing to work with immediately interpretable tokens.
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goals. Firstly, that only a relatively small number of topics are expected in a well-
written document, and secondly that only high probability should be assigned to a
small number of tokens that belong to highly informative topics. The trade-off exists
because if we assign, for instance, a single topic to a single document, thus succeeding
at the first goal, the second goal becomes difficult to achieve because all tokens in
the document must have a relatively high probability of belonging to that topic. The
estimation of the LDA model requires a Bayesian updating from its initial semi-random
allocation of topics to tokens and documents, to converge to a probabilistic distribution
of topics across documents. Technically, the process will be completed when we find
matrices βN×K and θK×D that most likely have produced the observed data W. In
our case, the Gensim implementation in Python, based on a Bayesian approach, finds
the best configuration of the model automatically as well as several settings related to
numerical efficiency (Hofmann 2001). In order not to stop at a local optimum we use
a high enough number of iterations, in particular we needed 40,000 passes to reach a
stable solution.

Appendix B. Clusters analysis

Reviewing the top terms for each topic provides us with an initial understanding
into their potential labels. However, this approach does not remove all uncertainty in
assigning sufficiently different and sensible topics: some tokens, such as ‘vegetation’ in
topics 1 and 2 and ‘land’ in topics 4 and 5, can be prevalent across multiple topics.
Hence, we further scrutinize the top terms using the relevance metric, which prioritizes
terms based on their significance within a topic relative to their presence in other
topics. The relevance metric is defined as follows: for a given term t, its relevance to
topic k is defined as follows:

λ log(βk,t) + (1 − λ) log(
βk,t
pt

), (B1)

where βk,t is the probability of term t in topic k, pt is the marginal probability of
term t across all topics, and λ is a parameter that balances term frequency within
a specific topic against its frequency across all topics. By applying this metric, we
identify the following set of topics: Topic 1 as Physical risk, Topic 2 as Deforestation,
Topic 3 as Energy and emissions, Topic 4 as Agricultural risk, and Topic 5 as Land
use and land cover.

Appendix C. Figures and Tables
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Figure C1. LDA model selection metrics

Figure C2. Intertopic distance map, and Top30 most relevant terms for Topic1.
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Figure C3. Intertopic distance map, and Top30 most relevant terms for Topic2.

Figure C4. Intertopic distance map, and Top30 most relevant terms for Topic3.
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Figure C5. Intertopic distance map, and Top30 most relevant terms for Topic4.

Figure C6. Intertopic distance map, and Top30 most relevant terms for Topic5.
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