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Abstract
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and more permanent— bank capital requirements? While there is better understanding of the effect of a-cyclical
higher capital requirements on banks’ resilience and credit supply, much less is known about the marginal
effects of introducing a macroprudential counter-cyclical capital requirement. In this paper, we study the
welfare implications of introducing several simple and implementable financial policy (CCyB) rules that co-
exist with monetary policy. We find that the institutional design of the financial-policy instruments matters
for its welfare implications. In particular, a zero lower bound on the CCyB interacts with its counter-cyclical
nature and provides a rationale for a positive neutral level. We build our analysis based on a quantitative
macro-banking model with two main frictions, nominal rigidities and financial frictions, which we estimate for
Chile; a representative small open economy.
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1 Introduction

The 2008 financial crisis put forward the importance of financial intermediation, mainly through banking, in the

potential origination and amplification of shocks to the macroeconomy. This observation catalyzed both, research

on macro-financial linkages, and re-assessment of banking regulation. The latter materialized in the package of

reforms we know as Basel III; with one of its main objectives being the incorporation of a system-wide approach

to financial risk assessments, and financial policy; thereby explicitly introducing a macroprudential perspective to

banks’ capital regulation. Basel III introduces two buffers in this direction; the capital conservation buffer (CCoB)

and the countercyclical capital buffer (CCyB) (Financial Stability Institute, 2019)1. While the CCoB has more

automatic guidelines for its replenishment in case of loss-related draw downs, the CCyB can be activated and

deactivated according to the decision of the authority. That is, the CCyB is a macroprudential tool. In this paper

we examine the implications of different rules guiding this decision in terms of welfare and banks’ resilience, how

they interact with monetary policy, and emphasize the implications of the institutional design on the adequacy of

a positive neutral level of CCyB.

In order to comprehensively analyze the macroeconomic implications of different CCyB designs, we build a

macro-banking model with two main inefficiencies as in Carrillo et al. (2021). Monetary policy addresses inefficiencies

from staggered pricing by monopolistic input producers, and Financial policy addresses inefficiencies from financial

frictions in the form of costly state verification. Drawing on the results of Carrillo et al. (2021) we abstract from a

one-tool for two-objectives policy, and instead start from the Tinbergen rule. Our model includes both a monetary

policy rule, and a countercyclical capital requirement rule, and features three levels of default by different agents

in the economy, including the banking sector, as in Clerc et al. (2014). Hence our model is rich enough to analyze

the interaction of monetary and financial policy, yet parsimonious enough to calculate welfare of different policy

regimes. In particular, our model is based on a simplified version Calani et al. (2022), one of the main models used

at the Central Bank of Chile. Notably, in the financial side, this model features financial frictions as in Bernanke

et al. (1999) and Clerc et al. (2014); long term debt as in Woodford (2001); and a bank-related friction in which

depositors do not price bank default risk at the margin, as in Mendicino et al. (2018) and Mendicino et al. (2020).

Our model is more appropriate for small open economies with both monetary and financial policies, in which bank

credit can be short- and long-term.

The literature on the effects of banks’ capital requirements on financial and real variables, has grown significantly

in the past years, in tandem with the number of countries adopting and implementing capital regulation, and the

availability of micro-data. However, at least on its aggregate consequences, most of the focus of the literature has

emphasized the effects of the higher levels of capital requirements. The main trade-off of higher, a-cyclical, capital

requirements weights lower systemic risk —measured as banking sector default probability— and lower activity in

credit and the ensuing lower economic activity (Van den Heuvel, 2008; Clerc et al., 2014; Mendicino et al., 2018,

2020). Our paper shares this main feature, but instead, its focus is on cyclical considerations of capital regulation,

1Both capital buffers must be met with Common Equity Tier 1 (CET1) capital only. The CCoB is meant to give banks and
additional layer of usable capital when idiosyncratic losses are incurred. The CCyB is meant to be raised when system-wide risks,
usually associated with high credit growth is perceived to become more important. Both buffers range from 0% to 2.5%.
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i.e. the design of a CCyB rule and its macroeconomic effects. Thus, our paper is more related to Carrillo et al.

(2021) and Malherbe (2020). We explore different implementable, simple, policy rules in terms of their welfare

implications, exploring the relationship with monetary policy. Notably, we find that simply following a credit-gap

rule may not be optimal.

Figure 1: Countercyclical capital buffer activation across countries

Note.– This figure reports activation of countercyclical buffer (CCyB) by date and size of requirement. Each hexagon shows the current level
of CCyB. No hexagon means deactivated CCyB. Source: Financial Stability Report CBC 2023-S1

Further, the experience from the Covid-19 pandemic suggests that there might be important differences between

CCoB and CCyB usability. In particular, banks might be reluctant to exhaust CCoB (Basel Committee on

Banking Supervision, 2022), and instead might want to comply with capital requirements deleveraging. In contrast,

a system-wide deactivation of the countercyclical capital buffer by instruction of the supervisor, would not attract

adverse market reaction or stigma on any particular bank, and might better accomplish its countercyclical objective.

Notably, before the Covid-19 pandemic many juristictions had activated the CCyB, and deactivated it in early 2020

(see Figure ??). By the end of 2021, mostly the same economies started activating this buffer again, suggesting

that its deactivation was useful during the worst moment of the sanitary crisis.

By design, however, the CCyB ranges from 0 to 2.5 percent of risk weighted assets (RWA), which implies that

if a shock which would be better addressed by deactivating the CCyB, hits the economy, and this instrument is

currently not activated, then much of its benefits are not grasped. This mechanism provides a rationale for setting

a positive neutral level in case deactivation is suddenly required. We explore this issue quantitatively.

The document is structured as follows. In Section 2 we present a detailed description of the theoretical structure

of the model. Section 3 describes the estimation of the model, the calibration, the choice of priors and presents the
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results. Section 4 presents the results. Section 5 concludes.

2 A Small Open Economy Model with Financial Frictions

In the following section, we augment a standard New Keynesian small open economy model with financial frictions

in the economy’s entrepreneurial, banking, and housing sectors. To do this, we introduce new agents taking Clerc

et al. (2014) as starting point: entrepreneurs and bankers. The former are the sole owners of capital, who finance

their capital investment through banking loans, while the latter are the owners of the banks who lend resources for

capital investment and housing investment.

Households are divided between patients, who save using the financial market, and impatients, who borrow

using the financial market. We also introduce the segmented financial markets concept in the spirit of Vayanos and

Vila (2009). Following Andres et al. (2004) and Chen et al. (2012), saving households can be unrestricted, who

can save in short or long term financial assets, or restricted, who can save only in short term assets. All households

derive utility from a consumption good, leisure, and housing stock.

From the production side, we use a simplified version of Garcia et al. (2019) in which a final good is produced

using capital and labor and facing prices à la Calvo and a labor market facing quadratic adjustment cost in the

style of Lechthaler and Snower (2011). In addition, we introduce three kinds of firms (capital producers, housing

producers, and banks). Concerning debt, we include not only short-term deposits but also long-term government

and bank bonds as perpetuities that pay exponentially decaying coupons as introduced by Woodford (2001)

2.1 Households

There are two continuums of households of measure one, risk-averse and infinitely lived. These agents differ in their

discount factor: βI for impatient households (I), and βP for patient households (P ), with βP > βI . In equilibrium,

impatient households borrow from banks and are ex-ante identical in asset endowments and preferences to others

of their same patience.

In terms of patient households, following Andres et al. (2004) and Chen et al. (2012), we allow for a distinction

between two types of patient households: Restricted (R) and Unrestricted (U) depending on which assets they

can access for saving purposes. While Unrestricted households can buy both long and short-term assets with a

transaction cost, Restricted households can only buy long-term bonds but do not face any transaction cost. Their

combined measure is of size one.

Restricted and Unrestricted households’ preferences depend on consumption of a final good Ct relative to

external habits C̃t−1, their stock of housing from last period Ht−1 relative to external habits H̃t−2, and labor

supplied (hours worked) nt in each period. The consumption of the aggregate good Ĉi
t≡Ĉ(Ci

t , C̃
i
t−1, H

i
t−1, H̃

i
t−2)

for households of type i = {U,R, I} is assumed to be a constant elasticity of substitution (CES) as shown in (1):

4



Ĉi
t =

[(
1− oĈ

) 1
η
Ĉ

(
Ci

t − ϕcC̃
i
t−1

) η
Ĉ

−1

η
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(
oĈ
) 1

η
Ĉ

(
ξht

(
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t−1 − ϕhhH̃
i
t−2

)) η
Ĉ

−1

η
Ĉ

] η
Ĉ

η
Ĉ

−1

(1)

where oC̃ ∈ (0, 1) is the weight on housing in the aggregate consumption basket, ηC̃ is the elasticity of

substitution between the final good and the housing good, ξht is an exogenous preference shifter shock and ϕc, ϕhh ≥ 0

are parameters guiding the strength of habits in consumption and housing respectively. Households of type

i = {U,R, I} maximize the following expected utility

max
{Ĉi

t ,H
i
t}∞

t=0

E0

∞∑
t=1

βt
iϱt

[
1

1− σ

(
Ĉi

t

)1−σ

−Θi
tA

1−σ
t ξnt

(
ni
t

)1+φ

1 + φ

]
(2)

where βi ∈ (0, 1) is the respective discount factor, ϱt is an exogenous shock to intertemporal preferences, ξnt

is a preference shock that affects the (dis)utility from labor, σ > 0 is the inverse of the intertemporal elasticity of

substitution, φ ≥ 0 is the inverse elasticity of labor supply.

As in Gaĺı et al. (2012), we introduce an endogenous preference shifter Θt, that satisfies the following conditions

Θi
t = χ̃i

tA
σ
t

(
Ĉ
(
C̃i

t , C̃
i
t−1, H̃

i
t−1, H̃

i
t−2

))−σ

(3)

and

χ̃i
t =

(
χ̃i
t−1

)1−v
A−σv

t

(
Ĉ
(
C̃i

t , C̃
i
t−1, H̃

i
t−1, H̃

i
t−2

))σv
(4)

where the parameter v ∈ [0, 1] regulates the strength of the wealth effect, and C̃i
t and H̃i

t−1 are taken as given by

the households. In equilibrium Ci
t = C̃i

t and Hi
t = H̃i

t .

2.1.1 Patient Households

Unrestricted Households. This group is formed by fraction ℘U of the patient households. In equilibrium, they

save in one-period government bond, BSU
t , long-term government bonds, BLU

t , short-term bank deposits DU
t ,

long-term bank-issued bonds, BBU
t , and one-period foreign bonds quoted in foreign currency B⋆U

t . All these assets

being non-state-contingent.

The structure of long term financial assets follows Woodford (2001), in this framework, long-term instruments

are perpetuities, each paying a coupon of unitary value (in units of final goods) in the period after issuance, and a

geometrically declining series of coupons (with a decaying factor κ < 1) thereafter. That is, a bond issued in period-t

implies a series of coupon payments starting in t+1: {1, κ, κ2, . . .}. Also, let Bt−1, where Bt−1 =
{
BLU

t−1, BBU
t−1

}
represent the total liabilities due in period t from all past bond issues up to period t− 1. That is

Bt−1 = CIt−1 + κCIt−2 + κ2CIt−3 + . . . ,

thus, CIt−1 = Bt−1 − κBt−2. Let QB
t denote the period-t price of a new issue, then QB

t summarizes the prices at

all maturities. For instance, QB
t|t−1 = κQB

t is the price in t of a perpetuity issued in period t − 1. Importantly,
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note that Bt−1 denotes both, total liabilities in period-t from previous debt, and –because of the particular coupon

structure– the total number of outstanding bonds. Then, the total value of financial asset debt in period t is given

by QtBt. Finally, the real yield to maturity of holding long term assets at period t, RB
t , as,

RB
t =

Pt

QB
t

+ κ

Unrestricted households must pay a transaction cost ζLt per unit of long-term bond purchased. These costs are

paid to a financial intermediary as a fee. This financial intermediary distributes its nominal value profits ΠFI , as

dividends to its shareholders. Then, unrestricted patient households’ period budget constraint is

BSU
t +

(
1 + ζLt

)
QBL

t BLU
t +DU

t +
(
1 + ζLt

)
QBB

t BBU
t + StB

⋆U
t + PtC

U
t +QH

t HU
t =

Rt−1BSU
t−1 +QBL

t RBL
t BLU

t−1 + R̃D
t DU

t−1 + R̃BB
t QBB

t BBU
t−1 + StB

⋆U
t−1R

⋆
t−1 +Wtn

U
t

+QH
t (1− δH)HU

t−1 +Ψt (5)

where RBL
t and RBB

t are the real gross yield to maturity for long-term government and bank-issued bonds at time

t, Pt denotes the price of the consumption good, QH
t denotes the nominal price of housing good, δH is depreciation

rate of housing goods, St the nominal exchange rate (units of domestic currency per unit of foreign currency), R⋆
t

the foreign one-period bond return, and Rt denotes the short term nominal government bond rate.

Further, R̃D
t = RD

t−1(1 − γDPDB
t ), R̃BB

t = RBB
t (1 − γBBPDB

t ) denote the net return on resources loaned

to banks in the form of deposits and bank-issued bonds, RD
t−1 is the gross interest rate received at t on the bank

deposits at t − 1, PDB
t denotes the fraction of resources in banks that fail in period t and γD(γBB) is a linear

transaction cost that households must pay in order to recover their funds. Finally, Wt denotes the nominal wage

and, Ψt denotes lump-sum payments that include taxes Tt, dividend income from entrepreneurs Ce
t , bankers Cb

t ,

rents from ownership of foreign firms REN∗
t , profits from ownership of domestic firms, and profits from the financial

intermediary in the long-term bond transactions, ΠF = ζLt (Q
BL
t BLU

t +QBB
t BBU

t ).

Chen et al. (2012) show that the discounted value of future transaction costs implies a term premium. We

assume that the period transaction cost is a function of the ratio of the aggregate market value of long-term to

short-term assets and a disturbance term. Further, households do not internalize the effect of their choices on this

transaction cost, yet in equilibrium B̃L
U

t = BLU
t and B̃S

U

t = BSU
t . This ratio captures the idea that holding long-

term debt implies a loss of liquidity that households hedge by increasing the amount of short-term debt. Specifically,

the functional form is given by

ζLt =

(
QBL

t B̃L
U

t +QBB
t B̃B

U

t

Q
BL

t BL
U

t +Q
BB

t BB
U

t

)ηζL

ϵLt (6)

Households supply differentiated labor services to a continuum of unions which act as wage setters on behalf

of the households in monopolistically competitive markets. The unions pool the wage income of all households and

then distribute the aggregate wage income in equal proportions among households, hence, they are insured against
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variations in household-specific wage income. Defining for convenience the multiplier on the budget constraint as

λU
t A−σ

t /Pt, then, Unrestricted Households solve (2) subject to (1), (3), (4), and (5). From this problem we obtain

the following first-order conditions:

[CU
t ] : λUt A

−σ
t =

(
ĈU

t

)−σ

 (
1− oĈ

)
ĈU

t(
CU

t − ϕcC̃U
t−1

)
 1

η
Ĉ

(7)

[HP
t ] : ϱt

λUt A
−σ
t QH

t

Pt
=βUEtϱt+1


(
ĈU

t+1

)−σ
ξht+1

 oĈ Ĉ
U
t+1

ξht+1

(
HU

t − ϕhhH̃
U
t−1

)
 1

η
Ĉ

(8)

+ (1− δH)
λUt+1A

−σ
t+1Q

H
t+1

Pt+1

}

[BSU
t ] : ϱtλ

U
t A

−σ
t =βURtEt

{
ϱt+1λUt+1

πt+1
A−σ

t+1

}
(9)

[BLU
t ] : ϱtλ

U
t A

−σ
t (1 + ζLt )

(
QBL

t

Pt

)
=βUEt

{
ϱt+1λ

U
t+1A

−σ
t+1R

BL
t+1

(
QBL

t+1

Pt+1

)}
(10)

[B⋆U
t ] : ϱtλ

U
t A

−σ
t =βUR

⋆
tEt

{
ϱt+1λUt+1π

s
t+1

πt+1
A−σ

t+1

}
(11)

[DU
t ] : ϱtλ

U
t A

−σ
t =βUEt

{
ϱt+1λUt+1

πt+1
R̃D

t+1A
−σ
t+1

}
(12)

[BBU
t ] : ϱtλ

U
t A

−σ
t (1 + ζLt )

(
QBB

t

Pt

)
=βUEt

{
ϱt+1λ

U
t+1A

−σ
t+1R̃

BB
t+1

(
QBB

t+1

Pt+1

)}
(13)

In equilibrium, we have that C̃P
t = CP

t and H̃P
t = HP

t , which applies for impatient households as well. The

implied discount factor for nominal claims is, by iterating upon (9):

rt,t+s =
1∏s−1

i=0 Rt+i

= βs
U

ϱt+sλ
U
t+sA

−σ
t+sPt

ϱtλU
t A

−σ
t Pt+s

(14)

Restricted households. This group of households have a mass ℘R which complements the mass of unrestricted

households ℘U , then ℘R = 1 − ℘U . The main difference with Unrestricted Household is that they can only access

long-term government bonds. In addition, Restricted Patient households do not face transaction costs. They are

subject to the period-by-period budget constraint

PtC
R
t +QH

t HR
t +QBL

t BLR
t = Wtn

R
t +QH

t (1− δH)HR
t−1 +QBL

t RBL
t BLR

t−1 (15)

Let us define, for convenience, the multiplier on the budget constraint as λR
t A−σ

t /Pt. Then, restricted households
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solve (2) subject to (1), (3), (4), and (15), from which we obtain the following first-order conditions:

[CR
t ] : λR

t A
−σ
t =

(
ĈR

t

)−σ

 (
1− oĈ

)
ĈR

t(
CR

t − ϕcC̃R
t−1

)
 1

η
Ĉ

(16)

[HP
t ] : ϱt

λR
t A

−σ
t QH

t

Pt
= βREtϱt+1


(
ĈR

t+1

)−σ

 oĈĈ
R
t+1

ξht+1

(
HR

t − ϕhhH̃R
t−1

)
 1

η
Ĉ

ξht+1 (17)

+ (1− δH)
λR
t+1A

−σ
t+1Q

H
t+1

Pt+1

}

[BLR
t ] : ϱtλ

R
t A

−σ
t QBL

t = βREt

{
ϱt+1λ

R
t+1

πt+1
RBL

t+1Q
BL
t+1A

−σ
t+1

}
(18)

2.1.2 Impatient Households

Impatient households work, consume, and purchase housing goods. They take long-term loans in equilibrium from

banks to finance their purchases of housing goods. Mortgage contracts are agreements on long-term debt and

repayment plans which define an implicit yield to maturity RI
t at date-t,

RI
t =

(
Pt

QL
t

+ κ

)
,

where QL
t is the price of one unit of long-term mortgage debt LH

t issued in period-t, and κ is the geometric decline

factor of long-term debt. At in any period t′ > t banks and households abide by the original contract agreement.

In this way we are able to capture the fact that, for default decisions, households are concerned about face value of

their debt and not necessarily the market value, which is a closer representation of the Chilean mortgage market

with fixed-condition. Then, let the nominal-face-value of mortgage credit, LH
t Q̂L

t , be the sum of newly issued debt

priced at current market conditions, and debt from previous periods priced at the moment when it was issued,

LH
t Q̂L

t = (LH
t − κLH

t−1)Q
L
t + κLH

t−1Q̂
L
t−1πt (19)

Notably, observe that market value of mortgage debt, LH
t QL

t , need not coincide with the value of debt priced at

historic face-value, LH
t Q̂L

t . A second reason for using the latter is that this is the time series which we actually

observe from the data to estimate the model

We follow the Clerc et al. (2014) by assuming that these mortgage loans are non-recourse and limited liability

contracts, which enable the possibility of default for households. The only consequence of defaulting is losing the

housing good on which the mortgage is secured on. Therefore default is optimal when total outstanding obligations

is higher than the value of the assets posed as collateral,

(Pt + κQ̂L
t−1πt)L

H
t−1 > ωI

tQ
H
t (1− δH)HI

t−1,
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or,

R̂I
t Q̂

L
t L

H
t−1 > ωI

tR
H
t QH

t−1H
I
t−1,

where we have used R̂I
t =

Pt+κQ̂L
t−1πt

Q̂L
t

, and RH
t =

QH
t (1−δH)

QH
t−1

. Also, HI
t−1 denotes the housing units held by the

impatient household at the beginning of period-t, and ωI
t is an i.i.d idiosyncratic shock to the efficiency units of

housing of impatient households, which follows a log-normal distribution with pdf fI
(
ωI
t

)
and cdf FI

(
ωI
t

)
, and can

be interpreted as a reduced-form representation of any shock to the value of houses.

Then, the default threshold ω̄I
t is given by

ω̄I
t =

R̂I
t Q̂

L
t L

H
t−1

RH
t QH

t−1H
I
t−1

If ωI
t ≥ ω̄I

t , the impatient household remains in good standing and repays the amount R̂I
t Q̂

L
t L

H
t−1, which includes

the coupon due in period-t and the remaining outstanding value of debt. Alternatively, if ωI
t < ω̄I

t the household

defaults on its mortgage debt. This definition allows us to define PDI
t = FI

(
ω̄I
t

)
as the default rate of impatient

households on housing loans. Notably, in case of repayment, the bank receives the fixed amount R̂I
t Q̂

L
t L

H
t−1 from

performing loans, and households walk away with (ωI
t − ω̄I

t )R
H
t QH

t−1H
I
t−1. In case of default the bank recovers

(1 − µI)ω
I
tR

H
t QH

t−1H
I
t−1 and the household walks away with nothing. This mechanism, a standard debt contract,

is not only incentive compatible on the side of the bank but induces truth-telling on the side of the household.

Then the budget constraint for the impatient household is then given by:

PtC
I
t +QH

t HI
t −QL

t (L
H
t − κLH

t−1)

[
1− γL

2

(
LH
t − κLH

t−1

LH
t−1 − κLH

t−2

− ā

)2
]
− πtκL

H
t−1Q̂

L
t−1 =

Wtn
I
t +

∫ ∞

0

max
{
ωI
tR

H
t QH

t−1H
I
t−1 − R̂I

t Q̂
L
t L

H
t−1, 0

}
dFI(ω

I
t ) (20)

where the expression

[
1− γL

2

(
LH

t −κLH
t−1

LH
t−1−κLH

t−2
− at

)2]
represents the adjustment costs associated with the change in

the level of debt LH
t .

Out of all the loans, the share of the gross return that goes to the bank is denoted as ΓI(ω̄
I
t ) whereas the share

of gross return that goes to the impatient household is (1− ΓI(ω̄
I
t )) where:

ΓI

(
ω̄I
t

)
=

∫ ω̄I
t

0

ωI
t fI

(
ωI
t

)
dωI

t + ω̄I
t

∫ ∞

ω̄I
t

fI
(
ωI
t

)
dωI

t

The first integral on the right denotes the share of the return that is defaulted while the second integral denotes

the share of return that is paid in full. This allows us to rewrite the budget condition from (20) as
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PtC
I
t +QH

t HI
t −QL

t (L
H
t − κLH

t−1)

[
1− γL

2

(
LH
t − κLH

t−1

LH
t−1 − κLH

t−2

− ā

)2
]
− πtκL

H
t−1Q̂

L
t−1 =

Wtn
I
t +

[
1− ΓI

(
ω̄I
t

)]
RH

t QH
t−1H

I
t−1 (21)

Also, let

GI

(
ω̄I
t

)
=

∫ ω̄I
t

0

ωI
t fI

(
ωI
t

)
dωI

t

denote the part of those returns that comes from the defaulted loans. Taking into consideration the share of the

return that is lost due to verification cost as µIGI(ω̄
I
t ), then the net share of return that goes to the bank is

ΓI

(
ω̄I
t

)
− µIGI

(
ω̄I
t

)
.

The terms of the loan must imply the net expected profits of the bank must equal its alternative use of funds,

therefore it must satisfy a participation constraint:

Et

{[
1− ΓH

(
ω̄H
t+1

)] [
ΓI

(
ω̄I
t+1

)
− µIGI

(
ω̄I
t+1

)]
RH

t+1Q
H
t HI

t

}
≥ ρHt+1ϕHQL

t L
H
t (22)

Where ΓH(ω̄H
t+1) is the fraction of bank gross returns that is used to pay depositors or is lost due to bank

defaults when their own idiosyncratic shock ωH
t+1 is too low. The rest of the left hand side expression is the total

amount of returns on the housing project that goes to the lender bank. The right hand side indicates the opportunity

cost, which is investing an amount of equity ϕHQL
t L

H
t at a market-determined rate of return of ρ̃Ht+1, where ϕH is

a regulatory capital constraint. We elaborate on the bank’s problem on subsection 2.3, for now note that we can

write (22) with equality without loss of generality.

Thus, following the timing described above, the impatient household’s optimization problem can be written as

maximizing (2) for i = I subject to their budget constraint (21) and the bank participation constraint (22). For

this, define for convenience λI
tA

−σ
t /Pt and λH

t A−σ
t /Pt as the multipliers for each constraint respectively. Define also

xI
t ≡ RI

tL
H
t /QH

t HI
t , a measure of household leverage. This yields the following FOC’s:

10



[CI
t ] : λI

tA
−σ
t =

{(
ĈI

t

)−σ
} (

1− oĈ
)
ĈI

t(
CI

t − ϕcC̃I
t−1

)
 1

η
Ĉ

(23)

[HI
t ] : ϱt

λI
tA

−σ
t QH

t

Pt
= Et


βIϱt+1

((
ĈI

t+1

)−σ
(

oĈĈI
t+1

ξht+1(HI
t −ϕhhH̃I

t−1)

) 1
η
Ĉ

ξht+1

+
λI
t+1A

−σ
t+1

Pt+1

[
1− ΓI

(
ω̄I
t+1

)]
RH

t+1Q
H
t

)
+

ϱtλ
H
t A−σ

t

Pt

[
1− ΓH

(
ω̄H
t+1

)] [
ΓI

(
ω̄I
t+1

)
− µIGI

(
ω̄I
t+1

)]
RH

t+1Q
H
t


(24)

[LH
t ] : ϱt

A−σ
t QL

t

Pt

{
λI
t

[
1− γL

2
(∇l̃t − ā)2

]
− λI

t∇l̃tγL(∇l̃t − ā)− λH
t ρHt+1ϕH

}
= ...

... βIEt

{
ϱt+1

λI
t+1A

−σ
t+1

Pt+1

[
QL

t+1κ
[
1− γL

2
(∇l̃t+1 − ā)2

]]}
+

...βIEt

{
ϱt+1

λI
t+1A

−σ
t+1

Pt+1

[
−QL

t+1∇l̃t+1γL(∇l̃t+1 − ā)(∇l̃t+1 + κ)− κπt+1Q̂
L
t

]}
(25)

[xI
t ] :

ϱtλ
H
t A−σ

t

Pt
Et

{[
1− ΓH

(
ω̄H
t+1

)] [
Γ′
I

(
ω̄I
t+1

)
− µIG

′
I

(
ω̄I
t+1

)]}
= βIEt

{
ϱt+1λ

I
t+1A

−σ
t+1

Pt+1
Γ′
I

(
ω̄I
t+1

)}
(26)

Regarding the idiosyncratic shock, we assume that ln(ωI
t ) ∼ N(− 1

2 (σ
I
t )

2, (σI
t )

2), therefore its unconditional

expectation is E{ωI
t } = 1, and its average conditional on truncation is

Et

{
ωI
t |ωI

t ≥ ω̄I
t

}
=

1− Φ
(
zIt − σI

t

)
1− Φ

(
zIt
) ,

where Φ is the c.d.f. of the standard normal and zIt is an auxiliary variable defined as zIt ≡ (ln(ω̄I
t )+0.5(σI

t )
2)/σI

t .

Then, we can obtain the following functional forms:

ΓI

(
ω̄I
t

)
= Φ

(
zIt − σI

t

)
+ ω̄I

t

(
1− Φ

(
zIt
))

and

ΓI

(
ω̄I
t

)
− µIGI

(
ω̄I
t

)
= (1− µI) Φ

(
zIt − σI

t

)
+ ω̄I

t

(
1− Φ

(
zIt
))

Finally, we allow for fluctuations in the variance of the idiosyncratic shock, as σI
t is modeled as an exogenous

process.

2.2 Entrepreneurs

As in Clerc et al. (2014), we introduce risk-neutral entrepreneurs that follow an overlapping generations structure,

where each generation lives across two consecutive periods. The entrepreneurs are the sole owners of productive

capital, which is bought from capital producers to be, in turn, rented to the firms that produce different varieties

of the home good.

11



Entrepreneurs born in period t draw utility in t+1 from transferring part of final wealth as dividends, Ce
t+1, to

unrestricted patient households and from leaving the rest as bequests, Ne
t+1, to the next generation of entrepreneurs

in the form:

max
Ce

t+1,N
e
t+1

(
Ce

t+1

)ξχeχe
(
Ne

t+1

)1−ξχeχe
subject to

Ce
t+1 +Ne

t+1 = Ψe
t+1

where Ψe
t+1 is entrepreneurial wealth at t + 1, explained below, and ξχe

is a stochastic shock to their preferences.

The first order conditions to this problem may be written as:

[Ce
t+1] : ξχeχe(C

e
t+1)

(ξχeχe−1)
(
Ne

t+1

)1−ξχeχe − λχe

t = 0

[Ne
t+1] : (1− ξχe

χe)(C
e
t+1)

ξχeχe
(
Ne

t+1

)−ξχeχe − λχe

t = 0

[λχe

t ] : Ce
t+1 +Ne

t+1 −Ψe
t+1 = 0

From first order conditions we get the following optimal rules

Ce
t+1 = χeΨ

e
t+1

Ne
t+1 = (1− χe)Ψ

e
t+1

In their first period, entrepreneurs will try to maximize expected second period wealth, Ψe
t+1, by purchasing capital

at nominal price QK
t , which will be productive (and rented) in the next period. These purchases are financed using

the resources left as bequests by the previous generation of entrepreneurs and borrowing an amount LF
t at nominal

rate RL
t from from F banks. In borrowing from banks, entrepreneurs also face an agency problem of the type faced

by impatient households i.e. in t + 1 entrepreneurs receive an idiosyncratic shock to the efficiency units of capital

that will ultimately determine their ability to pay their liabilities to banks. Banks cannot observe these shock, but

entrepreneurs can. Depreciated capital is sold in the next period to capital producers at QK
t+1. Entrepreneurial

leverage, as measured by assets over equity, is levet = QK
t Kt/Ne

t .

In this setting, entrepreneurs solve, in their first period,

max
Kt,LF

t

Et

(
Ψe

t+1

)
subject to

QK
t Kt − LF

t = Ne
t

Ψe
t+1 = max

[
ωe
t+1

(
Rk

t+1 + (1− δK)QK
t+1

)
Kt −RL

t L
F
t , 0

]
and a bank participation condition, which will be explained later. The factor ωe

t+1 represents the idiosyncratic

shock to the entrepreneurs efficiency units of capital. This shock takes place after the loan with the bank has taken

12



place but before renting capital to consumption goods producers. It is assumed that this shock is independently

and identically distributed across entrepreneurs and follows a log-normal distribution with an expected value of

one. Let

Re
t+1 =

[
Rk

t+1 + (1− δK)QK
t+1

QK
t

]
(27)

be the gross nominal return per efficiency unit of capital obtained in period t + 1 from capital obtained in period

t. Then in order for the entrepreneur to pay for its loan the efficiency shock, ωe
t+1, must exceed the threshold

ω̄e
t+1 =

RL
t L

F
t

Re
t+1Q

K
t Kt

If ωe
t+1 ≥ ω̄e

t+1 the entrepreneurs pays RL
t L

F
t to the bank and gets (ωe

t+1 − ω̄e
t+1)R

e
t+1Q

K
t Kt. Otherwise,

the entrepreneurs defaults and receives nothing. While F-banks only recover (1 − µe)ω
e
t+1R

e
t+1Q

K
t Kt from non

performing loans, and RL
t L

F
t from performing loans. With the threshold, we can define PDe

t = Fe(ω̄
e
t ) as the

default rate of entrepreneurs on their loans.

The share of the gross return that goes to the bank is denoted as Γe(ω̄
e
t+1) whereas the share of gross return

that goes to the entrepreneur is (1− Γe(ω̄
e
t+1)) where:

Γe

(
ω̄e
t+1

)
=

∫ ω̄e
t+1

0

ωe
t+1fe

(
ωe
t+1

)
dωe

t+1 + ω̄e
t+1

∫ ∞

ω̄e
t+1

fe
(
ωe
t+1

)
dωe

t+1

also let

Ge

(
ω̄e
t+1

)
=

∫ ω̄e
t+1

0

ωe
t+1fe

(
ωe
t+1

)
dωe

t+1

denote the part of those returns that come from the defaulted loans. Taking into consideration the share of the

return that is lost due to verification cost as µeGe

(
ω̄e
t+1

)
, then the net share of return that goes to the bank is

Γe

(
ω̄e
t+1

)
− µeGe

(
ω̄e
t+1

)
.

Taking this into account then the maximization problem of the entrepreneur can be written as

max
ω̄e

t+1,Kt

Et

{
Ψe

t+1

}
= Et

{[
1− Γe

(
ω̄e
t+1

)]
Re

t+1Q
K
t Kt

}
, subject to

Et

{[
1− ΓF

(
ω̄F
t+1

)] [
Γe

(
ω̄e
t+1

)
− µeGe

(
ω̄e
t+1

)]
Re

t+1Q
K
t Kt

}
≥ ρFt+1ϕFL

F
t , (28)

that says that banks will participate in the contract only if its net expected profits are at least equal to their

alternative use of funds. This yields the following optimality conditions

(
1− Γe

t+1

)
= λe

t

(
ρFt+1ϕ

F
t

Re
t+1

−
(
1− ΓF

t+1

) [
Γe
t+1 − µeGe

t+1

])
(29)

Γe′

t+1 = λe
t

(
1− ΓF

t+1

) [
Γe′

t+1 − µeGe′

t+1

]
(30)
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Further, it is assumed that ln(ωe
t ) ∼ N(−0.5(σe

t )
2, (σe

t )
2), leading to analogous properties as with impatient

households for ω̄e
t , Γe and Ge.

2.3 Bankers and Banks

2.3.1 Bankers

Bankers are modeled as in Clerc et al. (2014) and in a similar way to entrepreneurs: They belong to a sequence of

overlapping generations of risk-neutral agents who live 2 periods and have exclusive access to the opportunity of

investing their wealth as banks’ inside equity capital.

In the first period, the banker receives a bequest N b
t from the previous generation of bankers and must distribute

it across the two types of existing banks: banks specializing in corporate loans (F banks) and banks specializing in

housing loans (H banks). That is, a banker who chooses to invest an amount EF
t of inside equity in F banks will

invest the rest of her bequest in H banks, EH
t = N b

t −EF
t . Then, in the second period bankers receive their returns

from both investments, and must choose how to distribute their net worth Ψb
t+1 between transferring dividends

Cb
t+1 to households and leaving bequests N b

t+1 to the next generation. Additionally, disturbances to the exogenous

variable ξχb
t capture transitory fluctuations in the banker’s dividend policy

Given Ψb
t+1, the banker will distribute it by solving the following maximization problem:

max
Cb

t+1,N
b
t+1

(
Cb

t+1

)ξχb
t+1χ

b (
N b

t+1

)1−ξ
χb
t+1χ

b

, subject to

Cb
t+1 +N b

t+1 = Ψb
t+1

which leads to the following optimal rules

Cb
t+1 = ξχb

t+1χ
bΨb

t+1 (31)

N b
t+1 =

(
1− ξχb

t+1χ
b
)
Ψb

t+1 (32)

In turn, net worth in the second period is determined by the returns on bankers’ investments in period-t:

Ψb
t+1 = ρFt+1E

F
t + ξb,roet ρHt+1

(
N b

t − EF
t

)
where ξb,roet is a shock to the bankers’ required return to equity invested in the housing branches, ρjt+1 is the

period t+1 ex-post gross return on inside equity Ej
t invested in period t in bank of class j. In order to capture the

fact that most of mortgage debt takes the form of non endorsable debt —meaning the issuer bank retains it in its

balance sheet to maturity— we assume that the banker j = H invests in the banking project H through a mutual

fund which pays the expected average return to housing equity ρHt+1 every period. Thus, letting ρ̃Ht represent the
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period return on housing portfolio, then ρHt = κρ̃Ht + (1− κ)ρHt+1. The banker then chooses

max
EF

t

Et

{
Ψb

t+1

}
= Et

{
ρFt+1E

F
t + ξb,roet ρHt+1

(
N b

t − EF
t

)}
An interior equilibrium in which both classes of banks receive strictly positive inside equity from bankers will require

the following equality to hold:

Et

{
ρFt+1

}
= Et

{
ξb,roet ρHt+1

}
= ρ̄t

where ρ̄t denotes banks’ required expected gross rate of return on equity investment undertaken at time t.

2.3.2 Banks

Banks are institutions specialized in extending either corporate or housing loans drawing funds through deposits,

and bonds from unconstrained household, and equity from bankers. We assume a continuum of identical banking

institutions of j class banks j = {F,H}. In particular, banks of class j are investment projects created in period-t

that in t+ 1 generate profits Πj
t+1 before being liquidated with:

ΠF
t+1 = max

[
ωF
t+1R̃

F
t+1L

F
t −RD

t DF
t , 0

]
, ΠH

t+1 = max
[
ωH
t+1R̃

H
t+1Q

L
t L

H
t −RBB

t+1Q
BB
t+1BBt, 0

]
where R̃j

t+1 is the realized return on a well-diversified portfolio of loans to entrepreneurs or households and ωj
t+1 is

an idiosyncratic portfolio return shock, which is i.i.d across banks of class j with a cdf of Fj(ω
j
t+1) and pdf fj(ω

j
t+1).

Due to limited liability, the equity payoff may not be negative, which defines thresholds ω̄j
t+1:

ω̄F
t+1 ≡ RD

t DF
t

R̃F
t+1L

F
t

, ω̄H
t+1 ≡

RBB
t+1Q

BB
t+1BBt

R̃H
t+1Q

L
t L

H
t

Similar to households and entrepreneurs, Γj(ω̄
j
t+1) denotes the share of gross returns to bank j investments

which are either paid back to depositors or bond holders, implying that [1− Γj(ω̄
j
t+1)] is the share that the banks

will keep as profits. We also define Gj(ω̄
j
t+1) as the share of bank j assets which belong to defaulting j banks, and

thus µjGj(ω̄
j
t+1) is the total cost of bank j defaults expressed as a fraction of total bank j assets.

The balance sheet of banks of class F is given by LF
t = EF

t +DF
t , and they face a regulatory capital constraint

given by EF
t ≥ ϕFL

F
t , where ϕF is the capital-to-asset ratio, and is binding at all times in equilibrium so that the

loans can be written as LF
t = EF

t /ϕF and the deposits as DF
t = (1−ϕF/ϕF )EF

t . Likewise, balance sheet of banks of

class H is given by QL
t L

H
t = EH

t + QBB
t BBt, with binding capital regulation determining EH

t = ϕHQL
t L

H
t , and
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QBB
t BBt = (1−ϕH)/ϕHEH

t . Further, using the threshold definitions and the binding capital constraints, we obtain2

ω̄F
t+1 =(1− ϕF )

RD
t

R̃F
t+1

ω̄H
t+1 =(1− ϕH)

RBB
t+1

R̃H
t+1

(
QB̂B

t+1

QB̂B
t

)

Finally, we define the realized rate of return of equity invested in a bank of class j:

ρjt+1 =
[
1− Γj

(
ω̄j
t+1

)] R̃j
t+1

ϕj
(33)

For completeness, notice that derivations in prior sections imply that following expressions for R̃j
t+1, j = {F,H} :

R̃F
t+1 =

(
Γe

(
ω̄e
t+1

)
− µeGe

(
ω̄e
t+1

)) Re
t+1Q

K
t Kt

LF
t

R̃H
t+1 =

(
ΓI

(
ω̄I
t+1

)
− µIGI

(
ω̄I
t+1

)) RH
t+1Q

H
t HI

t

QL
t L

H
t

As with households and entrepreneurs, it is assumed that the bank idiosyncratic shock follows a log-normal

distribution: log(ωj
t ) ∼ N(− 1

2 (σ
j
t )

2, (σj
t )

2), leading to analogous properties for ω̄j
t , Γj and Gj .

2.4 Production

The supply side of the economy is composed by different types of firms that are all owned by the households.

Monopolistically competitive unions act as wage setters by selling household’s differentiated varieties of labor supply

nit to a perfectly competitive firm, which packs these varieties into a composite labor service ñt. There is a set of

monopolistically competitive firms producing different varieties of a home good, Y H
jt , using wholesale good XZ

t as

input; a set of monopolistically competitive importing firms that import a homogeneous foreign good to transform

it into varieties, XF
jt; and three groups of perfectly competitive firms that aggregate products: one packing different

varieties of the home good into a composite home good, XH
t , one packing the imported varieties into a composite

foreign good, XF
t , and, finally, another one that bundles the composite home and foreign goods to create a final

good, Y C
t . This final good is purchased by households (CP

t ,CI
t ), capital and housing producers (IKt ,IHt ), and the

government (Gt).

Similarly to Clerc et al. (2014), we model perfectly competitive capital-producing and housing-producing firms.

Both types of firms are owned by patient households and their technology is subject to an adjustment cost. They

produce new units of capital and housing from the final good and sell them to entrepreneurs and households

respectively. However, we depart from Clerc et al. (2014) by assuming time-to-build frictions in housing investment.

Finally, there is a set of competitive firms producing a homogeneous commodity good that is exported abroad (and

2As with impatient households, to avoid excessive volatility of the default threshold due to the influence of the revaluation of

long term debt, we model the default decision based on a smoothed valuation of the outstanding debt, QB̂B
t , where logQB̂B

t ≡
α1
QBB (α2

QBB logQB̂B
t−1 + (1− α2

QBB ) logQBB) + (1− α1
QBB ) logQBB

t .
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which follows an exogenous process). The total mass of firms in each sector is normalized to one.

2.4.1 Capital goods

There is a continuum of competitive capital firm producers who buy an amount It of final goods at price Pt

and use their technology to satisfy the demand for new capital goods not covered by depreciated capital, i.e.

Kt − (1− δK)Kt−1, where new units of capital are sold at price QK
t . As is usual in the literature, we assume that

the aggregate stock of new capital considers investment adjustment costs and evolves according to following law of

motion:

Kt = (1− δK)Kt−1 +

[
1− γK

2

(
It

It−1
− a

)2
]
ξitIt

Where ξit is a shock to investment efficiency. Therefore a representative capital producer chooses how much to

invest in order to maximize the discounted utility of its profits,

∞∑
i=0

rt,t+i

{
QK

t+i

[
1− γK

2

(
It+i

It+i−1
− a

)2
]
ξit+iIt+i − Pt+iIt+i

}

Discounting is done according to patient households’ preferences, who are the owners of the firms. From the first

order condition a new relation can be obtained that relates the price of capital to the level of investment

Pt = QK
t

{(
1− γK

2

(
It

It−1
− a

)2
)

− γK

(
It

It−1
− a

)
It

It−1

}
ξit

+Et

{
rt,t+1Q

K
t+1γK

(
It+1

It
− a

)(
It+1

It

)2

ξit+1

}
(34)

2.4.2 Housing goods

The structure of housing producers is similar to that of capital good producers with the difference that housing

goods also face investment adjustment costs in the form of time to build Kydland and Prescott (1982) and Uribe and

Yue (2006). As such, there is a continuum of competitive housing firm producers who authorize housing investment

projects IAH
t in period t, which will increase housing stock NH periods later, the time it takes to build.3 Thus, the

law of motion for the aggregate stock of housing in Ht will consider projects authorized NH periods before, and

includes investment adjustment costs,

Ht = (1− δH)Ht−1 +

1− γH
2

(
IAH
t−NH

IAH
t−NH−1

− a

)2
 ξiht−NH

IAH
t−NH

where ξiht is a shock to housing investment efficiency, and the sector covers all demand for new housing, Ht − (1−

δH)Ht−1, by selling units at price QH
t .

The firm’s effective expenditure is spread out during the periods that new housing is being built. In particular,

3Notice that if NH = 0, the structure is symmetric to the capital producers.
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the amount of final goods purchased (at price Pt) by the firm in t to produce housing is given by

IHt =

NH∑
j=0

φH
j IAH

t−j

Where φH
j (the fraction of projects authorized in period t− j that is outlaid in period t) satisfy

∑NH

j=0 φ
H
j = 1 and

φH
j = ρφHφH

j−1.
4

Therefore a representative housing producer chooses how much to authorize in new projects IAH
t in order to

maximize the discounted utility of its profits,

∞∑
i=0

rt,t+i

QH
t+i

1− γH
2

(
IAH
t−NH+i

IAH
t−NH+i−1

− a

)2
 ξiht−NH+iI

AH
t−NH+i − Pt+iI

H
t+i


Where discounting is done according to patient households’ preferences, who are the owners of the firms. From

the first order condition a new relation can be obtained that relates the price of housing to the level of housing

investment

Et

NH∑
j=0

rt,t+jφ
H
j Pt+j = Etrt,t+NH

QH
t+NH

{[
1− γH

2

(
IAH
t

IAH
t−1

− a

)2
]
− γH

(
IAH
t

IAH
t−1

− a

)
IAH
t

IAH
t−1

}
ξiht

+Etrt,t+NH+1Q
H
t+NH+1

{
γH

(
IAH
t+1

IAH
t

− a

)(
IAH
t+1

IAH
t

)2

ξiht+1

}
(35)

2.4.3 Final goods

A representative final goods firm demands composite home and foreign goods in the amounts XH
t and XF

t ,

respectively, and combines them according to the following technology:

Y C
t =

[
ω1/η

(
XH

t

)1−1/η
+ (1− ω)

1/η (
XF

t

)1−1/η
] η

η−1

(36)

where ω ∈ (0, 1) is inversely related to the degree of home bias and η > 0 measures the substitutability between

domestic and foreign goods. The selling price of this final good is denoted by Pt, while the prices of the domestic

and foreign inputs are PH
t and PF

t , respectively. Subject to the technology constraint (36), the firm maximizes its

profits over the inputs, taking prices as given:

max
XH

t ,XF
t

Pt

[
ω1/η

(
XH

t

)1−1/η
+ (1− ω)

1/η (
XF

t

)1−1/η
] η

η−1 − PH
t XH

t − PF
t XF

t

4Notice that ρφH > 1 implies that expenditure for any authorized project is back-loaded (increasing over time), while the converse
is true for ρφH < 1.
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The first-order conditions of this problem determine the optimal input demands:

XH
t = ω

(
PH
t

Pt

)−η

Y C
t (37)

XF
t = (1− ω)

(
PF
t

Pt

)−η

Y C
t (38)

Combining these optimality conditions and using that zero profits hold in equilibrium, we can write

Pt =
[
ω
(
PH
t

)1−η
+ (1− ω)

(
PF
t

)1−η
] 1

1−η

(39)

2.4.4 Home composite goods

A representative home composite goods firm demands home goods of all varieties j ∈ [0, 1] in amounts XH
jt and

combines them according to the technology

Y H
t =

[∫ 1

0

(
XH

jt

) ϵH−1

ϵH dj

] ϵH
ϵH−1

(40)

with ϵH > 0. Let PH
jt denote the price of the home good of variety j. Subject to the technology constraint (40),

the firm maximizes its profits ΠH
t = PH

t Y H
t −

∫ 1

0
PH
jt X

H
jt dj over the input demands XH

jt taking prices as given:

max
XH

jt

PH
t

[∫ 1

0

(
XH

jt

) ϵH−1

ϵH dj

] ϵH
ϵH−1

−
∫ 1

0

PH
jt X

H
jt dj

This implies the following first-order conditions for all j:

∂XH
jt : PH

t

(
Y H
t

)1/ϵH (
XH

jt

)−1/ϵH − PH
jt = 0

such that the input demand functions are

XH
jt =

(
PH
jt

PH
t

)−ϵH

Y H
t (41)

Substituting (41) into (40) yields the price of home composite goods:

PH
t =

[∫ 1

0

(
PH
jt

)1−ϵH
dj

] 1
1−ϵH

(42)
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2.4.5 Home goods of variety j

There is a continuum of j’s firms, with measure one, that demand a domestic wholesale good XZ
t and differentiate

into home goods varieties Y H
jt . To produce one unit of variety j, firms need one unit of input according to

∫ 1

0

Y H
jt dj = XZ

t (43)

The firm producing variety j satisfies the demand given by (41) but it has monopoly power for its variety. For

varieties, the nominal marginal cost in terms of the composite good price is given by PH
t mcHjt . Given that, every

firm buys their input from the same wholesale market. It implies that all of them face the same nominal marginal

costs

PH
t mcHjt = PH

t mcHt = PZ
t (44)

Given nominal marginal costs PH
t mcHjt , firm j chooses its price PH

jt to maximize profits. In setting prices,

the firm faces a Calvo-type problem, whereby each period the firm can change its price optimally with probability

1− θH , and if it cannot optimally change its price, it indexes its previous price according to a weighted product of

past and steady state inflation with weights κH ∈ [0, 1] and 1 − κH respectively. A firm reoptimizing in period t

will choose the price P̃H
jt that maximizes the current market value of the profits generated until it can reoptimize

again. 5 As the firms are owned by the households, profits are discounted using the households’ stochastic discount

factor for nominal payoffs, rt,t+s. A reoptimizing firm, therefore, solves the following problem:

max
P̃H

jt

Et

∞∑
s=0

θsHrt,t+s

(
PH
jt+s − PH

t+smcHjt+s

)
Y H
jt+s s.t. Y H

jt+s = XH
jt+s =

(
P̃H
jt Π

s
i=1π

I,H
t+i

PH
t+s

)−ϵH

Y H
t+s

which can be rewritten as

max
P̃H

jt

Et

∞∑
s=0

θsHrt,t+s

[(
P̃H
jt Π

s
i=1π

I,H
t+i

)1−ϵH (
PH
t+s

)ϵH −mcHjt+s

(
P̃H
jt Π

s
i=1π

I,H
t+i

)−ϵH (
PH
t+s

)1+ϵH
]
Y H
t+s

5Therefore, the following relation holds: PH
jt+s = P̃H

jt π
I,H
t+1 . . . π

I,H
t+s , where πI,H

t =
(
πH
t−1

)κH
(
πT
t

)1−κH , πH
t = PH

t /PH
t−1, and π

T
t

denotes the inflation target in period t.
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The first-order conditions determining the optimal price P̃H
t can be written as follows:6

0 = Et

∞∑
s=0

θsHrt,t+s

[
(1− ϵH)

(
P̃H
t

)−ϵH (
Πs

i=1π
I,H
t+i

)1−ϵH (
PH
t+s

)ϵH
+ϵHmcHt+s

(
P̃H
t

)−ϵH−1 (
Πs

i=1π
I,H
t+i

)−ϵH (
PH
t+s

)1+ϵH
]
Y H
t+s

⇔ 0 = Et

∞∑
s=0

θsHrt,t+s

[
ϵH − 1

ϵH

(
P̃H
t Πs

i=1π
I,H
t+i

)1−ϵH
(
PH
t+s

)ϵH
PH
t

−mcHt+s

(
P̃H
t Πs

i=1π
I,H
t+i

)−ϵH
(
PH
t+s

)1+ϵH

PH
t

]
Y H
t+s

⇔ 0 = Et

∞∑
s=0

θsHrt,t+s

[
ϵH − 1

ϵH

(
p̃Ht Πs

i=1π
I,H
t+i

)1−ϵH
(
PH
t+s

PH
t

)ϵH

−mcHt+s

(
p̃Ht Πs

i=1π
I,H
t+i

)−ϵH
(
PH
t+s

PH
t

)1+ϵH
]
Y H
t+s

where the second step follows from multiplying both sides by−P̃H
t /(PH

t ϵH), and the third by defining p̃Ht = P̃H
t /PH

t .

The first-order condition can be rewritten in recursive form as follows, defining FH1
t as

FH1
t =

ϵH − 1

ϵH

(
p̃Ht
)1−ϵH

Y H
t + Et

∞∑
s=1

θsHrt,t+s
ϵH − 1

ϵH

(
p̃Ht Πs

i=1π
I,H
t+i

)1−ϵH
(
PH
t+s

PH
t

)ϵH

Y H
t+s

=
ϵH − 1

ϵH

(
p̃Ht
)1−ϵH

Y H
t + Et

∞∑
s=0

θs+1
H rt,t+s+1

ϵH − 1

ϵH

(
p̃Ht Πs+1

i=1π
I,H
t+i

)1−ϵH
(
PH
t+s+1

PH
t

)ϵH

Y H
t+s+1

=
ϵH − 1

ϵH

(
p̃Ht
)1−ϵH

Y H
t + θHEt

rt,t+1

(
p̃Ht πI,H

t+1

p̃Ht+1

)1−ϵH (
πH
t+1

)ϵH ∞∑
s=0

θsHrt+1,t+s+1
ϵH − 1

ϵH

×
(
p̃Ht+1Π

s
i=1π

I,H
t+1+i

)1−ϵH
(
PH
t+s+1

PH
t+1

)ϵH

Y H
t+s+1

}

=
ϵH − 1

ϵH

(
p̃Ht
)1−ϵH

Y H
t + θHEt

rt,t+1

(
p̃Ht πI,H

t+1

p̃Ht+1

)1−ϵH (
πH
t+1

)ϵH
FH1
t+1

 (45)

6Notice that the subscript j has been removed from P̃H
t ; this simplifies notation and underlines that the prices chosen by all firms

j that reset prices optimally in a given period are equal as they face the same problem by (44).
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and, analogously, FH2
t as

FH2
t =

(
p̃Ht
)−ϵH

mcHt Y H
t + Et

∞∑
s=1

θsHrt,t+smcHt+s

(
p̃Ht Πs

i=1π
I,H
t+i

)−ϵH
(
PH
t+s

PH
t

)1+ϵH

Y H
t+s

=
(
p̃Ht
)−ϵH

mcHt Y H
t + Et

∞∑
s=0

θs+1
H rt,t+s+1mcHt+s+1

(
p̃Ht Πs+1

i=1π
I,H
t+i

)−ϵH
(
PH
t+s+1

PH
t

)1+ϵH

Y H
t+s+1

=
(
p̃Ht
)−ϵH

mcHt Y H
t + θHEt

rt,t+1

(
p̃Ht πI,H

t+1

p̃Ht+1

)−ϵH (
πH
t+1

)1+ϵH
∞∑
s=0

θsHrt+1,t+s+1mcHt+s+1

×
(
p̃Ht+1Π

s
i=1π

I,H
t+1+i

)−ϵH
(
PH
t+s+1

PH
t+1

)1+ϵH

Y H
t+s+1

}

=
(
p̃Ht
)−ϵH

mcHt Y H
t + θHEt

rt,t+1

(
p̃Ht πI,H

t+1

p̃Ht+1

)−ϵH (
πH
t+1

)1+ϵH
FH2
t+1

 (46)

such that

FH1
t = FH2

t = FH
t (47)

Using (42), we have

1 =

∫ 1

0

(
PH
jt

PH
t

)1−ϵH

dj

= (1− θH)
(
p̃Ht
)1−ϵH

+ θH

(
PH
t−1π

I,H
t

PH
t

)1−ϵH

= (1− θH)
(
p̃Ht
)1−ϵH

+ θH

(
πI,H
t

πH
t

)1−ϵH

(48)

The second equality above follows from the fact that, under Calvo pricing, the distribution of prices among firms

not reoptimizing in period t corresponds to the distribution of aggregate prices in period t − 1, though with total

mass reduced to θH .

2.4.6 Wholesale Domestic Goods

There is a representative firm producing a homogeneous wholesale home good, combining capital and labor according

to the following technology:

Y Z
t = ztK

α
t−1 (Atñt)

1−α
(49)

with capital share α ∈ (0, 1), an exogenous stationary technology shock zt and a non-stationary technology At.

Production of the wholesale good composite labor services ñt and capital Kt−1. Additionally, following Lechthaler

and Snower (2010), the firm faces a quadratic adjustment costs of labor which is a function of parameter γn, and of

aggregate wholesale domestic goods Ỹt

Z
, which in equilibrium are equal to Y Z

t and which the representative firm
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takes as given. In a first stage, the firm hires composite labor and rents capital to solve the following problem:

min
ñt+s,Kt+s−1

∞∑
s=0

rt,t+s

{
Wt+sñt+s +

γn
2

(
ñt+s

ñt+s−1
− 1

)2

Ỹt+s

Z
PZ
t +RtKt+s−1

}
s.t. Y Z

t+s = XZ
t+s = zt+sK

α
t+s−1 (At+sñt+s)

1−α

Then, the optimal capital and labor demands are given by:

ñt = (1− α)

 mcZt Y
Z
t

Wt + γn

(
ñt

ñt−1
− 1
)(

1
ñt−1

)
Ỹt

Z
PZ
t − rt,t+1γnEt

(
ñt+1

ñt
− 1
)(

ñt+1

ñ2
t

)
Ỹ Z
t+1P

Z
t+1

 (50)

Kt−1 = α

(
mcZt
Rk

t

)
Y Z
t (51)

Where mcZt is the lagrangian multiplier on the production function and rt,t+1 the households’ stochastic

discount factor between periods t and t+ 1. The, combining both optimality conditions:

Kt−1

ñt
=

α

(1− α)Rk
t

{
Wt + γn

(
ñt

ñt−1
− 1

)(
1

ñt−1

)
Ỹ Z
t PZ

t − rt,t+1γnEt

(
ñt+1

ñt
− 1

)(
ñt+1

ñ2
t

)
Ỹ Z
t+1P

Z
t+1

}

Substituting (50) and (51) into (49) we obtain an expression for the real marginal cost in units of the wholesale

domestic good:

mcZt =
1

αα (1− α)
1−α

(
Rk

t

)α
ztA

1−α
t

{
Wt + γn

(
ñt

ñt−1
− 1

)(
1

ñt−1

)
Ỹ Z
t PZ

t

− rt,t+1γnEt

(
ñt+1

ñt
− 1

)(
ñt+1

ñ2
t

)
Ỹ Z
t+1P

Z
t+1

}1−α

In a second stage, the wholesale firm maximize its profits from the production of Y Z
t , which is sold as XZ

t at

PZ
t . The problem is:

max
Y Z
t

(
PZ
t −mcZt

)
Y Z
t

The first-order condition implies that

PZ
t = mcZt .

2.4.7 Foreign composite goods

As in the case of home composite goods, a representative foreign composite goods firm demands foreign goods of

all varieties j ∈ [0, 1] in amounts XF
jt and combines them according to the technology

Y F
t =

[∫ 1

0

(
XF

jt

) ϵF −1

ϵF dj

] ϵF
ϵF −1

(52)
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with ϵF > 0. Let PF
jt denote the price of the foreign good of variety j. Analogously to the case of home composite

goods, profit maximization yields the input demand functions

XF
jt =

(
PF
jt

PF
t

)−ϵF

Y F
t (53)

for all j, and substituting (53) into (52) yields the price of foreign composite goods:

PF
t =

[∫ 1

0

(
PF
jt

)1−ϵF
dj

] 1
1−ϵF

(54)

2.4.8 Foreign goods of variety j

Importing firms buy an amount Mt of a homogeneous foreign good at the price PM⋆
t abroad and convert this good

into varieties Y F
jt that are sold domestically, and where total imports are

∫ 1

0
Y F
jt dj. We assume that the import

price level PM⋆
t cointegrates with the foreign producer price level P ⋆

t , i.e., P
M⋆
t = P ⋆

t ξ
m
t , where ξmt is a stationary

exogenous process. The firm producing variety j satisfies the demand given by (53) but it has monopoly power

for its variety. As it takes one unit of the foreign good to produce one unit of variety j, nominal marginal costs in

terms of composite goods prices are

PF
t mcFjt = PF

t mcFt = StP
M⋆
t = StP

⋆
t ξ

m
t (55)

Given marginal costs, the firm producing variety j chooses its price PF
jt to maximize profits. In setting prices,

the firm faces a Calvo-type problem similar to domestic firms, whereby each period the firm can change its price

optimally with probability 1−θF , and if it cannot optimally change its price, it indexes its previous price according

to a weighted product of past and steady state inflation with weights κF ∈ [0, 1] and 1 − κF respectively. A firm

reoptimizing in period t will choose the price P̃F
jt that maximizes the current market value of the profits generated

until it can reoptimize.7 The solution to this problem is analogous to the case of domestic varieties, implying the

first-order condition

FF1
t = FF2

t = FF
t (56)

where, defining p̃Ft = P̃F
t /PF

t ,

FF1
t =

ϵF − 1

ϵF

(
p̃Ft
)1−ϵF

Y F
t + θFEt

rt,t+1

(
p̃Ft π

I,F
t+1

p̃Ft+1

)1−ϵF (
πF
t+1

)ϵF
FF1
t+1


and

FF2
t =

(
p̃Ft
)−ϵF

mcFt Y
F
t + θFEt

rt,t+1

(
p̃Ft π

I,F
t+1

p̃Ft+1

)−ϵF (
πF
t+1

)1+ϵF
FF2
t+1


7As in the home varieties case, the following relation holds: PF

jt+s = P̃F
jtπ

I,F
t+1 . . . π

I,F
t+s, where πI,F

t = (πF
t−1)

κF (πT
t )1−κF , and, in

turn, πF
t = PF

t /P
F
t−1.
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Using (54), we further have

1 = (1− θF )
(
p̃Ft
)1−ϵF

+ θF

(
πI,F
t

πF
t

)1−ϵF

(57)

2.4.9 Wages

Recall that demand for productive labor is satisfied by perfectly competitive packing firms that demand all varieties

i ∈ [0, 1] of labor services in amounts nt (i) and combine them in order to produce composite labor services ñt. The

production function, variety i demand, and aggregate nominal wage are respectively given by:

ñt =

[∫ 1

0

nt (i)
ϵW −1

ϵW di

] ϵW
ϵW −1

, ϵW > 0. (58)

nt (i) =

(
Wt (i)

Wt

)−ϵW

ñt (59)

Wt =

[∫ 1

0

Wt (i)
1−ϵW di

] 1
1−ϵW

. (60)

Regarding the supply of differentiated labor, as in Erceg et al. (2010), there is a continuum of monopolistically

competitive unions indexed by i ∈ [0, 1], which act as wage setters for the differentiated labor services supplied by

households. These unions allocate labor demand uniformly across patient and impatient households, so nP
t (i) =

nI
t (i) and nP

t (i) + nI
t (i) = nt (i) ∀i, t, with nP

t (i) = ℘Un
U
t (i) + (1− ℘U )n

R
t (i), which also holds for the aggregate

nP
t , n

I
t and nt.

The union supplying variety i satisfies the demand given by (59) but it has monopoly power for its variety.

Wage setting is subject to a Calvo-type problem, whereby each period a union can set its nominal wage optimally

with probability 1 − θW . The wages of unions that cannot optimally adjust, are indexed to a weighted average of

past and steady state productivity and inflation, with a gross growth rate of

πI,W
t ≡ aαW

t−1a
1−αW πκW

t−1π
1−κW

Where ΓW
t,s = Πs

i=1π
I,W
t+i is the growth of indexed wages s periods ahead of t. A union reoptimizing in period t chooses

the wage W̃t (equal for patient and impatient households) that maximizes the households’ discounted lifetime utility.

This union weights the benefits of wage income by considering the agents’ marginal utility of consumption –which

will usually differ between patient and impatient households– and weighs each household equally by considering a

lagrangian multiplier of λW
t =

(
λP
t + λI

t

)
/2, with λP

t = ℘Uλ
U
t +(1− ℘U )λ

R
t . We assume, for the sake of simplicity,

that βW = (βP + βI) /2 with βP = ℘UβU +(1− ℘U )βR, and Θt =
(
ΘP

t +ΘI
t

)
/2 with ΘP

t = ℘UΘ
U
t +(1− ℘U )Θ

R
t .

All things considered, taking the aggregate nominal wage as given, the union i’s maximization problem can be
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expressed as

max
W̃t(i)

Et

∞∑
s=0

(βUθW )
s
ϱt+s

(
λU
t+sA

−σ
t+s

Pt+s
W̃tΓ

W
t,snt+s (i)−Θt+s (At+s)

1−σ
ξnt+s

nt+s (i)
1+φ

1 + φ

)
,

s.t. nt+s (i) =

(
W̃tΓ

W
t,s

Wt+s

)−ϵW

ñt+s,

Which, after some derivation, results in the FOCs in a recursive formulation:

fW1
t = w̃1−ϵW

t

(
ϵW − 1

ϵW

)
ñt + βUθWEt

a−σ
t+1

ϱt+1

ϱt

λU
t+1

λU
t

πW
t+1

πt+1

(
πW̃
t+1

πI,W
t+1

)ϵW−1

fW1
t+1


fW2
t = w̃

−ϵW (1+φ)
t mcWt ñt + βUθWEt

a−σ
t+1

ϱt+1

ϱt

λU
t+1

λU
t

πW
t+1

πt+1

(
πW̃
t+1

πI,W
t+1

)ϵW (1+φ)

fW2
t+1


Where fW1

t = fW2
t = fW

t are the LHS and RHS of the FOC respectively, mcWt = −(Un/UC)/(Wt/AtPt) =

ξnt (ñt)
φ
/λU

t (
AtPt

Wt
)Θt, is the gap with the efficient allocation when wages are flexible8, πW

t+1 = Wt+1/Wt, πW̃
t+1 = W̃t+1/W̃t

and w̃t = W̃t/Wt.

Further, let ΨW (t) denote the set of labor markets in which wages are not reoptimized in period t. By (60),

the aggregate wage index Wt evolves as follows:

(Wt)
1−ϵW =

∫ 1

0

Wt (i)
1−ϵW di = (1− θW )

(
W̃t

)1−ϵW
+

∫
ΨW (t)

[
Wt−1 (i)π

I,W
t

]1−ϵW
di,

= (1− θW )
(
W̃t

)1−ϵW
+ θW

[
Wt−1π

I,W
t

]1−ϵW
,

or, dividing both sides by (Wt)
1−ϵW :

1 = (1− θW )w̃1−ϵW
t + θW

(
πI,W
t

πW
t

)1−ϵW

.

The third equality above follows from the fact that the distribution of wages that are not reoptimized in period t

corresponds to the distribution of effective wages in period t− 1, though with total mass reduced to θW .

Finally, the clearing condition for the labor market is

nt =

∫ 1

0

nt (i) di = ñt

∫ 1

0

(
Wt (i)

Wt

)−ϵW

di = ñtΞ
W
t ,

Where ΞW
t is a wage dispersion term that satisfies

ΞW
t = (1− θW )w̃

−ϵ
W

t + θ
W

(
πI,W
t

πW
t

)−ϵW

ΞW
t−1.

8Un and UC are the first derivatives of the utility function with respect to labor and consumption respectively.
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2.4.10 Commodities

We assume the country receives an exogenous and stochastic endowment of commodities Y Co
t . Moreover, these

commodities are not consumed domestically but entirely exported. Therefore, the entire production is sold at a

given international price PCo⋆
t , which is assumed to evolve exogenously. We further assume that the government

receives a share χ ∈ [0, 1] of this income and the remaining share goes to foreign agents.

2.5 Fiscal and monetary policy

The government consumes an exogenous stream of final goods Gt, pays through an insurance agency IAt for deposits

and bonds defaulted by banks, levies lump-sum taxes on patient households TP
t , and issues one-period bonds BSG

t

and long-term bonds BLG
t . Hence, the government satisfies the following period-by-period constraint:

Tt−BSG
t −QBL

t BLG
t + χStP

Co⋆
t Y Co

t = PtGt−Rt−1BSG
t−1 −RBL

t QBL
t BLG

t−1 + IAt (61)

where

Tt = αTGDPNt + ϵt
(
BSG

SS −BSG
t +QBL

SS BLG
SS −QBL

t BLG
t

)
(62)

and

IAt = γDPDD
t RD

t−1D
F
t−1 + γBHPDH

t RBB
t QBB

t BBPr
t−1 (63)

As in Chen et al. (2012), we assume that the government control the supply of long-term bonds according to

a simple rule given by an exogenous AR(1) process on BLG
t . In turn, monetary policy is carried out according to

a Taylor-type rule of the form

Rt

R
=

(
Rt−1

R

)αR
[(

(1− αE)πt + αEEt {πt+4}
πT
t

)απ
(
GDPt/GDPt−1

a

)αy
]1−αR

emt (64)

where αR ∈ [0, 1), απ > 1, αy ≥ 0, αE ∈ [0, 1] and where πT
t is an exogenous inflation target and emt an i.i.d. shock

that captures deviations from the rule.9

2.6 Rest of the world

Foreign agents demand home composite goods and buy the domestic commodity production. There are no

transaction costs or other barriers to trade. The structure of the foreign economy is identical to the domestic

economy, but the domestic economy is assumed to be small relative to the foreign economy. The latter implies

that the foreign producer price level P ⋆
t is identical to the foreign consumption-based price index. Further, let PH⋆

t

denote the price of home composite goods expressed in foreign currency. Given full tradability and competitive

export pricing, the law of one price holds separately for home composite goods and the commodity good, i.e.

PH
t = StP

H⋆
t and PCo

t = StP
Co⋆
t . That is, domestic and foreign prices of both goods are identical when expressed

9We do not need a time-varying target, so we will set it to a constant.
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in the same currency. Due to local currency pricing, a weak form of the law of one price holds for foreign composite

goods, i.e., PF
t mcFt = StP

⋆
t ξ

m
t from (55). The real exchange rate rert therefore satisfies

rert =
StP

⋆
t

Pt
=

PF
t

Pt

mcFt
ξmt

(65)

We also have the following relation
rert

rert−1
=

πs
tπ

⋆
t

πt
(66)

where πs
t = St/St−1. Foreign demand for the home composite good XH⋆

t is given by

XH⋆
t =

(
PH
t

StP ⋆
t

)−η⋆

Y ⋆
t (67)

with η⋆ > 0 and where Y ⋆
t denotes foreign aggregate demand or GDP. Both Y ⋆

t and π⋆
t evolve exogenously. The

relevant foreign nominal interest rate is composed by an exogenous risk-free world interest rate RW
t plus a country

premium that decreases with the economy’s net foreign asset position (expressed as a ratio of nominal GDP):

R⋆
t = RW

t exp

{
− ϕ⋆

100

(
StB

⋆
t

GDPNt
− b̄

)}
ξRt z

R
t (68)

with ϕ⋆ > 0 and where ξRt is an exogenous shock to the country premium.

2.7 Aggregation and Market Clearing

2.7.1 Aggregation across patient households

Aggregate variables add up the per-capita amounts from unrestricted and restricted patient households, according

to their respective mass ℘U and 1− ℘U :

CP
t = ℘UC

U
t + (1− ℘U )C

R
t

HP
t = ℘UH

U
t + (1− ℘U )H

R
t

nP
t = ℘Un

U
t + (1− ℘U )n

R
t

nU
t = nR

t

DTot
t = ℘UD

U
t

B∗,Tot
t = ℘UB

⋆,U
t

BSPr
t = ℘UBSU

t

BLPr
t = ℘UBLU

t + (1− ℘U )BLR
t
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BBPr
t = ℘UBBU

t

2.7.2 Goods market clearing

In the market for the final good, the clearing condition is

Y C
t = CP

t + CI
t + It+IHt +Gt + Υt/Pt (69)

where Υt includes final goods used in default costs: the resources lost by households recovering deposits at failed

banks, the resources lost by the banks to recover the proceeds from defaulted bank loans by the recovery of deposits

by the deposit insurance agency and the cost of adjusting labor.

Υt =

γDPDB
t RD

t−1D
Tot
t−1 + γDPDB

t QBB
t RBB

t BBPr
t−1 + µeGe (ω̄

e
t )R

e
tQ

K
t−1Kt−1+µIGI

(
ω̄I
t

)
RH

t QH
t−1H

I
t−1

+µHGH

(
ω̄H
t

)
R̃H

t QL
t−1L

H
t−1 + µFGF

(
ω̄F
t

)
R̃F

t L
F
t−1

+γn

2

(
ñt

ñt−1
− 1
)2

Y Z
t +QL

t (L
H
t − κLH

t−1)

[
γL

2

(
LH

t −κLH
t−1

LH
t−1−κLH

t−2
− ā
)2]

In the market for the home and foreign composite goods we have, respectively,

Y H
t = XH

t +XH⋆
t (70)

and

Y F
t = XF

t (71)

while in the market for home and foreign varieties we have, respectively,

Y H
jt = XH

jt (72)

and

Y F
jt = XF

jt (73)

for all j.

In the market for the wholesale domestic good, we have

Y Z
t = XZ

t (74)

Finally, in the market for housing, demand from both households must equal supply from housing producers:

Ht = HP
t +HI

t (75)
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2.7.3 Factor market clearing

In the market for labor, the clearing conditions are:

nP
t + nI

t = nt = ñtΞ
W
t (76)

nP
t = nI

t =
nt

2
(77)

Combining (51) and (50), the capital-labor ratio satisfies:

Kt−1

ñt
=

α

(1− α)Rk
t

{
Wt + γn

(
ñt

ñt−1
− 1

)(
1

ñt−1

)
Y Z
t PZ

t − rt,t+1γnEt

(
ñt+1

ñt
− 1

)(
ñt+1

ñ2
t

)
Y Z
t+1P

Z
t+1

}
(78)

2.7.4 Deposits clearing

Bank F takes deposits, and its demand must equal the supply from unrestricted households:

DF
t = DTot

t (79)

2.7.5 Domestic bonds clearing

The aggregate net holding of participating agents in bond markets are in zero net supply:

BLPr
t +BLCB

t +BLG
t = 0 (80)

BSPr
t +BSG

t = 0 (81)

Where BLCB
t is an exogenous process that represents the long-term government bond purchases done by the

Central Bank.

2.7.6 No-arbitrage condition in bond markets

The no-arbitrage condition implies the following relation between short and long-tem interest rates:

Rt

(
1 + ζLt

RBL
t − κB

)
= Et

{
ϱt+1λ

UP
t+1

πt+1

(
RBL

t+1

RBL
t+1 − κB

)
A−σ

t+1

}(
Et

{
ϱt+1λ

UP
t+1

πt+1
A−σ

t+1

})−1

which can be further rearranged (up to a first order) by using the definition of RBL
t

Rt

(
1 + ζLt

)
≈ Et

{(
QBL

t+1

QBL
t

RBL
t+1

)}
(82)
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2.7.7 Inflation and relative prices

The following holds for j = H,F :

pjt =
P j
t

Pt

and, also,
pjt

pjt−1

=
πj
t

πt

2.7.8 Aggregate supply

Using the productions of different varieties of home goods (43)

∫ 1

0

Y H
jt dj = XZ

t

Integrating (72) over j and using (41) then yields aggregate output of home goods as

∫ 1

0

Y H
jt dj =

∫ 1

0

XH
jt dj = Y H

t

∫ 1

0

(
pHjt
)−ϵH

dj

or, combining the previous two equations,

Y H
t ΞH

t = XZ
t

where ΞH
t is a price dispersion term satisfying

ΞH
t =

∫ 1

0

(
PH
jt

PH
t

)−ϵH

dj

= (1− θH)
(
p̃Ht
)−ϵH

+ θH

(
πI,H
t

πH
t

)−ϵH

ΞH
t−1

2.7.9 Aggregate demand

Aggregate demand or GDP is defined as the sum of domestic absorption and the trade balance. Domestic absorption

is equal to Y C
t = CP

t + CI
t + It+IHt +Gt +Υt. The nominal trade balance is defined as

TBt = PH
t XH⋆

t + StP
Co⋆
t Y Co

t − StP
M⋆
t Mt (83)

Integrating (73) over j and using (53) allows us to write imports as

Mt =

∫ 1

0

Y F
jt dj =

∫ 1

0

XF
jtdj = Y F

t

∫ 1

0

(
PF
jt

PF
t

)−ϵF

dj = Y F
t ΞF

t
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where ΞF
t is a price dispersion term satisfying

ΞF
t = (1− θF )

(
p̃Ft
)−ϵF

+ θF

(
πI,F
t

πF
t

)−ϵF

ΞF
t−1

We then define real GDP as

GDPt = Y NoCo
t + Y Co

t

where non-mining GDP, Y NoCo
t , is given by

Y NoCo
t = CP

t + CI
t + It + IHt +Gt +XH⋆

t −Mt

and nominal GDP is defined as

GDPNt = Pt

(
CP

t + CI
t + It+IHt +Gt

)
+ TBt (84)

Note that by combining (84) with the zero profit condition in the final goods sector, i.e., PtY
C
t = PH

t XH
t +PF

t XF
t ,

and using the market clearing conditions for final and composite goods, (69)-(70), GDP is seen to be equal to total

value added (useful for the steady state):

GDPNt = PtY
C
t −Υt + PH

t XH⋆
t + StP

Co⋆
t Y Co

t − StP
M⋆
t Mt

= PH
t XH

t + PF
t XF

t −Υt + PH
t XH⋆

t + StP
Co⋆
t Y Co

t − StP
M⋆
t Mt

= PH
t Y H

t + StP
Co⋆
t Y Co

t + PF
t XF

t − StP
M⋆
t Mt −Υt
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2.7.10 Balance of payments

Aggregate nominal profits, dividends, rents and taxes are given by

Ψt = PtY
C
t − PH

t XH
t − PF

t XF
t︸ ︷︷ ︸

ΠC
t

+ PH
t Y H

t −
∫ 1

0

PH
jt X

H
jt dj︸ ︷︷ ︸

ΠH
t

+ PF
t Y F

t −
∫ 1

0

PF
jtX

F
jtdj︸ ︷︷ ︸

ΠF
t

+

∫ 1

0

Y H
jt

(
PH
jt − PZ

t

)
dj︸ ︷︷ ︸∫ 1

0
ΠH

jtdj

+

∫ 1

0

(
PF
jtY

F
jt − StP

M⋆
t Y F

jt

)
dj︸ ︷︷ ︸∫ 1

0
ΠF

jtdj

+QK
t (Kt − (1− δK)Kt−1)− PtIt︸ ︷︷ ︸

ΠI
t

+QH
t (Ht − (1− δH)Ht−1)− PtI

H
t︸ ︷︷ ︸

ΠIH
t

+
(
PZ
t −mcZt

)
Y Z
t︸ ︷︷ ︸

ΠZ
t

+ζLt

(
1

RBL
t − κB

)
BLU

t︸ ︷︷ ︸
ΠF

t

+ Ce
t + Cb

t + StREN∗
t − Tt

= Pt (Ct +Gt) + Υt + PH
t XH⋆

t − StP
M⋆
t Mt −Wtnt −Rk

tKt−1 +QK
t (Kt − (1− δK)Kt−1)

+QH
t (Ht − (1− δH)Ht−1) + Ce

t + Cb
t + StREN∗

t − Tt + ζLt

(
1

RBL
t − κB

)
BLU

t

= Pt (Ct +Gt) + Υt + TBt − StP
Co⋆
t Y Co

t −Wtnt −Rk
tKt−1 +QK

t (Kt − (1− δK)Kt−1)

+QH
t (Ht − (1− δH)Ht−1) + Ce

t + Cb
t + StREN∗

t − Tt + ζLt

(
1

RBL
t − κB

)
BLU

t

Where the second equality uses the market clearing conditions (69)-(81), and the third equality uses the definition

of the trade balance, (83). Substituting out Ψt in the households’ budget constraint (5) and using the government’s

budget constraint (61) to substitute out taxes Tt shows that the net foreign asset position evolves according to

StB
⋆
t = StB

⋆
t−1R

⋆
t−1 + TBt + StREN∗

t − (1− χ)StP
Co⋆
t Y Co

t

3 Parameterization strategy and estimation results

The model parameters are calibrated and estimated. The calibrated parameters include those characterizing model

dynamics for which we have a data counterpart, those drawn from related studies, and those chosen to match the

Chilean economy’s sample averages or long-run ratios. In particular, we follow closely the calibration strategy from

Garcia et al. (2019) and Clerc et al. (2014), as the models described there form the basis of this paper’s framework.

We estimate the non-calibrated parameters using Bayesian techniques as discussed below.

3.1 Calibration

Table 1 presents the values of the parameters related to the real sector of the economy that are either chosen from

previous studies in the relevant literature or chosen in order to match exogenous steady state moments. The value

of the parameters α, αE , βU , βR, χ, ϵF , ϵH , ϵW , ω and πT are taken from Garcia et al. (2019). We assume that the
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housing capital depreciation rate, δH is equal to the productive capital depreciation rate, δK , whose value is taken

from ?. The value for βI is taken from Clerc et al. (2014).

Table 1: Calibration, Real Sector

Parameter Description Value Source

α Capital share in production function 0.34 Garcia et al. (2019)
αE Expected Inflation weight in Taylor Rule 0.50 Garcia et al. (2019)
αBSG Short-term govt. bonds as percentage of GDP -0.40 Data: 2009-2019
αBLG Long-term govt. bonds as percentage of GDP -4.50 Data: 2009-2019
βU , βR Patient HH Utility Discount Factors 0.99997 Garcia et al. (2019)
βI Impatient Utility HH Discount Factor 0.98 Clerc et al. (2014)
δK Capital Annual depreciation rate 0.01 ?
δH Housing Annual Depreciation rate 0.01 Same as capital depreciation
ϵF Elasticity of substitution among foreign varieties 11 Garcia et al. (2019)
ϵH Elasticity of substitution among home varieties 11 Garcia et al. (2019)
ϵW Elasticity of substitution among types of workers 11 Garcia et al. (2019)
ϵτ Convergence speed towards SS Gov debt 0.10 Normalization
NH Time-to-build periods in housing goods 6 CBC’s 2018S2 Financial report
κ Coupon discount in housing loans 0.975 10 years duration of loan contract
κBL Coupon discount in long term government bonds 0.975 10 years bond duration
κBB Coupon discount in long term banking bonds 0.95 5 years bond duration
πT Annual inflation target of 3% 1.031/4 Garcia et al. (2019)
ρφh Spending profile for long term housing investment 1 Even investment distribution
σ Log Utility 1 Garcia et al. (2019)
υ Strength of households wealth effect 0 No wealth effect
χ Government share in commodity sector 0.33 Garcia et al. (2019)
ω Home bias in domestic demand 0.79 Garcia et al. (2019)
ωU Fraction of unrestricted patient households 0.70 Chen et al. (2012)
ωBL Ratio of long term assets to short assets 0.822 Chen et al. (2012)

The parameters that set the steady state value of short term and long term government bonds as a percentage

of GDP, αBSG and αBLG, respectively, were calculated from data obtained from DCV10. The value used for the

time that takes a house to be built, NH is taken from the second semester of 2018 IEF.11 The parameters that

determine the coupons’ geometric decline of the long term housing debt, κ, and government bonds, κBL, are set so

their duration is 10 years. The duration of the bank bonds, κBB , is set to 5 years.

For the housing investment sector, we set the time to built duration, defined by the parameter NH , to 6

quarters in order to match the average length of construction projects, and assume an even investment spending

profile for housing capital, consistent with a value of 1 for ρφh. Following Garcia et al. (2019), we set the value of

the parameter that determines the strength of the wealth effect, υ, to 0, to avoid undesired dynamics in the labor

market.

For the calibration of the parameters related to the financial sector, shown in Table 2, the values of χb, χe,

γbh, γd, µe, µF , µH and µI come from Clerc et al. (2014). The values for the parameters related to bank capital

requirements, ϕF and ϕH , are set as the ratio between the average level of TIER I capital of over the risk weighted

assets of the banking system from the year 2000 to the year 2020. In particular, we calculate 4.3% excess of TIER

10DCV is an entity that processes and registers transfer operations that take place in several exchange markets.
11IEF stands for Financial Stability Report published twice a year by the Central Bank of Chile.
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I capital in addition to legal 9.75%. For corporate banks we assume 100% weight in corporate loans, while for

housing bank we assume 60% weight in housing loans.

Table 2: Calibration, Financial Sector

Parameter Description Value Source

χb Banks dividend policy 0.04 Clerc et al. (2015)
χe Entrepreneurs dividend policy 0.05 Clerc et al. (2015)
γbh Household cost bank bonds default 0.10 Clerc et al. (2015)
γd Cost of recovering defaulted bank deposits 0.10 Clerc et al. (2015)
ϕF Bank Capital Requirement (RWA) 0.14 Data (2000-2022)
ϕH Bank Capital Requirement (RWA) 0.10 Data (2000-2022)

3.2 Estimation and Results

We compute the model solution by a second order approximation around the deterministic steady state. However,

the parameters whose values are not calibrated are estimated using Bayesian methods with linear approximation.

The data for the estimation, described in Table 3, includes 25 macroeconomic and financial variables from between

2001Q3 and 2019Q3. Data for the real Chilean sector is obtained from the Central Bank of Chile’s National

Accounts database, while prices and labor statistics are obtained from the National Statistics Institute (INE).

Finally, local financial data is obtained from the Financial Markets Committee (CMF), and foreign data is obtained

from Bloomberg. Variables regarding the real sector are log-differentiated with respect to the previous quarter. All

variables are demeaned. Our estimation strategy also includes i.i.d. measurement errors for all local observables

with the exception of the interest rate. The variance of the measurement errors is calibrated to 10% of the variance

of the corresponding observable.

Table 3: Observable Data

Non Financial Financial

∆log Y NoCo
t Non mining real GDP RL

t Comercial Loans interest Rate
∆ log Y Co

t Copper real GDP RI
t Housing Loans Interest Rate

∆ logCt Total Consumption RD
t Nominal Interest Rate on Deposits

∆ logGt Goverment Consumption RLG
t 10 Year BCP Rate

∆ log IKt Real Capital Investment ∆ logLt Housing and Corporate Loan
∆ log IHt Real Housing Investment ROEt Banks ROE
TBt/GDPNt Trade Balance-GDP Ratio R∗

t LIBOR
∆ logNt Total Employment ΞR

t EMBI Chile
∆ logWNt Nominal Cost of labor rert Real Exchange Rate
πt Core CPI Rt Nominal MPR
∆ log y∗

t Real External GDP
π∗
t Foreign Price Index

πM
t Imports Deflactor

πCo∗
t Nominal Copper Price

πH
t Housing Price Index

Sources: INE, BCCh, CMF and Bloomberg.

The posterior estimates are obtained using full information (Bayesian) maximum likelihood estimation. To

facilitate optimization, following Christiano et al. (2011), we scale some of the parameters for the shocks’ standard
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deviations to have a similar posterior order of magnitude. We choose the type of priors according to the related

literature from distributions that have supported distributions consistent with the theoretical values expected for

the parameters. In columns three, four and five of Table (4) we show the chosen prior distributions and prior

distribution moments of the estimated values of the deep parameters. The sixth and seventh columns of the same

table show the posterior mean and the 95% interval of the estimation. On the other hand, on Table 5 we show the

estimation priors and results of the parameters related to shock variables. For all autocorrelation coefficient we use

a beta distribution while for the standard deviation we use a inverse gamma distribution.

Table 4: Estimation, Deep Parameters

Parameter Description Prior Posterior
Dist Mean St Dev Mean 95% Inter

απ Inflation weight in Taylor Rule N 1.70 0.10 1.92 [1.76 2.08]
αR Lagged interest rate weight in Taylor Rule β 0.85 0.03 0.77 [0.74 0.81]
αW Weight on past productivity on wage indexation β 0.25 0.08 0.17 [0.04 0.29]
αy Output weight in Taylor Rule N 0.13 0.08 0.13 [0.01 0.25]
η Elasticity of subst. home and foreign goods γ 1.00 0.25 0.97 [0.71 1.23]
ηĈ Elasticity of subst. consumption and housing goods γ 1.00 0.25 0.12 [0.05 0.19]
η∗ Foreign demand elasticity of substitution γ 0.25 0.08 0.19 [0.07 0.30]
γH Housing investment adjustment cost parameter γ 3.00 0.25 2.98 [2.48 3.49]
γK Capital investment adjustment cost parameter γ 3.00 0.25 2.95 [2.46 3.43]
γn Labor adjustment cost parameter γ 3.00 0.25 1.80 [1.46 2.13]
γL Housing debt cost parameter γ 0.1 0.09 0.29 [0.11 0.47]
κF Weight on past inflation on foreign good indexation β 0.50 0.08 0.67 [0.55 0.79]
κH Weight on past inflation on home good indexation β 0.50 0.08 0.76 [0.66 0.86]
κW Weight on past inflation on wages indexation β 0.85 0.03 0.85 [0.79 0.90]
ϕ∗ Country premium elasticity to NFA position γ−1 1.00 Inf 0.34 [0.16 0.52]
ϕc Habit formation in good consumption β 0.85 0.03 0.89 [0.86 0.92]
ϕhh Habit formation in housing consumption β 0.85 0.03 0.81 [0.75 0.86]
θF Calvo param. foreign goods producers β 0.50 0.08 0.72 [0.68 0.75]
θH Calvo param. domestic goods producers β 0.50 0.03 0.82 [0.80 0.84]
θW Calvo param. wage setters β 0.50 0.08 0.58 [0.51 0.65]
φ Inverse Frisch elasticty γ 7.50 1.50 8.37 [5.84 10.9]
µe Monitoring cost of corporate loan default β 0.30 0.05 0.45 [0.36 0.54]
µF Monitoring cost of F bank default β 0.30 0.05 0.37 [0.26 0.47]
µH Monitoring cost of H bank default β 0.30 0.05 0.30 [0.20 0.40]
µi Monitoring cost of housing loan default β 0.30 0.05 0.23 [0.14 0.32]
ηζL Term premium elasticity to relative bond liquidity γ 0.15 0.03 0.14 [0.08 0.20]

Notes.— Reported posterior means and standard deviations are based on full information maximum likelihood estimation and Laplace
approximation.
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Table 5: Estimation, exogenous variables AR1 processes

Shock process A.R Prior Posterior S.D. Prior Posterior
Mean S.D Mean 90% HPD Mean S.D Mean 90% HPD

Non stat. productivity ρa 0.25 0.08 0.37 [0.20 0.55] 100× σa 0.50 Inf 0.38 [0.26 0.51]
Monetary Policy ρem 0.15 0.08 0.26 [0.06 0.46] 1000× σem 0.50 Inf 1.4 [1.03 1.77]
Government spending ρg 0.75 0.08 0.75 [0.62 0.88] 100× σg 0.50 Inf 1.77 [1.46 2.09]
Copper price ρpco 0.75 0.08 0.89 [0.84 0.94] 100× σpco 0.50 Inf 1.10 [0.90 1.30]
Foreign inflation ρπ∗ 0.75 0.08 0.44 [0.37 0.52] 100× σπ∗ 0.50 Inf 2.20 [1.79 2.62]
Foreign interest rate ρRW 0.75 0.08 0.89 [0.84 0.94] 1000× σRW 0.50 Inf 1.10 [0.84 1.36]
Entrepreneurs risk ρσe 0.75 0.08 0.96 [0.93 0.99] 100× σσe 0.50 Inf 2.42 [1.77 3.07]
Corporate bank risk ρσF 0.75 0.08 0.70 [0.56 0.85] 10× σσF 0.50 Inf 1.02 [0.46 1.59]
Housing bank risk ρσH 0.75 0.08 0.77 [0.61 0.92] 10× σσH 0.50 Inf 0.23 [0.04 0.42]
Housing valuation risk ρσI 0.75 0.08 0.92 [0.86 0.98] 10× σσI 0.50 Inf 5.39 [1.56 9.22]
Current consumption prefs. ρϱ 0.75 0.08 0.38 [0.28 0.49] 10× σϱ 0.50 Inf 3.35 [1.78 4.91]
Housing consumption prefs ρξh 0.75 0.08 0.93 [0.90 0.95] 10× σξh 0.50 Inf 1.42 [0.66 2.18]
Investment mg. eff.(K) ρξi 0.75 0.08 0.57 [0.42 0.72] 10× σξI 0.50 Inf 0.69 [0.41 0.96]
Investment mg. eff.(H) ρξih 0.75 0.08 0.88 [0.78 0.98] 10× σξih 0.50 Inf 1.75 [0.89 2.61]
Import prices ρξm 0.75 0.08 0.85 [0.76 0.93] 100× σξm 0.50 Inf 2.56 [1.93 3.19]
Labor disutility ρξn 0.75 0.08 0.75 [0.60 0.89] 10× σξn 0.50 Inf 3.86 [1.38 6.34]
Country premium ρξR 0.75 0.08 0.84 [0.75 0.92] 1000× σξR 0.50 Inf 0.65 [0.50 0.79]
Banker dividend ρξχb 0.75 0.08 0.82 [0.72 0.93] 10× σξχb 0.50 Inf 2.56 [1.93 3.19]
Entrepreneur dividend ρξχe 0.75 0.08 0.45 [0.34 0.56] 10× σξχe 0.50 Inf 2.02 [1.53 2.51]
Banker required return ρξroe 0.75 0.08 0.83 [0.74 0.92] 10× σξroe 0.50 Inf 0.37 [0.26 0.48]
Foreign demand ρξy∗ 0.85 0.08 0.90 [0.79 1.02] 100× σξy∗ 0.50 Inf 0.24 [0.04 0.44]
Mining productivity ρξyco 0.85 0.08 0.80 [0.63 0.97] 100× σξyco 0.50 Inf 3.23 [2.63 3.82]
Stat. productivity ρz 0.85 0.08 0.84 [0.76 0.93] 100× σz 0.50 Inf 1.22 [0.91 1.53]
UIP shock ρζu 0.75 0.08 0.96 [0.93 0.98] 1000× σzτ 0.50 Inf 1.64 [0.76 2.52]
Liquidity costs ρϵL 0.75 0.05 0.76 [0.66 0.86] 100× σϵL 0.50 Inf 0.09 [0.02 0.17]

Notes.— Reported posterior means and standard deviations are based on full information maximum likelihood estimation and Laplace
approximation. All of the autocorrelation parameters were estimated assuming a beta distribution while the standard deviation
parameters were estimated using an inverse gamma distribution.
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4 Results

4.1 Macro-financial implications of the CCyB

Figure 2: Response of real variables to a CCyB Shock
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Notes.— The figure shows the the impulse response to a CCyB shock (ereq,0 = 1%) that follows the AR(1) process CCyBt+1 =
0.9175 · CCyBt + ereq,t as shown in the upper left figure. The vertical axis of the figures corresponds to percentage deviations from
steady state (%) and quarterly basis points (BP).

Figure 3: Response of financial variables to a CCyB Shock
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Notes.— The figure shows the the impulse response to a CCyB shock (ereq,0 = 1%) that follows the AR(1) process CCyBt+1 =
0.9175 ·CCyBt + ereq,t. The vertical axis of the figures corresponds to percentage deviations from steady state (%) and quarterly basis
points (BP).

4.2 Optimal Simple Implementable Rule (SIR)

In this subsection we perform a welfare analysis to find optimal SIRs. In doing so, we define a SIR as a CCyB rule

of the form CCyBt(θ) = Xtθ, where Xt is a matrix of time-varying variables that will trigger the CCyB mechanism
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in our model, and θ is a vector of weights on these variables. To find the optimal SIR we perform a welfare analysis

in the spirit of Carrillo et al. (2021) and define the welfare of the economy, W(θ), as function of the parameters θ

using the equation (2) as follows

W(θ) =

I,U,R∑
i

Ei,0

{ ∞∑
t=1

βt
iϱt

[
1

1− σ

(
Ĉi

t(θ)
)1−σ

−Θi
t(θ)A

1−σ
t ξnt

(
ni
t(θ)

)1+φ

1 + φ

]}
(85)

To compare the welfare gains or losses resulting from activating the CCyB rule, we use as a baseline welfare, Wbase,

the welfare of the economy without a CCyB rule, i.e., with θ = 0. To define Wbase we use the perpetuity of welfare

in stochastic steady state, obtaining following the expression

Wbase ≡ W(θ|θ = 0) =

I,U,R∑
i

1

1− βi

[
1

1− σ

(
Ĉi

ss(θ|θ = 0)
)1−σ

−Θi
ss(θ|θ = 0)A1−σ

ss

(
ni
ss(θ|θ = 0)

)1+φ

1 + φ

]
(86)

To obtain a meaningful interpretation of the changes in welfare after implementing a SIR, the economy’s gains or

losses are expressed in consumption units. To do so, we define a consumption equivalent, Ce, as the permanent

change in consumption that equals the welfare of the economy with a SIR, W(θ), and the welfare of the economy

without a SIR, Wbase. In other words, it is the level of permanent consumption required to offset the welfare

gains/losses from implementing a certain SIR. From (1) we know that the consumption Ĉi
t is an aggregate goods,

composed of housing and consumer final goods, so we define the consumption equivalent as the consumption Ce

that solves

W(θ) = W(Ce|θ = 0) (87)

=

I,U,R∑
i

1

1− βi

[
1

1− σ

(
Ĉi

ss(C
e|θ = 0)

)1−σ

−Θi
ss(C

e|θ = 0)A1−σ
ss

(
ni
ss(C

e|θ = 0)
)1+φ

1 + φ

]
(88)

with

Ĉi
ss(C

e|θ = 0) =

[(
1− oĈ

) 1
η
Ĉ

(
Ci

ss(1− ϕc)(1 + Ce)
) η

Ĉ
−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
Hi

ss(1− ϕhh)
) η

Ĉ
−1

η
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] η
Ĉ

η
Ĉ

−1

(89)

Θi
ss(C

e|θ = 0) =χ̃i
ss(C

e|θ = 0)Aσ
ss

(
Ĉi

ss(C
e|θ = 0)

)−σ

(90)(
χ̃i
ss(C

e|θ = 0)
)v

=A−σv
ss

(
Ĉ
(
Ĉi

ss(C
e|θ = 0)

))σv
(91)

Therefore, when Ce > 0 there is a welfare gain from implementing the SIR with respect to the baseline scenario.

To keep the analysis simple, we will perform our analysis using SIRs of only two factors, i.e., θ = (θ1, θ2) and

CCyBt = θ1X1,t + θ2X2,t, where the variables (X1,t, X2,t) will define different implementation rules. In order to

find optimal SIRs we look for the weights (θ1, θ2) that maximize the welfare for a given set of variables (X1,t, X2,t).

First, the Figure 4 shows how the welfare defined in (88) changes when implementing an SIR of the type

CCyBt = θ1 log

(
∆(RL, R)t
∆(RL, R)tss

)
+ θ2 · CCyBt−1 (92)
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with ∆(RL, R)t is the rate spread between the commercial rate and the risk-free rate and for different values for

θ1 and θ2.

Figure 4: Consumption Equivalente for rule (92)

Notes.— This figure shows the consumption equivalent for different values of θ1 and θ2.

We can see that there are non-negligible welfare gains from using this SIFR. In the first place, we can note the

counter-cyclical nature of the rule by releasing CCyB when the rate spread increases (negative sign of θ1), and also,

the welfare gains obtained are higher when the capital adjustment can be carried out more quickly (less θ2) which

is in line with active capital management by banks.

TO BE COMPLETED

4.3 Optimal SIR with ELB

To be completed
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Figure 5: Steady state for different capital requirements
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Note: The figure shows the steady state for different levels of basic capital.

5 Conclusion

In this paper we have evaluated the welfare implications of introducing a countercyclical buffer rule which is simple

and implementable. We do so by building a macro-banking model with two inefficiencies: nominal rigidities and

financial frictions. This gives room for monetary and financial policies to be desirable. We use our model to study

the functional form of a SIR for financial policy. Further, we argue that the countercyclical nature of the CCyB

and its institutional design (zero lower bound) imply a rationale for a neutral positive level of the buffer.

To be completed
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ONLINE APPENDIX

A Stationary Equilibrium Conditions

In the model described in the previous sections, real variables in uppercase contain a unit root in equilibrium due to the presence of the
non-stationary productivity vector At. Uppercase nominal variables contain an additional unit root given by the non-stationarity of
the price level. In this section we show the stationary version of the model, where we define at = At/At−1, and all lowercase variables
denote the stationary counterpart of the original variables, obtained by dividing them by its co-integration vector(At or Pt).

The rational expectations equilibrium of the stationary version of the model is then the set of sequences for the endogenous
variables such that for a given set of initial values and exogenous processes the following conditions are satisfied:

A.1 Patient Households
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A.2 Impatient Households
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Ĉ

(
cIt − ϕc

cIt−1

at

) η
Ĉ
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Ĉ

(
ξht

(
hIt−1

at
− ϕhh

hIt−2

atat−1

)) η
Ĉ
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]
−
κlHt−1q̂

L
t−1

at
=
wtnt

2
+
[
1− ΓI

(
ω̄I
t

)] RH
t q

H
t−1h

I
t−1

atπt
(23)

ϱtq
L
t

{
λIt

[
1−

γL

2
(∇l̃t − ā)2
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]
− qLt+1∇l̃t+1γL(∇l̃t+1 − ā)(∇l̃t+1 + κ)− κq̂Lt
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A.3 Entrepreneurs
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A.4 Bankers and Banking System
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eFt = ϕF l
F
t (43)

ρFt =
[
1− ΓF

(
ω̄F
t

)] R̃F
t

ϕF
(44)

R̃F
t = [Γe (ω̄

e
t )− µeGe (ω̄

e
t )]

Re
t q

K
t−1kt−1

lFt−1

(45)

PDF
t = FF

(
ω̄F
t

)
(46)

A.6 H Banks

ρ̃Ht = (1− κ) ρHt + κE
[
ρ̃Ht+1

]
(47)

ω̄H
t = (1− ϕH)

RBB
t qB̂B

t

R̃H
t q

B̂B
t−1

πt (48)

qBB
t bbPr

t + eHt = qLt l
H
t (49)

eHt = ϕHq
L
t l

H
t (50)

ρHt =
[
1− ΓH

(
ω̄H
t

)] R̃H
t

ϕH
(51)

R̃H
t =

[
ΓI

(
ω̄I
t

)
− µIGI

(
ω̄I
t

)] RH
t q

H
t−1h

I
t−1

qLt−1l
H
t−1

(52)

PDH
t = FH

(
ω̄H
t

)
(53)

A.7 Capital and Housing Goods

kt = (1− δK)
kt−1

at
+

[
1−

γK

2

(
it

it−1
at − a

)2
]
ξitit (54)

1 = qKt

[
1−

γK

2

(
it

it−1
at − a

)2

− γK

(
it

it−1
at − a

)
it

it−1
at

]
ξit (55)

+ βPEt

{
ϱt+1λPt+1

ϱtλPt
a−σ
t+1q

K
t+1γK

(
it+1

it
at+1 − a

)(
it+1

it
at+1

)2

ξit+1

}

ht = (1− δH)
ht−1

at
+

1−
γH

2

(
iAH
t−NH

iAH
t−NH−1

at − a

)2
 ξiht−NH

iAH
t−NH∏NH−1

i=0 at−j

(56)
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0 = Et

NH∑
j=0

βj
P ϱt+jλ

P
t+jφ

H
j

NH∏
i=j+1

(
aσt+i

)
(57)

− Etβ
NH
P ϱt+NH

λPt+NH
qHt+NH


1−

γH

2

(
iAH
t

iAH
t−1

at − a

)2
− γH

(
iAH
t

iAH
t−1

at − a

)
iAH
t

iAH
t−1

at

 ξiht

− Etβ
NH+1
P ϱt+NH+1λ

P
t+NH+1q

H
t+NH+1a

−σ
t+NH+1

γH
(
iAH
t+1

iAH
t

at+1 − a

)(
iAH
t+1

iAH
t

at+1

)2

ξiht+1


iHt =

NH∑
j=0

φH
j

iAH
t−j∏j−1

i=0 at−j

(58)

A.8 Final Goods

yCt =

[
ω1/η

(
xHt

)1−1/η
+ (1− ω)1/η

(
xFt

)1−1/η
] η

η−1

(59)

xFt = (1− ω)
(
pFt

)−η
yCt (60)

xHt = ω
(
pHt

)−η
yCt (61)

A.9 Home Goods

fHt =
ϵH − 1

ϵH

(
p̃Ht

)1−ϵH
yHt + βUθHEt

ϱt+1λPt+1a
1−σ
t+1

ϱtλPt πt+1

(
p̃Ht π

I,H
t+1

p̃Ht+1

)1−ϵH (
πH
t+1

)ϵH
fHt+1

 (62)

fHt =
(
p̃Ht

)−ϵH
mcHt y

H
t + βUθHEt

ϱt+1λPt+1a
1−σ
t+1

ϱtλPt πt+1

(
p̃Ht π

I,H
t+1

p̃Ht+1

)−ϵH (
πH
t+1

)1+ϵH
fHt+1

 (63)

1 = (1− θH)
(
p̃Ht

)1−ϵH
+ θH

(
πI,H
t

πH
t

)1−ϵH

(64)

πI,H
t =

(
πH
t−1

)κH
(
πT
)1−κH

(65)

mcHt =
pZt
pHt

(66)

A.10 Wholesale Domestic Goods

mcZt =
1

αα (1− α)1−α

(rkt )
α

zt

{
wt + γn

(
ñt

ñt−1
− 1

)(
1

ñt−1

)
yZt p

Z
t

− βU
ϱt+1λPt+1a

1−σ
t+1

ϱtλPt
γnEt

(
ñt+1

ñt
− 1

)(
ñt+1

ñ2
t

)
yZt+1p

Z
t+1

}1−α

(67)

kt−1

ñt
=

α

(1− α) rkt

{
wt + γn

(
ñt

ñt−1
− 1

)(
1

ñt−1

)
yZt p

Z
t

− βU
ϱt+1λPt+1a

1−σ
t+1

ϱtλPt
γnEt

(
ñt+1

ñt
− 1

)(
ñt+1

ñ2
t

)
yZt+1p

Z
t+1

}
at (68)

pZt = mcZt (69)

A.11 Foreign Goods

pFt mc
F
t = rertξ

m
t (70)

fFt =
ϵF − 1

ϵF

(
p̃Ft

)1−ϵF
yFt + βUθFEt

ϱt+1λPt+1a
1−σ
t+1

ϱtλPt πt+1

(
p̃Ft π

I,F
t+1

p̃Ft+1

)1−ϵF (
πF
t+1

)ϵF
fFt+1

 (71)
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fFt =
(
p̃Ft

)−ϵF
mcFt y

F
t + βUθFEt

ϱt+1λPt+1a
1−σ
t+1

ϱtλPt πt+1

(
p̃Ft π

I,F
t+1

p̃Ft+1

)−ϵF (
πF
t+1

)1+ϵF
fFt+1

 (72)

1 = (1− θF )
(
p̃Ft

)1−ϵF
+ θF

(
πI,F
t

πF
t

)1−ϵF

(73)

πI,F
t =

(
πF
t−1

)κF
(
πT
)1−κF

(74)

A.12 Wages

λWt =
λPt + λIt

2
(75)

λPt = ℘Uλ
U
t + (1− ℘U )λRt (76)

Θt =

(
℘UΘU

t + (1− ℘U )ΘR
t

)
+ΘI

t

2
(77)

mcWt = Θt
ξnt (ñt)

φ

λUt wt
(78)

Θi
t = χ̃i

t

(
ĉit
)−σ ∀ i = {U,R, I} (79)

χ̃i
t =

(
χ̃i
t−1

)1−v (
ĉit
)σv ∀ i = {U,R, I} (80)

fWt =

(
ϵW − 1

ϵW

)
w̃

1−ϵW
t ñt

+

((
ωUP β

UP + (1− ωUP )βRP
)
+ βI

2

)
θWEt

a−σ
t+1

ϱt+1λWt+1

ϱtλWt

πW
t+1

πt+1

 πW̃
t+1

πI,W
t+1

ϵW−1

fWt+1

 (81)

fWt =w̃
−ϵW (1+φ)
t mcWt ñt

+

((
ωUP β

UP + (1− ωUP )βRP
)
+ βI

2

)
θWEt

a−σ
t+1

ϱt+1λWt+1

ϱtλWt

πW
t+1

πt+1

 πW̃
t+1

πI,W
t+1

ϵW (1+φ)

fWt+1

 (82)

1 = (1− θW ) w̃
1−ϵW
t + θW

(
πI,W
t

πW
t

)1−ϵW

(83)

πI,W
t = a

αW
t−1a

1−αW π
κW
t−1π

1−κW (84)

A.13 Fiscal Policy

τt +Rt−1

bsGt−1

atπt
+ qBL

t RBL
t blGt−1

1

at
+ χstp

Co⋆
t yCo

t =gt + bsGt + qBL
t blGt + γD

PDD
t R

D
t−1d

F
t−1

atπt

+ γBH

PDH
t R

BB
t qBB

t bbPr
t−1

at
(85)

τt = αT gdpnt + ϵt
(
bsG − bsGt + qBLblG − qBL

t blGt

)
(86)

A.14 Monetary Policy and Rest of the World

Rt

R
=

(
Rt−1

R

)αR
[(

(1− αE)πt + αEEt {πt+4}
πT
t

)απ
(

gdpt

gdpt−1

)αy
]1−αR

emt (87)

rert

rert−1
=
πs
tπ

⋆
t

πt
(88)

R⋆
t = RW

t exp

{
−ϕ⋆

100

(
rertb⋆t
gdpnt

−
rerb⋆

gdpn

)}
ξRt z

τ
t (89)

xH⋆
t =

(
pHt
rert

)−η⋆

y⋆t (90)

48



A.15 Aggregation and Market Clearing

yCt = cPt + cIt + iKt + iHt + gt + υt (91)

cPt = ℘U c
U
t + (1− ℘U ) cRt (92)

υtatπt =γDPD
D
t R

D
t−1d

F
t−1 + γBHPD

H
t R

BB
t qBB

t bbPr
t−1 + µeGe (ω̄

e
t )R

e
t q

K
t−1kt−1+µIGI

(
ω̄I
t

)
RH

t q
H
t−1h

I
t−1

+ µHGH

(
ω̄H
t

)
R̃H

t l
H
t−1q

L
t−1 + µFGF

(
ω̄F
t

)
R̃F

t l
F
t−1+

γn

2

(
ñt

ñt−1
− 1

)2

yZt p
Z
t (93)

yHt = xHt + xH⋆
t (94)

yFt = xFt (95)

ht = hPt + hIt (96)

hPt = ℘Uh
U
t + (1− ℘U )hRt (97)

blPr
t = ℘U bl

U
t + (1− ℘U ) blRt (98)

bsPr
t = ℘U bs

U
t (99)

bbTot
t = ℘U bb

U
t (100)

b∗Tot
t = ℘U b

∗U
t (101)

blPr
t + blCB

t + blGt = 0 (102)

bsPr
t + bsGt = 0 (103)

dFt = ℘Ud
U
t (104)

ζLt =

(
qBL
t blUt + qBB

t bbUt

bsUt + rertb
⋆,U
t + dUt

)ηζ

ϵL,S
t (105)

R̃D
t = RD

t−1

(
1− γDPD

D
t

)
(106)

R̃BB
t = RBB

t

(
1− γBHPD

H
t

)
(107)

RBL
t =

1

qBL
t

+ κBL (108)

RBB
t =

1

qBB
t

+ κBB (109)

RNom,BL
t = RBL

t πt (110)

pHt
pHt−1

=
πH
t

πt
(111)

pFt
pFt−1

=
πF
t

πt
(112)

πW
t =

wt

wt−1
atπt (113)

πW̃
t =

w̃t

w̃t−1
πW
t (114)

yHt ΞH
t = xZt (115)

yZt = zt

(
kt−1

at

)α

ñ1−α
t (116)

yZt = xZt (117)

ΞH
t = (1− θH)

(
p̃Ht

)−ϵH
+ θH

(
πI,H
t

πH
t

)−ϵH

ΞH
t−1 (118)

mt = yFt ΞF
t (119)

ΞF
t = (1− θF )

(
p̃Ft

)−ϵF
+ θF

(
πI,F
t

πF
t

)−ϵF

ΞF
t−1 (120)

nt = ñtΞ
W
t (121)

ΞW
t = (1− θW )w̃

−ϵ
W

t + θW

(
πI,W
t

πW
t

)−ϵW

ΞW
t−1 (122)

nt = nP
t + nI

t (123)

nP
t = nI

t (124)

nP
t = ℘Un

U
t + (1− ℘U )nR

t (125)

nU
t = nR

t (126)
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gdpt = cPt + cIt + iKt + iHt + gt + xH⋆
t + yCo

t −mt (127)

gdpnt = cPt + cIt + iKt + iHt + gt + tbt (128)

tbt = pHt x
H⋆
t + rertp

Co⋆
t yCo

t − rertξ
m
t mt (129)

rertb
⋆
t =

rert

atπ⋆
t

b⋆t−1R
⋆
t−1 + tbt + rertren

∗ − (1− χ) rertp
Co⋆
t yCo

t (130)

The exogenous processes are:

log(zt/z) = ρz log(zt−1/z) + uzt

log(at/a) = ρa log(at−1/a) + uat

log(ξnt /ξ
n) = ρξn log(ξnt−1/ξ

n) + uξ
n

t

log(ξht /ξ
h) = ρξh log(ξht−1/ξ

h) + uξ
h

t

log(ξit/ξ
i) = ρξi log(ξ

i
t−1/ξ

i) + uξ
i

t

log(ξiht /ξih) = ρξih log(ξiht−1/ξ
ih) + uξ

ih

t

log(ξRt /ξ
R) = ρξR log(ξRt−1/ξ

R) + uξ
R

t

log(emt /e
m) = ρem log(emt−1/e

m) + ue
m

t

log(gt/g) = ρg log(gt−1/g) + ugt

log(yCo
t /yCo) = ρyCo log(yCo

t−1/y
Co) + uy

Co

t

log(π⋆
t /π

⋆) = ρπ⋆ log(π⋆
t−1/π

⋆) + uπ
⋆

t

log(RW
t /RW ) = ρRW log(RW

t−1/R
W ) + uR

W

t

log(y⋆t /y
⋆) = ρy⋆ log(y⋆t−1/y

⋆) + uy
⋆

t

log(pCo⋆
t /pCo⋆) = ρpCo⋆ log(pCo⋆

t−1 /p
Co⋆) + up

Co⋆

t

log(ξmt /ξ
m) = ρξm log(ξmt−1/ξ

m) + uξ
m

t

log(σI
t /σ

I) = ρσI log(σI
t−1/σ

I) + uσ
I

t

log(σe
t /σ

e) = ρσe log(σe
t−1/σ

e) + uσ
e

t

log(σF
t /σ

F ) = ρσF log(σF
t−1/σ

F ) + uσ
F

t

log(σH
t /σ

H) = ρσH log(σH
t−1/σ

H) + uσ
H

t

log(ϵL,S
t /ϵL,S) = ρϵL,S log(ϵL,S

t−1/ϵ
L,S) + uϵ

L,S

t

log(blGt /bl
G) = ρblG log(blGt−1/bl

G) + ubl
G

t

log(blCB
t /blCB) = ρblCB log(blCB

t−1/bl
CB) + ubl

CB

t

log(ϱt/ϱ) = ρϱ log(ϱt−1/ϱ) + uϱt

log(ξχb
t /ξχb) = ρχb

ξ log(ξχb
t−1/ξ

χb) + uξ
χb

t

log(ξχe
t /ξχe) = ρχe

ξ log(ξχe
t−1/ξ

χe) + uξ
χe

t

log(ξroet /ξroe) = ρroeξ log(ξroet−1/ξ
roe) + uξ

roe

t

log(zτt /z
τ ) = ρzτ log(zτt−1/z

τ ) + uz
τ

t

Donde todas las perturbaciones ujt se distribuyen normalmente con media cero y σj desviación estándar: ujt ∼ N (0, (σj)2)
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B Steady State Computation

In this section we show how to compute the steady state for a given value of most of the parameters and all exogenous variables in the
long run, except for:

RW , π⋆, σF , σH , σe, σI , g, yCo, y⋆, oĈ , ren∗, ξn.

that are determined endogenously by imposing values for the steady state of the following endogenous variables:

πs, ξi = 1, ξR, RD, PDF = PDH , n, Rnom,BL, Rnom,I , RL, pH , rh,k = qHh/qKk, sg = g/gdpn, sCo = pCo⋆yCorer/gdpn,

stb = tb/gdpn, sb∗ = b∗rer/gdpn, αBLG = blG∗qBL

gdpn
, αSG = bsG

gdpn

Start with (4), (5), (6), (87) (88) and (89):

R =
πaσ

βU
; R̃D = R; R⋆ =

R

πs
; π = πT ; π⋆ =

π

πs
; RW =

R⋆

ξR

From (65), (74) and (111), (112):
πI,H = πI,F = πH = πF = π

From (84), (113) and (114) :

πI,W = πW = πW̃ = aπ

From (64), (73), (83), (62),(63), (71),(72), (81), (82), (118), (120) and (122):

p̃H = p̃F = w̃ = 1

mcH =
ϵH − 1

ϵH

mcF =
ϵF − 1

ϵF

mcW =
ϵW − 1

ϵW

ΞH = ΞF = ΞW = 1

From (55) and (57):
qK = 1/ξi

qH =
aNHσφH

0

β
NH
UP ξ

ih

1−
(

βUP ρφH

aσ

)NH+1

1− βP ρφH

aσ


From (14) and (121):

RH = π (1− δH)

ñ = n

From (35), (37), (38), (39) and (47):

ρH = ρ̃H = ρF =
aπ

1− χb

From (40), (106), RD and using PDF = PDH

PDD =
1

γD

(
1−

R̃D

RD

)
= PDH = PDF

From (12)

RBL =
RNom,BL

π

βRP =
aσ

RBL

From (17), (19) and (20)

RI =
RNom,I

π

R̂I = RI

q̂L =
1

R̂I − κL
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qL = q̂L

From (7) and (8)
R̃BB = RBL

From (107)

RBB =
R̃BB

1− γDPDH

From (109)

qBB =
1

RBB − κBB

From (108)

qBL =
1

RBL − κB
∆l = a

Numerical solution for ω̄F and σF using (42), (44) and (46)

ω̄F −
[
1− ΓF

(
ω̄F , σF

)](1− ϕF

ϕF

)
RD

ρ̃F
= 0

PDF − FF

(
ω̄F , σF

)
= 0

Numerical solution for ω̄H and σH using (48), (51) and (53)

ω̄H −
[
1− ΓH

(
ω̄H , σH

)](1− ϕH

ϕH

)
RBB

ρH
π = 0

PDH − FH

(
ω̄H , σH

)
= 0

Then, from (44) and (51):

R̃F =
ϕF ρ

F

1− ΓF (ω̄F , σF )

R̃H =
ϕHρ

H

1− ΓH (ω̄H , σH)

Numerical solution for ω̄e and σe: Use (33) in (32), then use (44), (45), (26) and (31). Later combine (28) and (45) to obtain

Γ′
e (ω̄

e, σe)− µeG′
e (ω̄

e, σe)

Γ′
e (ω̄

e, σe)
−

(1− χe) R̃F

aπ
= 0

RL −
R̃F ω̄e

Γe (ω̄e, σe)− µeGe (ω̄e, σe)
= 0

From (34):
PDe = Fe (ω̄

e)

Numerical solution for ω̄I and σI : use (51) and (24) in (22). Also, use (52) in (18)

Γ′
I

(
ω̄I , σI

)
− µIG

′
I

(
ω̄I , σI

)
Γ′
I (ω̄

I , σI)
−
βI R̃

H

aσπ
= 0

RI −
R̃H ω̄I

π [ΓI (ω̄I , σI)− µIGI (ω̄I , σI)]
= 0

From (25):

PDI = FI

(
ω̄I
)

From (30), (26), (31) and (45):

Re =
R̃F aπ

aπ [Γe (ω̄e)− µeGe (ω̄e)] + [1− Γe (ω̄e)] (1− χe) R̃F

From (27):

rK = qK
[
Re

π
− (1− δK)

]
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From (66) and (69):
pZ = pHmcH

mcZ = pZ

From (67), (68), (116), (117) and (54) :

w =

[
αα (1− α)1−αmcZz

(rk)α

] 1
1−α

k =
α

1− α
ñ
w

rk
a

yZ = z

(
k

a

)α

ñ1−α

xZ = yZ

i = k

[
1− (1− δK)/a

ξi

]
Also, from (115)

yH =
xZ

ΞH

From (26), (29), (30), (31) and (33):

ψe = [1− Γe (ω̄
e)]

ReqKk

aπ
ne = (1− χeξ

χe )ψe

ce = χeξ
χeψe

λe =
Γe′ (ω̄e)

(1− ΓF (ω̄F ))
[
Γe′ (ω̄e)− µeGe′ (ω̄e)

]
lF = qKk − ne

From (43), (41) and (104):
eF = ϕF l

F

dF = lF − eF

dU = dF /℘U

From rh,k = qHh/qKk, (56) to (58):

h =
rh,kqKk

qH

iAH =
haNH

ξih

[
1−

(
1− δH

a

)]

iH = iAHφH
0

1−
(

ρφH

a

)NH+1

1− ρφH

a


From (59), (60) and (61):

pF =

[
1− ω(pH)1−η

1− ω

] 1
1−η

From (70):
rer = mcF pF /ξm

Numerical solution for lh iterating over the following equation up until ∆l ≈ 0 (see Appendix B.1)

∆l = gdpn− (cP + cI + i+ iH + sggdpn+ stbgdpn)

From (18):

hI =
RIqLlH

ω̄IRHqH

from (50):
eH = ϕHq

LlH

From (36), (37), (39) and (49):
nb = eF + eH
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ψb =
nb

1− χbξχb

cb = χbξ
χbψb

bbTot = (1− ϕH)
qLlH

qBB

Then, from (93):

υ =
1

aπ

(
γDPD

DRDdF ++γBBPD
HRBBqBBbbTot + µeGe (ω̄e)ReqKk

+µIGI

(
ω̄I
)
RHqHhI + µHGH

(
ω̄H
)
R̃HqLlH + µFGF

(
ω̄F
)
R̃F lF

)
From (128), (91), (129), (59), (60), (61), (119), (94) and (95):

gdpn =
pHyH +

(
pF
)−η (

pF − rerξmΞF
)
(1− ω) υ − υ

1− sCo −
(
1− stb

)
(pF )−η (pF − rerξmΞF ) (1− ω)

From their definitions:
tb = stbgdpn

g = sggdpn

yCo =
sCogdpn

pCo⋆rer

b∗Tot =
sb∗gdpn

rer

From (60), (61),(90), (91), (94), (95) , (119) and (128):

yC = gdpn+ υ − tb

xF = (1− ω)(pF )−ηyC

xH = ω(pH)−ηyC

xH⋆ = yH − xH

y⋆ = xH⋆

(
pH

rer

)η⋆

yF = xF

m = yFΞF

From (96):
hP = h− hI

From (23):

cI =
wn

2
+ qHhI

[
(1− ΓI)

RH

aπ
− 1

]
+ qLlH

From (21) and (16):

oĈ =

(a)−ση
Ĉ (ξh)ηĈ−1

 acI
(
1− ϕc

a

)
hI
(
1− ϕhh

a

)
( 1

βI

[
qH − (ΓI − µIGI)

RHqH

R̃H

]
− a−σ (1− ΓI)

RH

π
qH
)−η

Ĉ

+ 1


−1

Then from (15) we can compute

ĉI =

(1− oĈ
) 1

η
Ĉ

(
cI
(
1−

ϕc

a

)) η
Ĉ

−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
ξhhI

a

(
1−

ϕhh

a

)) η
Ĉ

−1

η
Ĉ


η
Ĉ

η
Ĉ

−1

From (16):

λI =

{(
ĉI
)−σ

} (1− oĈ
)
ĉI

cI
(
1− ϕc

a

)
 1

η
Ĉ

From (21) and (22)

λH =
λI

ρHϕH

Use ratios αBLG = blGqBL

gdpn
and αSG = bsG

gdpn

blG = αBLG
gdpn

qBL

bsG = αBSGgdpn
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Then from (102) and (103), and normalizing blCB = 1
blPr = −blG

bsPr = −bsG

We can solve for bond holdings of the unrestricted households Also, from (99), (100) and (101)

bsU =
bsPr

℘U

b∗U =
b∗Tot

℘U

bbU =
bbtot

℘U

Then using the (exogenously given) ratio of long to short term instruments held by the unrestricted patient household, ωBL

blu =
ωBL ∗ (bsu + rer ∗ b∗U + dU )− bbU qBB

qBL

We can then, using (98) results in long term bonds held by the restricted household of

blR =
blPr − ℘U bl

U

1− ℘U

From 102
blCB = 1

Next, we solve for hR, cR, ĉR, λR. From (10) and (11) and the restricted household budget constraint (13)

hR =
qBLblR

(
RBL

a
− 1
)
+ wn

2

qH − qH

a
(1− δH) + aux1

with aux1

aux1 = (a)ση
Ĉ
−1(ξh)1−η

Ĉ

(
qH

βP
− (1− δH) a−σqH

)η
Ĉ (1− oĈ)

(
1− ϕhh

a

)
oĈ

(
1− ϕc

a

)
and

cR = hRaux1

From (9):

ĉR =

(1− oĈ
) 1

η
Ĉ

(
cR
(
1−

ϕc

a

)) η
Ĉ

−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
ξh
hR

a

(
1−

ϕhh

a

)) η
Ĉ

−1

η
Ĉ


η
Ĉ

η
Ĉ

−1

From (10):

λR =

{(
ĉR
)−σ

} (1− oĈ
)
ĉR

cR
(
1− ϕc

a

)
 1

η
Ĉ

Also, from (97) we get

hU =
hP − (1− ℘U )hR

℘U

which together with (2) and (3) lets us solve for cU

cU = hU (a)ση
Ĉ
−1(ξh)1−η

Ĉ

(
qH

βP
− (1− δH) a−σqH

)η
Ĉ (1− oĈ)

(
1− ϕhh

a

)
oĈ

(
1− ϕc

a

)
From (1) we solve for ĉU

ĉU =

(1− oĈ
) 1

η
Ĉ

(
cU
(
1−

ϕc

a

)) η
Ĉ

−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
ξh
hU

a

(
1−

ϕhh

a

)) η
Ĉ

−1

η
Ĉ


η
Ĉ

η
Ĉ

−1

and from (2) we obtain λU

λU =
(
ĉU
)−σ

 (1− oĈ
)
ĉU

cU
(
1− ϕc

a

)
 1

η
Ĉ
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From (76):
λP = ℘Uλ

U + (1− ℘U )λR

From (92):
cP = ℘U c

U + (1− ℘U ) cR

c = cp + ci

From (123), (124), (125), (126)

nP =
n

2
= nI = nU = nR

From (79), (80) and (77):

χ̃U =
(
ĉU
)σ

ΘU = 1

χ̃I =
(
ĉI
)σ

ΘI = 1

χ̃R =
(
ĉR
)σ

ΘR = χ̃R
(
ĉR
)−σ

Θ =

(
℘UΘU + (1− ℘U )ΘR

)
+ΘI

2
= 1

From (75) and (78):

λW =
λP + λI

2
, ξn =

mcWλWw

Θñφ

From (127) and (130):
gdp = c+ i+ ih + g + xH⋆ + yCo −m

ren∗ = b⋆
(
1−

R⋆

aπ⋆

)
−

tb

rer
+ (1− χ) pCo⋆yCo

From (7) and (105)
ϵL,S = βUR

BLa−σ − 1

From (105) :
ζL = ϵL,S

From (85):

τ = g + dia− bsG
(
R

aπ
− 1

)
− qBLblG

(
RBL

a
− 1

)
− χrerpCo⋆yCo

From (86):

αT =
τ

gdpn

Finally, from (63), (72) and (82):

fH =
(p̃H)−ϵH yHmcH

1− βUP θHa1−σ
, fF =

(p̃F )−ϵF yFmcF

1− βUP θF a1−σ
, fW =

w̃−ϵW (1+φ)mcW ñ

1−
(
(ωUP βUP+(1−ωUP )βRP )+βI

2

)
θW a1−σ
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B.1 Numerical solution for lH

First, guess lH . Then, from (18) solve for hI :

hI =
RIqLlH

ω̄IRHqH

From (50) and (49):

bbTot = (1− ϕH)
qLlH

qBB

Then, from (93):

υ =
1

aπ

(
γDPD

DRDdF ++γBBPD
HRBBqBBbbTot + µeGe (ω̄e)ReqKk

+µIGI

(
ω̄I
)
RHqHhI + µHGH

(
ω̄H
)
R̃HqLlH + µFGF

(
ω̄F
)
R̃F lF

)
From (128), (91), (129), (59), (60), (61), (119), (94) and (95):

gdpn =
pHyH +

(
pF
)−η (

pF − rerξmΞF
)
(1− ω) υ − υ

1− sCo −
(
1− stb

)
(pF )−η (pF − rerξmΞF ) (1− ω)

From (96):
hP = h− hI

From (23):

From (21) and (16):

oĈ =

(a)−ση
Ĉ (ξh)ηĈ−1

 acI
(
1− ϕc

a

)
hI
(
1− ϕhh

a

)
( 1

βI

[
qH − (ΓI − µIGI)

RHqH

R̃H

]
− a−σ (1− ΓI)

RH

π
qH
)−η

Ĉ

+ 1


−1

Use ratios αBLG = blG

gdpnqBL and αSG = bsG

gdpn

blG = αBLG
gdpn

qBL

bsG = αBSGgdpn

Then from (102) and (103), and normalizing blCB = 0
blPr = −blG

bsPr = −bsG

Also, from (99) and (100)

bsU =
bsPr

℘U
, bbU =

bbtot

℘U

Use ratio sb∗ = b∗rer/gdpn, and (101)

b∗Tot = sb∗ ∗ gdpn/rer, b∗U =
b∗Tot

℘U

Then using the ratio of long to short term instruments held by the unrestricted patient household, ωBL

blu =
ωBL ∗ (bsu + rer ∗ b∗U + dU )− bbU qBB

qBL

which using (98) results in long term bonds held by the restricted household of

blR =
blPr − ℘U bl

U

1− ℘U

From (10) and (11) and the restricted household budget constraint (13)

hR =
qBLblR

(
RBL

a
− 1
)
+ wn

2

qH − qH

a
(1− δH) + aux1

with aux1

aux1 = (a)ση
Ĉ
−1(ξh)1−η

Ĉ

(
qH

βP
− (1− δH) a−σqH

)η
Ĉ (1− oĈ)

(
1− ϕhh

a

)
oĈ

(
1− ϕc

a

)
and

cR = hRaux1
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Also, from (97) we get

hU =
hP − (1− ℘U )hR

℘U

which together with (2) and (3) lets us solve for cU

cU = hU (a)ση
Ĉ
−1(ξh)1−η

Ĉ

(
qH

βP
− (1− δH) a−σqH

)η
Ĉ (1− oĈ)

(
1− ϕhh

a

)
oĈ

(
1− ϕc

a

)
From (92):

cP = ℘U c
U + (1− ℘U ) cR

Then, the following equation must hold:
gdpn = cP + cI + i+ iH + sggdpn+ stbgdpn

If it does not, update guess of lH and repeat.
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C Steady state for capital requirements comparative statics

For a given value of capital requirements ϕf , ϕh we use estimated and calibrated parameters: related to real sector α, αBSG, αBLG,
βU , βR, βI , δK , δK , ϵF , ϵH , ϵW , NH , κ, κBL, κBB , σ, χ, ω, ωU , ωBL, η, η

∗, ηĈ , θF , θH , θW , ηζL ; financial sector : χb, χe, γd,

γbh, µe, µf , µh, µi, σ
e, σF , σH , σI , ξχe , ξχb ; preference parameters and external sector parameters: OĈ , ϕc, ϕhh, ρ

φH , φ, φH
0 , a,

blcb, ϵL,S , g, n, rh,k, πT , pCo, π∗, RW , ξh, ξi, ξih, ξm, ξn, ξR, y∗, yCo, z, blG, bsG, b∗Tot to compute the steady state of the model
consistent with capital requirements different from that of the 2001-2019 period

Consider ϕF and ϕH total capital requirements including regulatory minimum capital, voluntary buffers and the neutral level (if
any) for the CCyB requirement.

ϕF = (ϕFReg + ϕFV ol + CCyB)

ϕH = 0.6(ϕHReg + ϕHV ol + CCyB)

Use (4), (5), (6), (87) (88) and (89):

π = πT ; R =
πaσ

βU
; R̃D = R; πs =

π

π⋆
; R⋆ =

R

πs
; RW =

R⋆

ξR

From (65), (74) and (111), (112):
πH = πF = πI,H = πI,F = π

From (84), (113) and (114):

πW = πW̃ = πI,W = aπ

From (62),(63),(64), (71),(72),(73), (81), (82), (83), (118), (120) and (122):

p̃H = p̃F = w̃ = 1

mcH =
ϵH − 1

ϵH

mcF =
ϵF − 1

ϵF

mcW =
ϵW − 1

ϵW

ΞH = ΞF = ΞW = 1

From (55) and (57):
qK = 1/ξi; ∇l = a

qH =
aNHσφH

0

β
NH
UP ξ

ih

1−
(

βUP ρφH

aσ

)NH+1

1− βP ρφH

aσ


From (14) and (121):

RH = π (1− δH)

ñ = n

From (35), (37), (38), (39) and (47):

ρH = ρ̃H = ρF =
aπ

1− χb

From (12) and (110)

RBL =
aσ

βRP

RNom,BL = RBLπ

From (7) and (8)
R̃BB = RBL

From (108)

qBL =
1

RBL − κB

Given σF and the previous result for R̃D, use a numerical solution for ω̄F and RD using (42), (44) and (106)

ω̄F −
[
1− ΓF

(
ω̄F , σF

)](1− ϕF

ϕF

)
RD

ρ̃F
= 0

PDF −
1

γD

(
1−

R̃D

RD

)
= 0
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And, from (44)

R̃F =
ϕF ρ

F

1− ΓF (ω̄F , σF )

Next, given σH and previous results for R̃BB , use (48), (51) and (107) to find ω̄H and RBB numerically,

ω̄H −
[
1− ΓH

(
ω̄H , σH

)](1− ϕH

ϕH

)
RBB

ρH
π = 0

R̃BB = RBB
(
1− γBHPD

H
)

Then, from (48), (53) and (109):

R̃H =
ϕHρ

H

1− ΓH (ω̄H , σH)

PDH = FH

(
ω̄H , σH

)
qBB =

1

RBB − κBB

Use (33) in (32), then use (44), (45), (26) and (31) to solve for ω̄e

Γ′
e (ω̄

e, σe)− µeG′
e (ω̄

e, σe)

Γ′
e (ω̄

e, σe)
−

(1− χe) R̃F

aπ
= 0

Then, from (34):
PDe = Fe (ω̄

e)

Combine (28) and (45) to obtain

RL =
R̃F ω̄e

Γe (ω̄e, σe)− µeGe (ω̄e, σe)

Go back to (33) in (32) to obtain

λe =
Γe′ (ω̄e)

(1− ΓF (ω̄F ))
[
Γe′ (ω̄e)− µeGe′ (ω̄e)

]
Re =

{
[1− Γe (ω̄e)]

λe
+
[
1− ΓF (ω̄F )

]
[Γe (ω̄

e)− µeGe (ω̄
e)]

}−1

ρFϕF

From (27):

rK = qK
[
Re

π
− (1− δK)

]
Numerical solution for ω̄I using (51) and (22)

Γ′
I

(
ω̄I , σI

)
− µIG

′
I

(
ω̄I , σI

)
Γ′
I (ω̄

I , σI)
−
βI R̃

H

aσπ
= 0

From (25):

PDI = FI

(
ω̄I
)

From (18) and (52)

R̂I =
R̃H ω̄I

π [ΓI (ω̄I , σI)− µIGI (ω̄I , σI)]

and from (17), (19) and (20)

q̂L =
1

R̂I − κL

qL = q̂L

R̂I = RI

From (20)
RNom,I = RIπ

Using the normalization pH = 1, and from (66) and (69):

pZ = pHmcH
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mcZ = pZ

From (67), (68), (116), (117) and (54) :

w =

[
αα (1− α)1−αmcZz

(rk)α

] 1
1−α

k =
α

1− α
ñ
w

rk
a

yZ = z

(
k

a

)α

ñ1−α

xZ = yZ

i = k

[
1− (1− δK)/a

ξi

]
Also, from (115)

yH =
xZ

ΞH

From (26), (29), (30), (31) and (33):

ψe = [1− Γe (ω̄
e)]

ReqKk

aπ
ne = (1− χeξ

χe )ψe

ce = χeξ
χeψe

lF = qKk − ne

From (43), (41) and (104):
eF = ϕF l

F

dF = lF − eF

dU = dF /℘U

From (59), (60) and (61):

pF =

[
1− ω(pH)1−η

1− ω

] 1
1−η

From (70):
rer = mcF pF /ξm

Next, we can find lH , hI , cI solving the three equation system by (18), (23) and (21)

hI =
RIqLlH

ω̄IRHqH

cI =
wn

2
+ qHhI

[
(1− ΓI)

RH

aπ
− 1

]
+ qLlH

∆l = oĈ −

(a)−ση
Ĉ (ξh)ηĈ−1

 acI
(
1− ϕc

a

)
hI
(
1− ϕhh

a

)
( 1

βI

[
qH − (ΓI − µIGI)

RHqH

R̃H

]
− a−σ (1− ΓI)

RH

π
qH
)−η

Ĉ

+ 1


−1

Then from (15) we can compute

ĉI =

(1− oĈ
) 1

η
Ĉ

(
cI
(
1−

ϕc

a

)) η
Ĉ

−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
ξhhI

a

(
1−

ϕhh

a

)) η
Ĉ

−1

η
Ĉ


η
Ĉ

η
Ĉ

−1

and from (16) and (24), respectively:

λI =

{(
ĉI
)−σ

} (1− oĈ
)
ĉI

cI
(
1− ϕc

a

)
 1

η
Ĉ

; λH =
λI

ρHϕH

Also, from (50):
eH = ϕHq

LlH
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From (39), (37), (36), and (49):
nb = eF + eH

ψb =
nb

1− χbξχb

cb = χbξ
χbψb

bbTot =
qLlH − eH

qBB

From (40)

PDD =
qBBbbTotPDH + dFPDF

qBBbbTot + dF

From (90), (94), (61), (60) (95) and (119)

xH⋆ =
y⋆(

pH

rer

)η⋆
xH = yH − xH⋆

yC =
xH

ω(pH)−η

xF = (1− ω)(pF )−ηyC

yF = xF

m = yFΞF

From (129)
tb = pHxH⋆ + pCo⋆yCorer −mξmrer

From (93):

υ =
1

aπ

(
γDPD

DRDdF ++γBBPD
HRBBqBBbbTot + µeGe (ω̄e)ReqKk

+µIGI

(
ω̄I
)
RHqHhI + µHGH

(
ω̄H
)
R̃HqLlH + µFGF

(
ω̄F
)
R̃F lF

)
Combine (91) and (128)

gdpn = yC − υ + tb

From their definitions:
sg =

g

gdpn

sCo =
yCopCo⋆rer

gdpn

stb =
tb

gdpn

Supply of soverign debt instruments is inelastic, thus use ratios αBLG = blG

gdpnqBL and αSG = bsG

gdpn

blG = αBLG
gdpn

qBL

bsG = αBSGgdpn

From (102) and (103)
blPr = −blG

bsPr = −bsG

bsU =
bsPr

℘U

bbU =
bbtot

℘U

Also, from (123), (124), (125), (126)

nP =
n

2
= nI = nU = nR

Next, we implement a numerical search for sb∗ and rh,k (see Appendix C.1 ) using (78) and (128)

ξn =
mcWλWw

Θñφ

gdpn = cP + cI + iK + iH + g + tb
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Then from its definition, we have

b∗,Tot =
sb∗gdpn

rer

From (130)

ren∗ = b∗Tot

(
1−

R⋆

aπ⋆

)
−

tb

rer
+ (1− χ) pCo⋆yCo

From rh,k = qHh/qKk, (56) to (58):

h =
rh,kqKk

qH

iAH =
haNH

ξih

[
1−

(
1− δH

a

)]

iH = iAHφH
0

1−
(

ρφH

a

)NH+1

1− ρφH

a


From (96)

hP = h− hI

From (101)

b∗U =
b∗Tot

℘U

Then using the (exogenously given) ratio of long to short term instruments held by the unrestricted patient household, ωBL

blu =
ωBL ∗ (bsu + rer ∗ b∗U + dU )− bbU qBB

qBL

We can then, using (98) results in long term bonds held by the restricted household of

blR =
blPr − ℘U bl

U

1− ℘U

From (102)
blCB = 1

From (10) and (11) and the restricted household budget constraint (13)

aux1 = (a)ση
Ĉ
−1(ξh)1−η

Ĉ

(
qH

βP
− (1− δH) a−σqH

)η
Ĉ (1− oĈ)

(
1− ϕhh

a

)
oĈ

(
1− ϕc

a

)

hR =
qBLblR

(
RBL

a
− 1
)
+ wn

2

qH − qH

a
(1− δH) + aux1

cR = hRaux1

From (9):

ĉR =

(1− oĈ
) 1

η
Ĉ

(
cR
(
1−

ϕc

a

)) η
Ĉ

−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
ξh
hR

a

(
1−

ϕhh

a

)) η
Ĉ

−1

η
Ĉ


η
Ĉ

η
Ĉ

−1

From (10):

λR =

{(
ĉR
)−σ

} (1− oĈ
)
ĉR

cR
(
1− ϕc

a

)
 1

η
Ĉ

From (97)

hU =
hP − (1− ℘U )hR

℘U

From (2) and (3)

cU = hU (a)ση
Ĉ
−1(ξh)1−η

Ĉ

(
qH

βP
− (1− δH) a−σqH

)η
Ĉ (1− oĈ)

(
1− ϕhh

a

)
oĈ

(
1− ϕc

a

)

63



From (1)

ĉU =

(1− oĈ
) 1

η
Ĉ

(
cU
(
1−

ϕc

a

)) η
Ĉ

−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
ξh
hU

a

(
1−

ϕhh

a

)) η
Ĉ

−1

η
Ĉ


η
Ĉ

η
Ĉ

−1

From (2)

λU =
(
ĉU
)−σ

 (1− oĈ
)
ĉU

cU
(
1− ϕc

a

)
 1

η
Ĉ

From (76):
λP = ℘Uλ

U + (1− ℘U )λR

From (92):
cP = ℘U c

U + (1− ℘U ) cR; c = cp + ci

From (79) and (80):

χ̃U =
(
ĉU
)σ

ΘU = χ̃U
(
ĉU
)−σ

χ̃I =
(
ĉI
)σ

ΘI = χ̃I
(
ĉI
)−σ

χ̃R =
(
ĉR
)σ

ΘR = χ̃R
(
ĉR
)−σ

Θ =

(
ωUPΘU + (1− ωU )ΘR

)
+ΘI

2
= 1

From (75)

λW =
λP + λI

2

From (7) and (105)
ϵL,S = βUR

BLa−σ − 1

From (105) :
ζL = ϵL,S

From (85):

τ = g + dia− bsG
(
R

aπ
− 1

)
− qBLblG

(
RBL

a
− 1

)
− χrerpCo⋆yCo

From (86):

αT =
τ

gdpn

Finally, from (63), (72) and (82):

fH =
(p̃H)−ϵH yHmcH

1− βUP θHa1−σ
, fF =

(p̃F )−ϵF yFmcF

1− βUP θF a1−σ
, fW =

w̃−ϵW (1+φ)mcW ñ

1−
(
(ωUP βUP+(1−ωUP )βRP )+βI

2

)
θW a1−σ

C.1 Numerical solution for (sb∗, rh,k)

Iterate on (sb∗, rh,k) until ∆ ≈ 0

∆ =

[
ξn − mcW λWw

Θñφ

−gdpn+ cP + cI + iK + iH + g + tb

]

For each guess of (sb∗, rh,k) we have

b∗,Tot =
sb∗gdpn

rer
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From rh,k = qHh/qKk, (56) to (58):

h =
rh,kqKk

qH

iAH =
haNH

ξih

[
1−

(
1− δH

a

)]

iH = iAHφH
0

1−
(

ρφH

a

)NH+1

1− ρφH

a


From (96)

hP = h− hI

From (101)

b∗U =
b∗Tot

℘U

Then using the (exogenously given) ratio of long to short term instruments held by the unrestricted patient household, ωBL

blu =
ωBL ∗ (bsu + rer ∗ b∗U + dU )− bbU qBB

qBL

We can then, using (98) results in long term bonds held by the restricted household of

blR =
blPr − ℘U bl

U

1− ℘U

From (102)
blCB = 1

From (10) and (11) and the restricted household budget constraint (13)

aux1 = (a)ση
Ĉ
−1(ξh)1−η

Ĉ

(
qH

βP
− (1− δH) a−σqH

)η
Ĉ (1− oĈ)

(
1− ϕhh

a

)
oĈ

(
1− ϕc

a

)

hR =
qBLblR

(
RBL

a
− 1
)
+ wn

2

qH − qH

a
(1− δH) + aux1

cR = hRaux1

From (9):

ĉR =

(1− oĈ
) 1

η
Ĉ

(
cR
(
1−

ϕc

a

)) η
Ĉ

−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
ξh
hR

a

(
1−

ϕhh

a

)) η
Ĉ

−1

η
Ĉ


η
Ĉ

η
Ĉ

−1

From (10):

λR =

{(
ĉR
)−σ

} (1− oĈ
)
ĉR

cR
(
1− ϕc

a

)
 1

η
Ĉ

From (97)

hU =
hP − (1− ℘U )hR

℘U

From (2) and (3)

cU = hU (a)ση
Ĉ
−1(ξh)1−η

Ĉ

(
qH

βP
− (1− δH) a−σqH

)η
Ĉ (1− oĈ)

(
1− ϕhh

a

)
oĈ

(
1− ϕc

a

)
From (1)

ĉU =

(1− oĈ
) 1

η
Ĉ

(
cU
(
1−

ϕc

a

)) η
Ĉ

−1

η
Ĉ +

(
oĈ
) 1

η
Ĉ

(
ξh
hU

a

(
1−

ϕhh

a

)) η
Ĉ

−1

η
Ĉ


η
Ĉ

η
Ĉ

−1
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From (2)

λU =
(
ĉU
)−σ

 (1− oĈ
)
ĉU

cU
(
1− ϕc

a

)
 1

η
Ĉ

From (76):
λP = ℘Uλ

U + (1− ℘U )λR

From (92):
cP = ℘U c

U + (1− ℘U ) cR; c = cp + ci

From (79) and (80):

χ̃U =
(
ĉU
)σ

ΘU = χ̃U
(
ĉU
)−σ

χ̃I =
(
ĉI
)σ

ΘI = χ̃I
(
ĉI
)−σ

χ̃R =
(
ĉR
)σ

ΘR = χ̃R
(
ĉR
)−σ

Θ =

(
ωUPΘU + (1− ωU )ΘR

)
+ΘI

2
= 1

From (75)

λW =
λP + λI

2

Check if ∆ = 0

∆ =

[
ξn − mcW λWw

Θñφ

−gdpn+ cP + cI + iK + iH + g + tb

]
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