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1 Introduction

“Perhaps more importantly, we need to know more about the manner in which inflation

expectations are formed and how monetary policy influences them.” (Janet Yellen, 2016)

The seminal works of Friedman (1968) and Phelps (1967) have placed inflation expectations

at the heart of macroeconomics and monetary policy. A well-established empirical and

theoretical literature underscores the significance of inflation expectations in economic

decision-making. In this extensive literature, researchers tend to limit their analysis to

sample statistics of survey responses, such as mean, median or standard deviation, and

consider average inflation expectations at a given time as the expected inflation.1 At the same

time, recent studies document significant heterogeneity in inflation expectations across

households associated with demographic factors or consumption patterns, emphasizing

the distributional aspect of inflation expectations (D’Acunto et al., 2023; Andre et al., 2022).

To demonstrate the limitations of average inflation expectations in fully representing

heterogeneous inflation expectations, we plot the evolution of cross-sectional distributions

of one-year ahead and medium-run (5 to 10 years ahead) inflation expectations for U.S.

households from March 2018 to December 2021 using the University of Michigan’s Survey

of Consumers (Figure 1).2 The comparison spans across three time periods: pre-pandemic

months (from March 2018 to February 2020), pandemic months before inflation increases

(from March 2020 to March 2021), and months with higher inflation (from April 2021 to

December 2021). There is a visible change in the shape of the distributions of one-year

ahead inflation expectations from the pre-pandemic period (blue) to the early pandemic

months (red) – the curve flattened and the concentration of survey responses at the modal

1Recent work by Reis (2022), which examines different moments and tail behaviors of inflation expecta-
tions in several countries, is a notable exception. Here again, higher moments were explored rather than the
entire distribution.

2In this paper, we use one-year ahead inflation expectations and short-run inflation expectations inter-
changeably.
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value declined sharply. Despite such clear distributional changes, however, the average

inflation expectations increased only marginally from 2.7 percent (pre-pandemic period) to

2.8 percent (early pandemic months). A similar observation can be made about medium-

run inflation expectations where the change in the average inflation expectations from 2.4

percent to 2.5 percent does not correspond to more pronounced changes in the shape of

the distributions from the pre-pandemic period to early pandemic years. These findings

cast doubt on using the average inflation expectations to represent the entire distribution

of inflation expectations.

Figure 1. Distribution of the U.S. Households’ One-Year Ahead and Medium-Run Inflation
Expectations: March 2018 - December 2021

Notes: The distributions of the monthly U.S. household inflation expectations are shown for three periods:
from March 2018 to February 2020 (blue), from March 2020 to March 2021 (red), and from April 2021 to
December 2021 (green). The left (right) panel plots one-year ahead (medium-run) inflation expectations.
Both series are from the University of Michigan’s Survey of Consumers.

In this paper, we adopt a functional approach to analyze U.S. household inflation

expectations by broadening the scope of interest from specific sample statistics, such as

the average, to the entire distribution of inflation expectations. Specifically, we examine

how economic shocks affect the distribution of inflation expectations, focusing on four

economic shocks: monetary policy, government spending, personal income tax, and

gasoline prices. To examine the effects of one-dimensional economic shocks on the infinite-
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dimensional distributions of households’ inflation expectations, we use a methodology

developed by Chang et al. (2021) which approximates functional autoregression (FAR) to a

conventional vector autoregression (VAR) with an adequate representation of functions as

finite-dimensional vectors. To implement this methodology, we first construct a functional

time series of density functions, with each density function summarizing the monthly cross-

section of households’ inflation expectations from the University of Michigan’s Survey of

Consumers. We refer to these estimated density functions as ‘EID’, or the expected inflation

distribution. Then, separately for one-year ahead and medium-run inflation expectations,

we apply the functional principal component analysis (FPCA) to the functional time series

of EIDs and identify three distinctive functional shocks driving the EID dynamics. Finally,

we link these functional shocks to the four economic shocks to quantify the EID’s impulse

responses to each of these individual economic shocks.

We find that economic shocks studied in the paper affect the distributions of household

inflation expectations differently for one-year ahead and medium-run inflation expecta-

tions, as we will explain below. To complement the distributional analysis, we analyze how

economic shocks affect household inflation expectations summarized by commonly-used

statistics in the literature, such as the average and standard deviations, and less commonly-

used statistics, such as skewness, a measure of asymmetry of a distribution.3 Furthermore,

we examine how economic shocks affect the distribution of household inflation expecta-

tions by looking at the changes in probabilities of household inflation expectations before

and after each shock, broken down by decile. This exercise reveals that changes (or lack

thereof) in the selected sample statistics conceal significant distributional changes in infla-

tion expectations caused by economic shocks. To our knowledge, no studies have looked at

3Skewness provides useful information about the distributional changes: a decline (an increase) in
skewness suggests the shift of the distribution to the left (right) in an asymmetric way. In the context of our
paper, a decline (an increase) in skewness implies a higher share of households with low (high) levels of
inflation expectations.
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the different effects of economic shocks on household inflation expectations, as a funciton

of the initial level of household inflation expectations prior to economic shocks.

Using monetary policy shocks developed by Miranda-Agrippino and Ricco (2021),

we find that contractionary monetary policy shocks have no effect on the average one-

year ahead and medium-run inflation expectations. Nonetheless, monetary policy shocks

affect the distribution of household inflation expectations. Following contractionary

monetary policy shocks, the share of households with negative inflation expectations

(below -0.7 percent) increases, while the share of households with moderate levels of pre-

shock inflation expectations, between about 1.6 and 7 percent, decreases. A similar pattern

emerges for medium-run inflation expectations, with a decrease in the share of households

with pre-shock inflation expectations ranging from 3 to about 6 percent. For both forecast

horizons, changes in the distribution are not accompanied by changes in the standard

deviation (or dispersion) of inflation expectations. Skewness declines for one-year ahead

inflation expectations, consistent with the increase in the share of households with negative

inflation expectations.

Government spending shocks increase the average one-year ahead inflation expecta-

tions, consistent with the finding in Andre et al. (2022), albeit only weakly for medium-run

inflation expectations. For both forecast horizons, we do not observe a significant increase

in disagreements among households, measured by standard deviation. Importantly, unlike

monetary policy shocks, government spending shocks affect households with high levels

of inflation expectations, increasing the frequency of households with high pre-shock

inflation expectations above 7 percent. Aside from an increase in the share of households

with inflation expectations above about 9 percent, government spending shocks have no

significant effects on medium-run inflation expectations. On the other hand, personal

income tax shocks increase only the average medium-run inflation expectations, with no

significant distributional or average effects on the short-run inflation expectations. This
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finding is consistent with a recent finding that shows that consumers tend to associate

negative economic news with an inflationary shock (Coibion et al., 2020), as consumers

may interpret personal income tax increases as having a negative impact on their personal

finances, though other channels may be at work.

Finally, a surprise hike in gasoline prices increases the average inflation expectations

for both horizons of inflation expectations, as found in the literature (Coibion and Gorod-

nichenko, 2015). However, the distributional implications of short-run and medium-run

inflation expectations differ significantly. While gasoline price shocks reduce disagree-

ments among households about short-run inflation expectations, medium-run inflation

expectations show more dispersion. Households’ differing views on the future path of

gasoline prices could be one plausible explanation for this finding. The skewness for one-

year ahead inflation expectations increases, mirroring the rise in the share of households

expecting higher inflation in one year. The skewness of medium-run inflation expectations,

on the other hand, decreases as the share of households with low inflation expectations

compared to pre-shock levels grows.

To the extent that the existing studies focus on average inflation expectations, the only

direct comparison we can make vis-à-vis the existing literature is the results on average

inflation expectations. The limited impact of monetary and government spending shocks

on medium-run inflation expectations is in line with the findings in Coibion et al. (2021)

and Coibion et al. (2022), while our finding that a surprise increase in personal income tax

increases the average medium-run inflation expectations is novel.

The contribution of our work to the literature is three-fold. First, it contributes to the

rich empirical literature using survey data on inflation expectations to understand the

formation of inflation expectations (see Coibion et al. (2018) for a recent survey), by broad-

ening the scope of interest from sample statistics to the entire distribution of household

inflation expectations. Second, the paper contributes to the literature on the impact of
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economic shocks on household inflation expectations for four different commonly-used

shocks in the literature. Households are shown to be inattentive to monetary policy shocks

when inflation expectations are well-anchored (Coibion et al., 2020), while others find that

monetary policy shocks increase the disagreement due to information rigidities (Grigoli

et al., 2020). Our work shows that monetary policy shocks affect household inflation expec-

tations differently for households, depending on their initial level of inflation expectations

before the shock. The transmission of fiscal policy shocks to inflation expectations is less

studied, except to understand how the fear of fiscal dominance potentially undermines a

central bank’s independence in the context of emerging economies (Favero and Giavazzi,

2004). One notable exception is the work by Coibion et al. (2021), showing that household

inflation expectations are affected by the news on public debt, but not on fiscal deficits. In

this paper, we use widely-used fiscal policy shocks, namely, government spending and

personal income tax shocks, and show that these fiscal shocks affect household inflation

expectations in a different manner with varying distributional consequences. To the rich

literature on the effects of gasoline price shocks on household inflation expectations, we

contribute by highlighting the distributioanl effects, with varying effects on short-run

and medium-run inflation expectations. Finally, we analyze the dynamics of the entire

distribution of inflation expectations using a functional autoregressive model which can

be well approximated by a conventional VAR as shown in Chang et al. (2021). Variations

of this functional approach are used in Hu et al. (2016), Chang et al. (2020b) and Chang

et al. (2020a).4

Our paper is organized as follows. Section 2 motivates our approach in understand-

ing the entire distribution of inflation expectations. Section 3 describes the econometric

methodology which approximates a functional autoregression (FAR) model to a vector

autoregression (VAR) model. Section 4 describes the steps to implement our functional

4The framework and methodology in the paper are indeed widely applicable to study various functional
data in many different areas of economics. For other related approaches and issues in analyzing economic
models with functional variables, see Chang et al. (2016), Inoue and Rossi (2019), and Bjørnland et al. (2023).
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approach using the Survey of Consumers data. Section 5 presents the findings on the distri-

butional effects of economic shocks on EID and possible interpretations of our findings,

and Section 6 concludes the paper. Appendices describe the econometric methods used

for our empirical analyses and provide supplemental materials motivating our functional

approach.

2 Distributions of Inflation Expectations (EIDs)

In this section, we highlight the importance of looking at heterogeneous households’

inflation expectations.

Figure 2 shows the time-series variation of the households’ inflation expectations in

our sample. The top panels plot one-year inflation expectations, and the bottom panels

show medium-run inflation expectations. In the left-most column, we select six months

with the highest values of the average monthly inflation expectations and six months with

the lowest values within our sample. We observe that the months with the highest average

inflation expectations were in 1979 and 1980, years preceding the Volcker disinflation. The

months exemplified by low inflation expectations, for both one-year ahead and medium-

run, correspond to the periods of low inflation, stretching from the early 2000s until

the pandemic. In the center column, we select six months with the highest values of

standard deviations and the other six months with the lowest values. The months chosen

with high standard deviations tend to coincide with the months chosen for high average

inflation expectations. The right-most column plots the average distributions of inflation

expectations as dark solid lines from January 2018 to December 2021 split into three periods

as in Figure 1, where the colors also match the shaded regions of Figure 1. For one-year

ahead inflation expectations, the distributions from early pandemic months have fatter
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tails compared to those from pre-pandemic months. The distributions of the medium-run

inflation expectations also shifted to the right over time, albeit more moderately.

Figure 2. Selected Observations of EIDs

Notes: The top (bottom) panel represents one-year ahead (medium-run) household inflation expectations.
The left column plots the densities of six observations with the highest monthly average vaules (red) and six
observations with the lowest values (blue) from January 1978 to December 2021. The center column shows
the densities of six observations with the highest (red) and and lowest (blue) standard deviations for the
same sample period. The right column shows EIDs for each of the three different sub-periods mentioned in
Figure 1, with the darker line showing the average EID for each sub-sample.

To underline the importance of evaluating the entire distribution of inflation expecta-

tions, we further examine the correlations between different features of the distributions

of inflation expectations and key macroeconomic variables. The objective is to confirm

whether or not there are specific sample moments that exhibit a clear and meaningful

relationship with economic indicators. Table 1 displays the regression results of three key

economic indicators, namely, real GDP growth, inflation, and the change in the unem-

ployment rate, on different distributional aspects of one-year ahead inflation expectations.

These aspects include the mean, standard deviation, skewness, and kurtosis of households’
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Table 1. Correlations between Selected Macroeconomic Indicators and Sample Moments of
One-year Ahead Inflation Expectations

GDP growth Inflation ∆ Unemployment
Intercept 2.12

p0.00q
´4.13
p0.00q

´2.15
p0.00q

Mean 1.54
p0.00q

0.41
p0.00q

Standard Deviation 1.04
p0.00q

´0.28
p0.00q

Skewness ´0.20
p0.00q

Kurtosis 0.03
p0.00q

Frequency at 0% 6.23
p0.00q

4.77
p0.00q

Frequency below 0% ´57.72
p0.00q

33.41
p0.00q

R2 0.502 0.828 0.359

Notes: The table reports the coefficients of separate regressions of real GDP growth, CPI inflation, and
changes in unemployment on different aspects of the distribution of one-year ahead U.S. household inflation
expectations from the University of Michigan’s Survey of Consumers from 1983Q1 to 2021Q4. Standard errors
are reported in parentheses.

one-year ahead inflation expectations for each month. In addition, we look at the share of

households who expect future inflation to be at 0 percent (or ”Frequency at 0 percent”)

and the share of households who expect future inflation to be below zero (deflation expec-

tations). The results reported here are chosen among combinations of the moments that

result in the largest R2 for each regression. The chosen macroeconomic indicators show

varying correlations with different features of the distribution of inflation expectations.

Notably, the average inflation expectation is not always selected in the group of EID

properties explaining the largest portion of variations in macroeconomic variables, as is

the case with real GDP growth.

3 Econometric Methodology

Our analysis of EID relies on a functional autoregression (FAR). In this section, we present

a theoretical framework on how we formulate and implement the FAR to study the

dynamics of EID. In what follows, we denote by p ftq the density representing the EID,
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which we formally view as a functional time series taking values in the Hilbert space H of

square-integrable functions defined in R generated as

ft “ A1 ft´1 ` A2 ft´2 ` εt, (1)

where A1 and A2 are linear operators on H and pεtq is a functional white noise in H, which

will be defined more precisely below. We use the second order FAR, as suggested by both

of the commonly used information criteria, AIC and BIC, for our data.

We begin with some basic concepts of the Hilbert space used in our model. The

functional time series p ftq represents a time series of random elements taking values in H,

where H is endowed with the inner product x¨, ¨y and the norm } ¨ } given by

x f , gy “

ż

f prqgprqdr and }h}
2

“

ż

h2
prqdr

for all f , g and h in H. In addition to the inner product and the norm, we also need to

introduce the tensor product in H. The tensor product f b g with any given f and g in H

is a linear operator on H defined as

p f b gqv “ xv, gy f

for all v in H. If H ” Rn, we have f b g “ f g1, i.e., f b g reduces to the outer product, in

contrast to the inner product x f , gy “ f 1g, where f 1 and g1 are the transposes of f and g.

For a random function f taking values in H, we define E f to be a function in H such

that

Exv, f y “ xv, E f y

for all v P H, whose existence is guaranteed by the Riesz representation theorem. If f

and g are random functions taking values in H, then their covariance operator Ep f b gq is
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generally defined as a linear operator satisfying

@

u, rEp f b gqsv
D

“ Exu, f yxv, gy

for all u and v in H. In particular, for the functional error pεtq assumed to be a white noise

in (1), we let Eεt “ 0 for all t ě 1, and pεtq be serially uncorrelated with Epεt b εtq “ Σ for

all t ě 1.

To study the dynamics of EID, we use the econometric methodology recently devel-

oped by Chang et al. (2021), which will be referred to as CPP for short. Other existing

methodologies may also be used to estimate our FAR in (1). None of them, however,

provides a framework to identify shocks and subsequently analyze the responses of EID

to them, which is indeed the main exercise of our empirical study. Besides, as of now, only

the methodology in CPP allows us to bootstrap the confidence bands for the responses of

EID consistently. Below the methodology in CPP will be introduced concisely, but only

briefly just to make our paper self-contained. The interested reader is referred to CPP for

more details.

For a given orthonormal basis pviq of H, we write f in H as

f “

8
ÿ

i“1

xvi, f yvi,

and approximate it as

f «

m
ÿ

i“1

xvi, f yvi, (2)

where m is the truncation number which should be chosen appropriately. We let V be

the subspace of H spanned by a sub-basis pviq
m
i“1, and denote by P the Hilbert space

projection on the m-dimensional subspace V. Then the approximation in (2) may simply

be regarded as a projection of f on V yielding P f “
řm

i“1xvi, f yvi. Once f is approximated
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by an m-dimensional element P f in V, we may represent it as an m-dimensional vector.

Consequently, it is well expected that the FAR in (1) can be represented by a VAR upon

this approximation, as will be explained in what follows.

We approximate the FAR in (1) as

ft “ A1P ft´1 ` A2P ft´2 ` A1p1 ´ Pq ft´1 ` A2p1 ´ Pq ft´2 ` εt

« A1P ft´1 ` A2P ft´2 ` εt, (3)

where 1 ´ P is the Hilbert space projection defined as p1 ´ Pq f “ f ´ P f for all f in H. The

approximation error terms
`

Akp1 ´ Pq ft´k
˘

for k “ 1 and 2 are asymptotically negligible

under suitable regularity conditions, if we set m Ñ 8 as T Ñ 8 at an appropriate rate. The

required conditions are not very stringent and they are expected to hold generally. Our

empirical analysis is based on the approximate FAR in (3). Subsequently, we will explain

how we may represent this approximate FAR as a finite-dimensional VAR.

Define a mapping

π : f ÞÑ p f q ”

¨

˚

˚

˚

˚

˝

xv1, f y

...

xvm, f y

˛

‹

‹

‹

‹

‚

(4)

for any f in H, and

π : A ÞÑ pAq ”

¨

˚

˚

˚

˚

˝

xv1, Av1y ¨ ¨ ¨ xv1, Avmy

...
...

...

xvm, Av1y ¨ ¨ ¨ xvm, Avmy

˛

‹

‹

‹

‹

‚

(5)

for any linear operator A on H. Then we may represent the approximate FAR in (3) as

p ftq « pA1qp ft´1q ` pA2qp ft´2q ` pεtq, (6)
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a conventional m-dimensional VAR, which is referred to as the approximate VAR of our

FAR. Note that
`

p ftq
˘

and
`

pεtq
˘

are m-dimensional time series and pA1q and pA2q are

m ˆ m matrices. The approximate VAR in (6) is readily derived from the approximate

FAR in (3), since we have pAP f q “ pAqp f q for any f in H and any operator A on H, and

p f ` gq “ p f q ` pgq for all f and g in H. The approximate FAR in (3) is therefore equivalent

to the approximate VAR in (6), which implies that the original FAR in (1) may be analyzed

by the approximate VAR in (6) if we let m Ñ 8 as T Ñ 8 as mentioned earlier. Indeed,

CPP shows that the use of the VAR in (6) is valid under mild conditions for the general

structural analysis of the FAR in (1) relying on the general sample and bootstrap asymptotic

theories.

Although π’s in (4) and (5) are defined for any f in H and for any linear operator A on

H, we interpret them as their restricted versions on the linear subspace V spanned by the

sub-basis pviq
m
i“1 whenever necessary. The restricted versions of π’s are one-to-one so that

their inverses exist and are well-defined. We may indeed easily show that

π´1`

p f q
˘

“ P f and π´1`

pAq
˘

“ PAP.

Consequently, from the estimate zpA1q and zpA2q of the autoregressive coefficient matrices

pA1q and pA2q and the fitted values
`

ypεtq
˘

of the residuals
`

pεtq
˘

in (6), we may easily obtain

the corresponding estimates pA1 and pA2 as linear operators on V and the fitted functional

residuals
`

pεt
˘

as a time series taking values in V.

The VAR representation in (6) may be obtained for any choice of an orthonormal basis

pviq of H. The effectiveness of the resulting approximation, however, depends crucially

on the choice of basis. Following Bosq (2000), Ramsay and Silverman (2005), Hall and

Horowitz (2007) and Park and Qian (2012), among others, we use the functional principal

component basis pv˚
i q. For i “ 1, . . . , T, we define v˚

i as the eigenfunction of the sample
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variance operator of EID given by

Γ “
1
T

T
ÿ

t“1

p ft b ftq (7)

associated with the i-th largest eigenvalue. The functional principal component basis pv˚
i q

is known to most effectively approximate the temporal variations of functional time series,

although other bases can also be used. In Appendix A, we demonstrate that the use of

other bases such as the moment and quantile bases is much less effective. They not only

explain much less EID variations over time but also yield the estimators of autoregressive

operators A1 and A2 in (1) with unacceptably large variances. See Tables 4 and 5 in

Appendix A for a comparison of functional R-squared and variances of Â1 and Â2 based

on four different choices of basis, including FPC basis, which is our choice, histogram

basis, quantile basis and moment basis, computed using the one-year ahead EID.

4 Implementation of Functional Approach using EIDs

In this section, we describe the implementation of the methodology presented in Section

3 to analyze the effects of economic shocks on the distribution of the U.S. households’

inflation expectations from the University of Michigan’s Survey of Consumers. There are

several steps involved. First, based on the monthly responses from the Survey of Consumers,

we estimate the density function representing the underlying distribution of inflation

expectations each month, and use this monthly time series of density functions as our

functional data. Then, we apply the functional principal component analysis described

in Section 3 to extract the basis to obtain the optimal finite-dimensional representation of

expected inflation distributions. As a next step, by applying a recursive identification to

the corresponding approximate vector autoregression (VAR), we obtain functional shocks
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driving the expected inflation distributions, and their impacts on expected inflation distri-

butions. We call the responses of the functional variable EID to these functional shocks

as baseline EID responses. Finally, we compute the correlations between these functional

shocks and an external economic shock and use them as weights to combine the baseline

EID responses. We interpret them as the functional response of the EID to the economic

shocks. Each of these steps will be explained in greater detail below.

4.1 Constructing EID Functional Data from Household Survey

Our reference sample is monthly data from January 1983 for one-year ahead (from January

1991 for medium-run inflation expectations) to December 2021 from the University of

Michigan’s Survey of Consumers. We focus on the following two questions related to

households’ inflation expectations: (1) “About what percent do you expect prices to go

(up/down) on the average, during the next twelve months?”; and (2) “About what percent

do you expect prices to go (up/down) on the average, during the next five to ten years?”

The responses to the first question are households’ one-year ahead inflation expectations,

and those to the second question are households’ medium-run inflation expectations.

We summarize the monthly survey responses to a density function using a standard

kernel density estimation method.5 The estimated densities represent the underlying

distribution of heterogeneous inflation expectations. In Figure 3, we present an example of

the estimated density of one-year ahead expected inflation (red line) using the data for

April 2011 and the distribution based on actual responses (blue bars).

5Density functions are estimated using the Epanechnikov kernel function with the rule-of-thumb time-
varying bandwidth.
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Figure 3. Survey Responses and the Estimated Density: An Example

Notes: Survey responses of one-year ahead inflation expectations in April 2011 are used as an example. The
left vertical axis represents the number of survey responses corresponding to different levels of inflation
expectations reported in the actual survey. The right vertical axis shows the estimated density of inflation
expectations.

4.2 Functional Principal Component Analysis

We apply the functional principal component analysis (FPCA) to these estimated densities

to extract the leading components of one-year ahead and medium-run expected inflation

distributions. The scree-plot presented in Figure 4 shows the cumulative share of the

total variation of EIDs explained corresponding to the number of functional principal

components for both one-year ahead and medium-run inflation expectations. The first

principal component explains more than 74 percent of the total variation in one-year

inflation expectations. In turn, the first three components combined account for about

95 percent of the total variation in both one-year and medium-run inflation expectations.

Based on this observation, we choose the first three components (m “ 3) to implement

the functional approach described in the previous section, as it appears that these three

components can sufficiently capture most of the variations of EIDs over time.6

6While a larger value of m may explain a greater variation of EIDs, having more components tend to
increase the variances of functional coefficient estimates drastically, as shown in Tables 4 and 5 in Appendix.
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Figure 4. Scree Plots of One-Year Ahead and Medium-Run Inflation Expectations

Notes: The horizontal axis shows the number of functional principal components. The vertical axis shows
the cumulative proportion of functional variations explained, corresponding to the number of principal
components. Black line (blue dotted line) show one-year ahead (medium-run) inflation expectations from
January 1978 (from January 1991) to December 2021.

Figure 5 presents the results of FPCA for one-year ahead expected inflation distribu-

tions, with functional principal components (FPCs) shown in the center column and their

loadings in the left column. In the center column, each row corresponds to the first FPC

(v˚
1), second FPC (v˚

2), and third FPC (v˚
3). In the left column, the corresponding loadings

for each FPC, pαktq “ pxv˚
k , ftyq, are plotted, where the blue and red stars in the figures

indicate the minimum and maximum values of loadings, or minpαktq and maxpαktq, over

time t “ 1, . . . , T for each k “ 1, 2, 3. In the right column of Figure 5, we plot the combined

effects of FPC and loadings on the shape of EID. To do so, we multiply each FPC by its

minimum and maximum loadings and add them to the average EID density over time,

which is calculated as f̄ “ p1{Tq
řT

t“1 ft. The black solid, blue dotted, and red dashed lines

represent the average density ( f̄ ), average density plus the FPC scaled by the minimum

loading ( f̄ ` minpαktqv˚
k ) and the average density plus the FPC scaled by the maximum

loading ( f̄ ` maxpαktqv˚
k ) for k “ 1, 2, 3, respectively. The red-dashed (blue dotted) line,
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Figure 5. Functional Principal Components and Loadings: One-Year-Ahead Inflation Expectations

Notes: The left panels show loadings over time for the first three functional principal components (FPCs) for
one-year ahead inflation expectations, the first FPC in the top, the second second FPC in the middle, and the
third FPC in the bottom rows). The center panels show each of the three FPCs as a function. The right panel
shows how the sample mean density function (black solid line) changes with maximum (red dashed line)
and minimum (blue dotted line) contributions by the maximum (red star) and minimum (blue star) values
of the loadings in the left panel for corresponding FPCs.

therefore, illustrates the case in which the EID is affected most positively (negatively) by

the FPC.7

The first principal component alone, shown in the first row of Figure 5, explains more

than 74 percent of the total variance of one-year ahead EID. We refer to this component as

the disagreement component for the following reasons. This FPC accentuates the bi-modal

distribution, with an increase in the densities of negative inflation expectations between -5

7To substantiate our interpretation and labeling of the three functional components, we provide in
Appendix B detailed analyses on how moments of EID change as loadings of each functional principal
component vary.
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and -1 percent, as well as an increase in the densities of high (above 5 percent) inflation

expectations. At the same time, the component decreases the densities in the middle range,

with inflation expectations between -1 and 5 percent. As shown in the top right figure, the

dispersion of the EID increases with the maximum loading (red dashed line), while the EID

becomes more concentrated with the minimum loading (blue dashed line). Interestingly,

the loading for the disagreement component demonstrates cyclical features to some degree, as

the periods with high values of the loadings overlap with the times of economic recessions

such as the beginning of the 80’s, the Global Financial Crisis and the COVID-19 pandemic.

The second component, shown in the middle row of Figure 5, explains around 15

percent of the variations in the inflation expectation distributions over time. We call this

component the shifting component, as the EID shifts to the right with positive loadings and

to the left with negative loadings, as shown by the red dashed and blue dotted lines in the

rightmost figure in the middle row.

The third component, shown in the bottom row of Figure 5, explains about 7 percent of

the variation in the inflation expectation distributions over time, and we label this com-

ponent as the ambiguity component. This component increases the frequency of moderate

inflation expectations at around 2 percent, the Fed’s current (average) inflation target, but

also very high expectations above 8 percent. When its loading takes a positive value, it

generates fat tails on the right side of the distribution, creating several bumps for high

levels of inflation expectations, as shown by the red dashed line in the bottom panel in

the last column of Figure 5. In contrast, when the ambiguity component interacts with

negative loadings, it leads to a smoother tail (blue dotted line).

4.3 Functional Shock Identification

To identify shocks driving the expected inflation distributions, we write the error term

ppεtqq in the approximate second-order VAR in (6) as pεtq “ pϵ1t, ϵ2t, ϵ3tq for t “ 1, . . . , T,
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where pϵ1tq, pϵ2tq and pϵ3tq are innovations in our approximate VAR. Note that pϵ1tq, pϵ2tq

and pϵ3tq are the loadings of three leading FPCs, which we labeled as the disagreement,

shifting and ambiguity components, respectively, in our three-dimensional approximation

ppεtqq of pεtq. Let

pεtq “ Bet (8)

where B is a three-by-three matrix and petq, a three-dimensional vector representing shocks

to the EID, which we define explicitly below.

In what follows, we let et “ pe1t, e2t, e3tq
1 for t “ 1, . . . , T and tentatively identify three

functional shocks pe1tq, pe2tq and pe3tq by assuming a recursive structure among them. The

recursive structure we impose here is purely for convenience and inconsequential in our

subsequent analysis. The matrix B in (8) is then defined uniquely as a three-by-three lower

triangluar matrix satisfying the relationship

BB1
“ pΣq,

where pΣq is the estimated covariance matrix of pBetq such that Bet “ pεtq for t “ 1, . . . , T.

Each column βi of the matrix B thus defined represents at-impact response of the three

dimensional vector pp ftqq to functional shock peitq for i “ 1, 2, 3. Correspondingly, we define

bi “ π´1
pβiq (9)

to be at-impact response of p ftq to functional shock peitq. Note that pbiq “ βi, and therefore,

βi and bi are the vector and functional versions of at-impact response of the EID to

functional shock peitq, respectively, for i “ 1, 2, 3. In our subsequent discussions, bi will be

referred to as the baseline EID response to functional shock peitq for i “ 1, 2, 3.
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Figure 6. At-impact Baseline EID Responses to Functional Shocks Using Different Samples

Notes: The figure shows the at-impact baseline impulse responses of one-year ahead EIDs to the three
functional shocks using different sample periods, including the baseline sample from January 1978 to
December 2021 for Figure 5.

Figure 6 presents the baseline EID responses to each of the three functional shocks.

In addition to the baseline sample, they are calculated for different sample periods to

demonstrate the stability of EID responses in terms of shapes and magnitudes across

different samples. Recall that βi’s for i “ 1, 2, 3 are three columns of a lower triangular

matrix B. Therefore, b3 is defined exclusively by a constant multiple of the third FPC

pv˚
3q, b2 by a linear combination of the second and third FPCs pv˚

2, v˚
3q, and b1 by a linear

combination of all three FPCs pv˚
1, v˚

2, v˚
3q. The third baseline EID response b3 thus has

exactly the same shape as the third FPC pv˚
3q. The first and second EID responses, b1 and

b2, also have very similar, though not exactly the same, shapes as the first and second FPCs

pv˚
1q and pv˚

2q, respectively. This is because the loadings of leading FPCs truly dominate

those of subsequent FPCs in our empirical model. For this reason, we will call these three

baseline EID responses pb1, b2, b3q as responses in disagreement, shifting and ambiguity,

respectively, using the same labels that we used for the FPCs pv˚
1 , v˚

2 , v˚
3q.

The three functional shocks pe1tq, pe2tq and pe3tq are not identified in any usual structural

sense, since they are not economically interpretable. To be able to identify structural

shocks meaningfully, we need to introduce additional identifying restrictions. Chang et al.
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(2023) and Bjørnland et al. (2023), for example, impose restrictions in the responses of

functional variables such as income distributions and stock return distributions to identify

structurally interpretable shocks. The interested readers are referred to their papers for

details. We may similarly identify structural shocks defined as linear combinations of the

the functional shocks pe1tq, pe2tq and pe3tq that satisfy certain restrictions in the responses of

EID to them.

In the paper, however, we take a different path. We identify economically interpretable

shocks by linking externally identified economic shocks to the three functional shocks

pe1tq, pe2tq and pe3tq. As externally identified economic shocks, we will consider monetary

policy (mp), government spending (gs), personal income tax (it), and gasoline price change

(gp) shocks. The economic shocks we consider are available at different frequencies.

Monetary policy and gasoline price shocks are available monthly, the same frequency as

EID functional shocks, while government spending and personal income tax shocks are

available only at quarterly. To be able to compare subsequent results on EID responses to

different economic shocks, we set the frequency of all our data, both EID functional shocks

and economic shocks, at the lower quarterly frequency.8

To determine the response of EIDs to an external shock pxtq, we compute the correlations

between the external shock pxtq and three functional shocks, peitq, i “ 1, 2, 3. Denote the

correlation vector by ρx “ pρx1, ρx2, ρx3q1, with ρxi “ corrpeit, xtq for i “ 1, 2, 3. Since the

individual functional shocks, peitq for i “ 1, 2, 3, are uncorrelated, we can interpret the

norm }ρx} of the correlation vector as the percentage of the economic shock pxtq that is

transmitted to the EID. We use these correlation coefficients pρx1, ρx2, ρx3q1 as weights to

8We use the last observation in each quarter to obtain quarterly EID data and use them to compute
quarterly EID functional shocks. For monetary policy and gasoline price shocks, we use the sum of all three
monthly values to obtain quarterly time series.
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define the at-impact response of EID to the given external shock xt as

ϕx “ ρx1b1 ` ρx2b2 ` ρx3b3, (10)

where bi is the at-impact baseline response of EID to the i-th functional shock for i “ 1, 2, 3,

defined in (9) and presented in Figure 6. Note that the external shock pxtq has been

normalized to have unit variance so that we may interpret ϕx as the response of EID to a

one standard deviation external shock pxtq.9

We may readily obtain functional impulse responses of the EID to each economic shock

xt at a future horizon h ą 1 as we did for the impact date in (11) as

ϕx,h “ ρx1b1,h ` ρx2b2,h ` ρx3b3,h, (11)

using the correlations ρxi as weights to combine the h-period ahead baseline EID response

bi,h to the economic shock xt. We present the three dimensional impulse response sur-

faces of EIDs to each of the four economic shocks whose two-dimensional slices present

functional EID responses at each horizon h “ 0, 1, 2, . . . , 60 quarters in Appendix C.

5 Distributional Effects of Economic Shocks on EID

This section presents the results on the effects of externally identified economic shocks

on the distributions of one-year ahead and medium-run inflation expectations using the

methodology described above.10

9When a different shock size is desired, we may simply adjust the scale of the EID response as θxϕx with
an appropriately chosen factor θx, viz., θxϕx “ ρθx1b1 ` ρθx2b2 ` ρθx3b3, where ρθxi “ θxρxi are scale-adjusted
new weights. For example, when a one-standard deviation monetary policy shock represents an increase in
30 bp of the federal funds rate, we may compute the response of EID to a 25 bp increase in the policy rate
simply by setting the factor θmp “ 25{30 “ 5{6.

10The IRF results are broadly similar using different samples. The baseline sample runs from January 1983
to December 2021 for one-year ahead inflation expectations, and from January 1991 to December 2021 for
medium-run inflation expectations.
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5.1 Economic Shocks

The four external shocks studied in this paper are monetary policy, government spending,

personal income tax and gasoline price shocks.11 To begin, for the monetary policy shock,

we use the series constructed by Miranda-Agrippino and Ricco (2021), who introduce a

high-frequency identification strategy to build an instrumental variable that makes the

identification of monetary policy shocks robust in the presence of informational frictions.

How contractionary monetary policy shocks affect inflation expectations is ambiguous,

a priori. On the one hand, an increase in interest rates can dampen aggregate demand,

lowering inflation expectations reflecting a lower output in the future. On the other hand,

an increase in interest rates can be interpreted as a signal that the central bank is anticipat-

ing inflationary pressures (Nakamura and Steinsson, 2018), which can consequently lead

households to increase inflation expectations.

For government spending shocks, we refer to Auerbach and Gorodnichenko (2012),

based on a trivariate VAR model with real government spending, real government receipts

– direct and indirect taxes, net transfers to businesses and individuals – and real gross

domestic product (GDP). To the extent government spending shocks may lead to higher

future public debt, government spending shocks can lead to higher inflation expectations.

At the same time, if households expect an increase in future taxes to finance the current

government spending, the net effect on inflation expectations is not clear.

As for our study for personal income tax shocks, we use the series constructed by

Mertens and Ravn (2013) based on a narrative approach. The literature documents that

an increase in taxes has contractionary effects, accompanied by a significant drop in

inflation (Alesina and Ardagna, 2010; Romer and Romer, 2010). However, as documented

in Mertens and Ravn (2013), different tax items may have varying impact on inflation. The

11Except for gasoline price shocks, economic shocks and the estimation codes are made available by the
original authors of these shocks.
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effect of these specific tax changes, such as personal income tax or corporate income tax,

on household inflation expectations is less clear. To the extent that any change in personal

income tax directly affects household disposable income, one can conjecture that household

inflation expectations will be adjusted in response to a change in personal income tax. A

priori, the direction of the adjustment is ambiguous. Households may increase inflation

expectations if they interpret personal income tax increases as negative economic news. At

the same time, an increase in personal tax income may result in lower future public debt,

which may cause households’ inflation expectations to be revised downward.

Finally, for gasoline price shocks, we use retail gasoline price, following Kilian and

Zhou (2022) who show that gasoline price, rather than oil price, is more salient from

the perspective of consumers and therefore is more influential in households’ inflation

expectations. Anderson et al. (2013) shows that households participating in the Survey of

Consumers treat the real price of gasoline approximately as a random walk. Given that the

change in the real price of gasoline is approximately the same as that in the nominal price

of gasoline, we use the monthly changes in the nominal gasoline price as our gasoline

price shocks, drawn from FRED’s ”Consumer Price Index for All Urban Consumers:

Gasoline (All Types) in the U.S. City Average.” The literature shows that gasoline price

hikes, as salient shocks, play a crucial role in shaping households’ inflation expectations.

However, there is relatively sparse literature on the distributional effects of gasoline prices

on households’ inflation expectations.

5.2 Linking EID Functional Shocks to Economic Shocks

Because the individual functional shocks, peitq, i “ 1, 2, 3, are uncorrelated with each other,

the norm of the correlation vector, ρx “ pρx1, ρx2, ρx3q1, can be interpreted as percentage of

the economic shock x that is transmitted to expected inflation distribution. The correlation
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Table 2. Correlations between Functional Shocks and Economic Shocks: One-Year Ahead EIDs

Disagreement Shifting Ambiguity Norm
Monetary Policy: ρmp 0.040

p0.063q
´0.087

p0.070q

0.084
p0.068q

0.128
p0.050q

Government Spending: ρ f p 0.029
p0.114q

0.166
p0.104q

0.110
p0.100q

0.202
p0.090q

Personal Income Tax: ρit ´0.019
p0.096q

´0.035
p0.109q

0.015
p0.098q

0.043
p0.071q

Gasoline Prices: ρgp 0.057
p0.080q

0.384
p0.045q

0.195
p0.047q

0.434
p0.041q

Notes: Correlations between the three functional shocks of one-year ahead EIDs and each of the following
four economic shocks are considered: (i) contractionary monetary policy shock (Miranda-Agrippino and
Ricco (2021)); (ii) government spending (Auerbach and Gorodnichenko (2012)); (iii) personal income tax
increase (Mertens and Ravn (2013)); and (iv) gasoline price changes (FRED). Boostrapped standard errors
are reported in parentheses. The sample size depends on the availability of economic shocks.

of each functional shock with each economic shock for the one-year ahead inflation

expectations is reported in Table 2 from columns 2 to 4. The last column reports the

norm for each economic shock (xt), which ranges from about 4 percent (personal income

tax shocks) to about 43 percent (gasoline price shocks).12 Monetary policy shocks have

the largest and negative correlations with the shifting element. Government spending

shocks have positive correlations with the three functional shocks, but these correlations

are not statistically significant. On the other hand, the correlations between the functional

shocks and personal income tax shocks are negative except with the ambiguity factor, but

without statistical significance. Gasoline price shocks, on the other hand, have a positive

relationship with both shifting and disagreement shocks.

Table 3 repeats the same exercise for the medium-run inflation expectations. The

results show the varying impact of economic shocks on one-year ahead and medium-run

inflation expectations. For instance, the norm for personal income tax shocks increases

from 4 percent for one-year ahead inflation expectations to 45 percent for medium-run

inflation expectations. Based on the norms, the correlations between EIDs and monetary

12Since the shocks we have used here come from different sources, it is important to interpret these results
individually. We do not attempt or claim to identify the effect of these shocks simultaneously. Future work
relating the EID to other economic aggregates such as inflation, output, or unemployment, for instance, will
address the issue of simultaneous identification.
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and gasoline price shocks are lower for medium-run inflation expectations than for one-

year ahead inflation expectations. Correlations between monetary shocks and all three

functional shocks are shown to be relatively weak, while personal income tax shocks

are correlated with the shifting functional shock with statistical significance. The norm

does not change much for government spending shocks for the two different horizons

of inflation expectations, and the correlations with the three functional shocks remain

weak. Compared with one-year ahead inflation expectations, the correlation between

disagreement shocks and gasoline price shocks becomes more prominent for medium-run

inflation expectations.

Table 3. Correlations between Functional Shocks and Economic Shocks: Medium-Run EIDs

Disagreement Shifting Ambiguity Norm
Monetary Policy: ρmp 0.011

p0.049q
´0.109

p0.064q

´0.009
p0.057q

0.110
p0.053q

Government Spending: ρ f p 0.100
p0.138q

0.011
p0.130q

´0.145
p0.125q

0.177
p0.107q

Personal Income Tax: ρit 0.080
p0.121q

0.430
p0.089q

´0.120
p0.121q

0.453
p0.078q

Gasoline Prices: ρgp 0.131
p0.061q

0.049
p0.051q

´0.017
p0.057q

0.141
p0.054q

Notes: Correlation between the three functional shocks of the medium-run expected inflation distributions
and each of the four economic shocks are considered. Economic shocks are identical to those in Table 2.

5.3 Effects of Economic Shocks on Expected Inflation Distributions

In the following subsections, we document the results for each of the four shocks 13.

5.3.1 Monetary Policy Shocks

We first examine the effects of contractionary monetary policy shocks on EIDs. The

at-impact responses of one-year ahead and medium-run inflation expectations to con-

tractionary monetary policy shocks using the baseline sample from 1991Q1 to 2009Q4

13The entire impulse response surfaces of EIDs to each shock can be found in Appendix C
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are shown in the top charts of Figure 7. Contractionary monetary policy shocks increase

the frequency of negative one-year ahead inflation expectations, while decreasing that

of moderate levels of inflation expectations (top left chart). The shape of the at-impact

response for medium-run inflation expectations is largely similar (top right chart).

Figure 7. One-year Ahead and Mediun-Run EID Responses to Monetary Policy Shocks

Notes: The top charts show the at-impact response of one-year ahead expected inflation expectations (left)
and medium-run inflation expectations (right) following a contractionary monetary policy shock of 1 percent.
The sample runs from 1991Q1 to 2009Q4. The IRFs include two confidence bands (68 and 90 percent)
estimated using bootstrap methods. The bottom charts show the estimated post-shock probabilities of
each decile following the same monetary policy shock for one-year ahead (left) and medium-run inflation
expectations (right), compared to the reference pre-shock probability of 10 percent. For each decile, a dot
represents the average post-shock probability, while a line indicates the confidence band of 68 percent.

Furthermore, we examine the effects of monetary policy shocks on the distribution

of households’ inflation expectations, by showing how the frequency in each decile bin

based on households’ initial levels of inflation expectations changes after a contractionary

monetary policy shock. The results are show in the bottom charts of Figure 7. We divide the

range of expected inflation along the horizontal axis into 10 intervals of equal probability,

i.e., splitting the observations with cutoffs at 10th, 20th, . . . , 90th percentile values of the EID

prior to the shock. This results in ten bins, each with a 10 percent probability. The average

impact of contractionary monetary shocks on the frequency of each decile is displayed by

a dot at the center, within a line representing a 68 percent confidence interval. Here, the
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horizontal line drawn at 10 percent represents the pre-shock probability of all ten bins,

serving as the reference line to determine the statistical significance.

Following a contractionary monetary policy shock of 100 basis points, the probability in

the first decile of one-year ahead EID increases by 3.5 percentage points to 13.5 percent from

10 percent (bottom left chart). That is, contractionary monetary policy shock increases

the share of households in the first decile, with inflation expectations below negative

0.7 percent, to 13.5 percent from the pre-shock 10 percent probability. This change is

statistically significant. The probability in the second decile, with inflation expectations

ranging between -0.6 to 0.5 percent prior to the shock, increases by about 1 percentage

point, but the result is not significantly different from the pre-shock 10 percent probability.

On the other hand, there is an evident and significant decline in the share of households

with inflation expectations between 4th and 8th deciles, with inflation expectations ranging

from 1.6 to 6.9 percent. Contractionary monetary policy shocks do not appear to affect the

share of households in the top two deciles, corresponding to inflation expectations above 7

percent.

The distributional impact of contractionary monetary policy shocks on medium-run

inflation expectations is broadly similar (bottom right chart), but the magnitude of the

changes is generally smaller for medium-run inflation expectations compared to that of

one-year ahead inflation expectations. For instance, the probability in the first decile

increases to 12.8 percent from 10 percent, corresponding to households with medium-

run inflation expectations below 0.1 percent, somewhat lower than the 3.5 percentage

points increase for one-year ahead inflation expectations. As in the case for one-year

ahead inflation expectations, the share of households with moderate levels of medium-run

inflation expectations between about 3 to 6 percent declines following contractionary

monetary policy shocks, and these declines are statistically significant.
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Next, we evaluate the impact of contractionary monetary policy shocks on the mean,

standard deviation, and skewness of EID (Figure 8). For one-year ahead inflation expec-

tations (top row), contractionary monetary policy shocks do not affect the average and

standard deviation with statistical significance. Skewness for one-year ahead inflation

expectations, however, declines, implying a disproportionate increase in the share of house-

holds with lower or negative inflation expectations. For medium-run inflation expectations

(bottom row), monetary policy shocks do not affect the selected sample moments.

Figure 8. Impact of Monetary Policy Shocks on Specific Moments of One-Year Ahead and
Medium-Run EIDs

Notes: Each column shows the impact of contractionary monetary policy shocks of 1 percent on the mean
(left), standard deviation (center), and skewness (right) of expected inflation distributions (EIDs). The
top (bottom) row shows the impact on one-year ahead (medium-run) inflation expectations. The sample
runs from 1991Q1 to 2009Q4. The IRFs include two confidence bands (68 and 90 percent) estimated using
bootstrap methods.
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5.3.2 Government Spending Shocks

Next, we explore the effects of government spending shock on EIDs based on the shocks

from Auerbach and Gorodnichenko (2012). The top chart of Figure 9 presents the at-

impact response for one-year ahead inflation expectations (left) and medium-run inflation

expectations (right). For one-year ahead inflation expectations (top left chart), government

spending shocks decrease the densities of inflation expectations below about 1 percent,

while increasing those with positive and relatively higher inflation expectations compared

to the moderate level observed for monetary policy shocks. The at-impact response of

medium-run inflation expectations is more muted in comparison (top right chart), except

for an increase in the frequency of inflation expectations at around 10 percent.

The bottom charts represent the results from the same distributional analysis conducted

for monetary policy shocks, by dividing the range of EIDs into ten equal-probability

intervals based on the deciles using the initial levels of household inflation expectations

prior to government spending shocks. For one-year ahead inflation expectations (bottom

left chart), we find that government spending shocks significantly increase the share of

households with inflation expectations above 4.3 percent. This shows that government

spending shocks have different distributional effects on households’ inflation expectations

than monetary policy shocks. In particular, government spending shocks affect the tail

behaviors of inflation expectations, with the share of households with high levels of

inflation expectations increasing, particularly the households in the 9th and 10th deciles

prior to the shock. Monetary policy shocks, in contrast, did not affect high-levels of inflation

expectations. For medium-run inflation expectations (bottom right chart), government

spending shocks affect the share of households in the 10th decile only, by increasing the

probability by 0.3 percentage points from 10 percent to 10.3 percent.
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Figure 9. One-year Ahead EID and Medium-Run EID Responses to Government Spending Shocks

Notes: The top charts show the at-impact responses of one-year ahead (left) and medium-run inflation
expectations (right) to government spending shocks using the sample from 1983Q1 (1991Q1 respectively) to
2008Q4. The bottom charts shows the estimated post-shock probabilities of decile bins for one-year ahead
(left) and medium-run inflation expectations (right) following the same shock, compared to the reference 10
percent probability line for each decile before the shock. Footnote otherwise identical to the bottom chart of
Figure 7.

Figure 10 compares how government spending shocks affect the mean (left column),

standard deviations (center column), and skewness (right column). The mean of one-year

ahead inflation expectations (top row) increases, confirming the observation in Figure 9.

The average impact on medium-inflation expectations (bottom row) is not statistically

significant. Government spending shocks do not affect standard deviations or skewness of

households’ inflation expectations for both forecast horizons.

5.3.3 Personal Income Tax Shocks

Next, we examine the effects of personal income tax shocks on EIDs. Top charts in Figure

11 exhibit the at-impact responses for one-year ahead (left) and medium-run inflation

expectations (right) following personal income tax shocks. The effects of personal income

tax shocks on one-year ahead inflation expectations are visibly different from those on
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Figure 10. Impact of Government Spending Shocks on Specific Moments of One-Year Ahead and
Medium-Run EIDs

Notes: Each column shows the impact of government spending shocks on the mean (left), standard deviation
(center), and skewness (right). The top row reports for the results for one-year ahead expected inflation
distributions (EIDs), using the sample from 1983Q1 to 2008Q4. The bottom row reports the results for
medium-run inflation expectations, using the sample from 1991Q1 to 2008Q4.

medium-run inflation expectations, as the results are statistically significant only for

medium-run inflation expectations. For medium-run inflation expectations, personal

income tax shocks tend to increase the average inflation expectations, with a decline in the

share of households with low levels of inflation expectations and an increase in the share

of households with higher levels of inflation expectations above 3 percent.

The bottom charts examining the change of frequencies by deciles confirm these ob-

servations. Compared to the muted at-impact response of one-year ahead inflation ex-

pectations, personal income tax shocks increase medium-run inflation expectations, by

lowering the probabilities of inflation expectations below 3 percent, while increasing the

probabilities of inflation expectations higher than 3 percent. The bottom right chart shows
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a general increase in the share of households with positive medium-run inflation expecta-

tions greater than 3.2 percent, accompanied by a general decline in the share of households

with inflation expectations below 1.8 percent, with a greater decline observed for lower

initial levels of medium-run inflation expectations prior to the shock.

Figure 11. One-year Ahead and Medium-Run EID Responses to Personal Income Tax Shocks

Notes: The top charts show the at-impact response of one-year ahead (left) and medium-run (right) inflation
expectations to personal income tax shock using the sample from 1983Q1 (1991Q1 respectively) to 2006Q4.
The bottom charts shows the estimated post-shock probabilities of decile bins for one-year ahead (left) and
medium-run (right) EIDs following the same shock, compared to the reference 10 percent probability line for
each decile before the shock. Footnote otherwise identical to the bottom chart of Figure 7.

Figure 12 presents the impulse responses of personal income tax shocks on the mean

(left), standard deviations (center), and skewness (right). The sample statistics of one-year

ahead inflation expectations are not affected by personal income tax shocks. Personal

income tax shocks increase the average medium-run inflation expectations at-impact with

statistical significance, but do not affect the other two statistics.

5.3.4 Gasoline Price Shocks

Finally, we examine the impact of gasoline price shocks on EIDs. The top charts of Figure 13

compare the at-impact responses of EIDs to gasoline price shocks for one-year ahead (left)
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Figure 12. Impact of Personal Income Tax Shocks on Specific Moments of One-Year Ahead and
Medium-Run EIDs

Notes: Each column shows the impact of personal income tax shock on the mean (left), standard deviation
(center), and skewness (right). The top (bottom) row reports the results for one-year ahead (medium-run)
expected inflation distributions, using the sample from 1983Q1 to 2006Q4.

and medium-run inflation expectations (right). These confirm the findings in the literature

that gasoline price shocks are inflationary (Harris et al., 2009; Coibion and Gorodnichenko,

2015). Furthermore, We find that, from distributional perspectives, gasoline price shocks

affect one-year inflation expectations differently from medium-run inflation expectations,

which is a novel finding in the literature.

For one-year ahead EIDs (top left), a surprise hike in gasoline prices decreases the

frequency of inflation expectations below 3 percent, while increasing the frequency of

inflation expectations higher than 3 percent at the same time. This confirms the findings in

the literature that gasoline price shocks lead to an increase in the average level of one-year

ahead inflation expectations. In contrast, for medium-run inflation expectations, the same

shock not only increases the frequency of positive inflation expectations, but also that of
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negative inflation expectations. In other words, the disagreement among households on

the impact of the current gasoline price shocks on the future price level widens.

The bottom chart examines the distributional changes following the shock. For one-

year ahead inflation expectations (bottom left), the share of households with pre-shock

inflation expectations lower than 1.5 percent, declines in a linear way, in the sense that the

magnitude of the decline is larger for households with lower levels of pre-shock inflation

expectations. This decline is accompanied by an increase in the share of households with

pre-shock inflation expectations above 2.5 percent. The bottom right chart shows the

distributional impact of the gasoline price shocks on medium-run inflation expectations.

Contrary to the one-year ahead inflation expectations, the share of households with low

medium-run inflation expectations, below 0.1 percent, increases with statistical significance,

pointing to the increase in disagreement following gasoline price shocks.

Figure 13. One-year Ahead EID and Medium-Run EID Responses to Gasoline Price Shocks

Notes: The top charts show the at-impact response of one-year ahead (left) and medium-run (right) expected
inflation distributions (EIDs) to gasoline price shocks using the sample from 1983Q1 to 2021Q4. The bottom
charts shows the estimated post-shock probabilities of decile bins for one-year ahead (left) and medium-run
inflation expectations (right), following the same shock, compared to the reference 10 percent probability
line for each decile before the shock. Footnote otherwise identical to the bottom charts of Figure 7.
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The examination of the impact of gasoline prices shocks on selected moments reaffirms

such observations (Figure 14). A surprise increase in gasoline prices leads to higher average

inflation expectations for both horizons, with a larger increase for one-year ahead inflation

expectations (left column). In fact, the response of one-year ahead inflation expectations at-

impact is nearly four times larger than that of medium-run inflation expectations. Standard

deviation decreases for one-year ahead inflation expectations (top center), implying that

the disagreement among households on the level of inflation one year from the shock

is reduced following the gasoline price shock. On the contrary, standard deviation for

medium-run inflation expectations (bottom center) increases in response to gasoline price

shocks, and the shock has a significant impact even 5 years after the shock. Finally,

skewness declines for medium-run inflation expectations (bottom right), but increases for

one-year ahead inflation expectations (top right) for several months after the shock.

5.4 Interpretation and Plausibility of Findings

The precise transmission channels through which economic shocks affect the distribution

of inflation expectations are beyond the scope of our paper. Nonetheless, in this section, we

attempt to provide plausible explanations for our findings in the established transmission

mechanisms of each shock in the literature, while leaving a more rigorous analysis for

future research. But, we also note that there are channels that would predict a different

outcome than ours. The lack of empirical evidence on the transmission of specific channels

of shocks on the distribution of inflation expectations is a significant barrier to testing

different predictions, emphasizing the need for additional research in this area.

First, why would contractionary monetary policy shocks lead to more frequent re-

sponses of negative inflation expectations?14 A priori, contractionary monetary policy

14In fact, empirical studies have shown that contractionary monetary policy shocks lead to an increase in
inflation, through neo-fisherian effects (Uribe, 2022), or price puzzles (Sims, 1992; Hanson, 2004; Rusnák
et al., 2013).
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Figure 14. Impact of Gasoline Price Shocks on Specific Moments of One-Year Ahead and
Medium-Run EIDs

Notes: Each column shows the impact of gasoline price shock on the mean (left), standard deviation (center),
and skewness (right). The top (bottom) row reports the results for one-year ahead (medium-run) expected
inflation distributions (EIDs), using the sample from 1983Q1 to 2021Q4.

shocks can either increase or decrease household inflation expectations. Empirical ev-

idence is also mixed. While some studies show that policy news, including monetary

policy, does not affect household inflation expectations insofar as inflation expectations are

well-anchored (Coibion et al., 2022; De Fiore et al., 2022), others document that monetary

policy tightening in the United States during the high inflation period of 2021-22 has

resulted in a share of households with deflationary inflation expectations, particularly for

households with more optimistic economic outlook (Armantier et al., 2022). Our findings

may appear consistent with the conventional Phillips Curve channel, whereby agents

expect slower economic activity following contractionary monetary policy, leading to

lower inflationary pressures, and, thus, lower inflation expectations. On the other hand,

this interpretation may be at odds with the findings in Coibion and Gorodnichenko (2015)
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that show households tend to associate inflation with negative news to future economic

conditions. If so, households may perceive contractionary monetary policy shocks as

negative shocks to the economy, which would lead to an increase in inflation expectations.

The findings that government spending shocks increase inflation expectations in the

short-run but not for medium-run suggest myopic consumption behaviors and may

not bode well with the predictions from well-established models using forward-looking

consumers. For instance, from the perspective of an inter-temporal government budget

constraint where fiscal decisions in the current period affect the level of future prices

(Leeper and Nason, 2010), current government spending shocks may affect households’

beliefs about future prices. Conversely, our finding that shows no meaningful impact of

government spending shocks on medium-run inflation expectations may be at odds with

the literature that discusses a delay in public spending implementation, as suggested in

Leeper et al. (2010), where the economic impact of current spending shocks span several

periods.

Finally, to our knowledge, few studies have looked into the channels through which

personal income tax shocks affect household inflation expectations. Personal income tax

shocks associated with an increase in inflation expectations may be consistent with the

studies of perfect foresight, as households may perceive the current increase in personal

income tax as a higher future government spending, leading to an upward revision in

medium-run inflation expectations. However, a handful of studies caution against the

restrictiveness of perfect foresight as an assumption, as the perfect foresight assumption

does not allow agents to be uncertain about the beliefs and the response of others as

documented in Angeletos and Lian (2018) and Garcı́a-Schmidt and Woodford (2019).
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6 Conclusion

In this paper, we document several novel findings on how economic shocks affect the

distribution of household inflation expectations for one-year ahead and medium-run in-

flation expectations using a functional approach. Starting with monetary policy shocks,

there are more households who report negative inflation expectations following contrac-

tionary monetary policy shocks. Fiscal policy shocks also affect the distribution of inflation

expectations. We find that inflation expectations increase for one-year ahead inflation

expectations following government spending shocks, but not for medium-run. Conversely,

personal income tax shocks affect medium-run inflation expectations only. Finally, we

confirm that the levels of household inflation expectations for both one-year ahead and

medium-run inflation expectations respond to changes in gasoline price shocks. However,

gasoline price shocks also have more persistent effects and increase disagreement among

households’ medium-run inflation expectations.

Our findings contribute to the policy discussion on how to anchor households’ inflation

expectations. So far, there has been limited evidence and discussion on the channels

through which economic shocks affect inflation expectations, let alone the distributional

impact of these shocks. Our findings highlight that both fiscal and monetary policy shocks

exert their influence on the distribution of household inflation expectations in their own

ways. A fruitful avenue for future research is to better understand the exact channel

through which these policy measures affect household inflation expectations, individually

and jointly. Another promising avenue for future research would be to explore to what

extent the varying distributional aspects of inflation expectations may matter for the

movements of aggregate macroeconomic variables that are of first-order importance to

policymakers, such as inflation, unemployment rate, and growth.
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Appendices

For Online Publication

A Choice of Basis

Here, we explain the approach adopted in this paper in order to select the basis. In fact,

our approach based on the VAR representation in (6) may be implemented with any

orthonormal basis pviq of H. However, the finite sample performance of the approach

is critically dependent upon the choice of basis. In what follows, we denote by pv˚
i q the

functional principal component basis used in the paper, and by V˚ the subspace of H

spanned by the sub-basis pv˚
i qm

i“1 assuming m ă T and P˚ to be the Hilbert space projection

on V˚. In contrast, we let pviq
m
i“1 be an arbitrary sub-basis spanning the subspace V of H,

and P be the Hilbert space projection on V in H.

As shown in Chang et al. (2021), the π’s in (4) and (5) are isometries, not just one-to-one

mappings between V and Rm. For π in (4), we have

} f }
2

“
›

›p f q
›

›

2

for any f in V, where we use the same notation } ¨ } for the Hilbert space norm of f in V

and the Euclidean norm of p f q in Rm. Similarly, for π in (5), we may show

|}A}|
2

“ trace pA1Aq “ trace
`

pAq1pAq
˘

“
ˇ

ˇ

›

›pAq
›

›

ˇ

ˇ

2,
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where A1 is the adjoint of A, pAq1 is the transpose of pAq, and |} ¨ }| denotes both the Hilbert-

Schmidt norm for a linear operator A on V whose tracepA1Aq is finite and the Frobenius

norm for the m ˆ m matrix pAq.

Let

FR2
“

řT
t“1 }P ft}

2

řT
t“1 } ft}2

be the functional R-squared (FR-squared) of an arbitrary sub-basis pviq
m
i“1, which represents

the proportion of the total variation of p ftq explained by its projection pP ftq on the subspace

V spanned by pviq
m
i“1, with FR2

˚ denoting the FR-squared of pv˚
i qm

i“1. Then we have

FR2
˚ ě FR2,

which implies that pP˚ ftq has the maximum temporal variation. For both k “ 1 and 2, the

approximation of Ak given by P˚AkP˚ thus restricts Ak to the subspace of V˚ of H, where

p ftq has the largest variation and thus Ak is most strongly identified. In this sense, the basis

pv˚
i q provides the most effective approximation of Ak for k “ 1 and 2 by its restriction on

an m-dimensional subspace V˚ of H spanned by pv˚
i qm

i“1.

Given any basis pviq, we may make the FR-squared as large as we want simply by

increasing the truncation number m. However, this does not come without a cost. As

m gets large, the variances of the estimators pAk for the autoregressive operator Ak for

k “ 1 and 2 are expected to increase. They increase often very sharply in many practical

applications we have observed so far, and therefore, we also need to examine how fast the

variance of pAk increases as m gets large.

46



Let pAk for k “ 1 or 2 be the estimator obtained from ypAkq by pAk “ π´1`

ypAkq
˘

, which

we may regard more explicitly as the estimator of Ak “ π´1`

pAkq
˘

“ PAkP, and let

pA “

¨

˚

˝

pA1

pA2

˛

‹

‚

and A “

¨

˚

˝

A1

A2

˛

‹

‚

,

which are operators from H to H ˆ H. Furthermore, we define

Q “

¨

˚

˝

P 0

0 P

˛

‹

‚

and ∆ “
1
T

T
ÿ

t“1

»

—

–

¨

˚

˝

ft

ft´1

˛

‹

‚

b

¨

˚

˝

ft

ft´1

˛

‹

‚

fi

ffi

fl

.

Then the mean-squared-error (MSE) of pA is given by

E
ˇ

ˇ

›

› pA ´ A
›

›

ˇ

ˇ

2
“ E

ˇ

ˇ

›

› pA ´ E pA
›

›

ˇ

ˇ

2
`

ˇ

ˇ

›

›E pA ´ A
›

›

ˇ

ˇ

2,

where we decompose it into its variance and squared bias terms. The variance term of pA is

approximately given by

ptrace Σq
`

trace pQ∆Qq
`

˘

,

where Σ is the variance operator of pεtq as defined earlier, and pQ∆Qq` is the inverse of

the bounded linear operator Q∆Q restricted to the subspace V ˆ V of H ˆ H. The squared

bias term of pA is approximately given by

ˇ

ˇ

›

›Ap1 ´ Qq∆QpQ∆Qq
`

›

›

ˇ

ˇ

2,

where A is defined from A1 and A2 similarly as pA and A.

In our subsequent discussions, we denote by pA˚ and A˚
the versions of pA and A

obtained using our functional principal component basis pv˚
i q, and show that the variance

term E
ˇ

ˇ

›

› pA˚ ´ E pA˚
›

›

ˇ

ˇ

2 of pA˚ is significantly smaller than that of the estimator pA based on
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other bases in our empirical analysis. Although we cannot explicitly compute and compare

them, the bias term
ˇ

ˇ

›

›E pA˚ ´ A˚›

›

ˇ

ˇ

2 of pA˚ is generally expected to be smaller than that of the

other estimator pA since

P˚Γp1 ´ P˚
q “ 0,

whereas PΓp1 ´ Pq ‰ 0 for any other choice of basis pviq. In fact, our methodology yields

an unbiased estimator pA˚ if the first order FAR, viz., ft “ A ft´1 ` εt, is used in place of the

second order FAR in (1).

To demonstrate the importance of the choice of basis in explaining the variance of EID,

we compare the FR-squared’s and the variance terms of the estimators of A based on our

basis pv˚
i q and other bases. As an alternative to our basis pv˚

i q, we consider three other bases

given by the orthonormalized moments, histograms and quantiles, which will be referred

to as the moment basis, histogram basis and quantile basis, respectively. The moment basis

pviq
m
i“1 is obtained by the Gram-Schmidt orthogonalization procedure from the pre-basis

defined as uiprq “ ri for i ě 1 over the interval rp, qq with p “ ´0.5 and q “ 0.5. We call

puiq the moment basis, since

xui, fty “

ż

ri ftprqdr

and
`

xui, fty
˘

represents the i-th moments of the EID given by the densities p ftq for i ě 1.

The histogram basis pviq
m
i“1 is given by

viprq “
1

?
qi ´ pi

1tpi ď r ă qiu,

where
`

rpi, qiq
˘

is a partition of the support rp, qq of the densities p ftq. As before, we let

p “ ´0.5 and q “ 0.5 and obtain the pm ` 1q-number of sub-intervals
`

rpi, qiq
˘

of equal

length, from which we take only m indicators as a basis, ignoring the first sub-interval.

This is because the pm ` 1q indicators over the pm ` 1q-number of sub-intervals
`

rpi, qiq
˘

are linearly dependent. The quantile basis pviq
m
i“1 is defined similarly as indicators over a
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Table 4. FR2 for Four Choices of Basis

m FPC Basis Histogram Basis Quantile Basis Moment Basis
1 0.7419 0.0095 0.0322 0.0048
2 0.8829 0.0123 0.3707 0.0064
3 0.9513 0.0400 0.5573 0.0172
4 0.9676 0.1103 0.5611 0.0220
5 0.9785 0.0735 0.7181 0.0353
6 0.9861 0.2789 0.7309 0.0461
7 0.9898 0.1430 0.7580 0.0561
8 0.9921 0.3938 0.7731 0.0678
9 0.9936 0.2482 0.7737 0.0771
10 0.9946 0.4142 0.7849 0.0878

Notes: The FR2 are reported for four different choices of basis including the functional principal component
(FPC) basis, histogram basis, quantile basis and moment basis. The FR2 is expected to strictly increase
as m gets large. However, this is not the case for the histogram basis, since it is defined differently for
different values of m. The time series of one-year ahead expected inflation distributions from January 1978
to December 2021 are used to compute the reported FR2’s.

Table 5. trace pQΛQq` for Four Choices of Basis (ˆ104)

m FPC Basis Histogram Basis Quantile Basis Moment Basis
1 0.613 16.084 7.990 69.714
2 1.475 2230.758 10.867 639.162
3 4.708 8905.797 27.642 3916.064
4 8.939 13743.106 52.248 11926.281
5 16.930 17148.747 57.780 16819.808
6 24.676 21877.429 209.583 21002.513
7 39.782 30720.005 161.306 27026.392
8 60.503 41978.159 487.056 35492.106
9 88.282 53705.816 666.356 42583.255

10 124.784 62145.588 1079.753 59256.713

Notes: The values of trace pQΛQq`, which are asymptotically proportional to the variances of the autore-
gressive operator estimators in the Hilbert-Schmidt norm relying on four different choices of basis including
the functional principal component (FPC) basis, histogram basis, quantile basis and moment basis. The time
series of one-year ahead expected inflation distributions from January 1978 to December 2021 are used.

different set of partition
`

rpi, qiq
˘

. The pm ` 1q-sub-intervals
`

rpi, qiq
˘

in the partition are

obtained with pqiq defined as the i{pm ` 1q-th sample quantiles of entire observations for

i “ 1, . . . , m ` 1. Similar to the histogram basis, we only include m indicators in a quantile

basis.
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Tables 4 and 5 report the FR-squared’s and the variances of pA in the Hilbert-Schmidt

norm based on four different choices of basis, including the functional principal component

(FPC) basis, histogram basis, quantile basis and moment basis, computed using the time

series of one-year ahead expected inflation distributions from January 1978 to December

2021. We may clearly see that the FPC basis effectively represents the temporal variation

of the EID even with the trunction number m as small as m “ 1 or 2. For m “ 3, it captures

more than 95 percent of the total temporal variation of the EID. Moreover, the variance

of the autoregressive operator estimator based on the FPC basis increases as m gets large,

but only at a moderate rate. In sharp contrast, all other bases obviously do not represent

the temporal variation of the EID adequately. The moment basis is especially ineffective.

It captures only 8.8 percent of the total variation of the EID over time even for m “ 10.

What is worse, the variances of the autoregressive operator estimator based on three other

bases increase very rapidly as m increases. In particular, the use of the histogram basis or

moment basis yields exploding variances of the autoregressive operator estimator even for

a moderately large value of m.

As discussed, we use m “ 3 in our empirical analysis of the EID using the FPC basis.

Our choice of m with the use of the FPC basis explains 95.1 percent of the total EID

variation and yields our variance measure 4.7 for the autoregressive operator estimator. If

the moment basis is used, only 1.7 percent of the total EID variation is explained while we

have the corresponding variance measure 3916 for the autoregressive operator estimator.

The choice of basis is therefore critically important for our functional method in the paper.
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B Interpretation of Functional Principal Components

Here, we examine how each of the three FPC affects the first four standardized moments,

namely, the mean, standard deviaion, skewness, and kurtosis, computed from the EID.

Each panel in Figure 15 shows the change in these four moments with respect to loadings

for each FPC.

Figure 15. Range of variation of the mean, standard deviation, skewness and kurtosis due to the
functional principal components

Notes: Each figure reports the results for each FPC. The blue/red/green colors signify the first/second/third
FPCs. The ordered loadings are on the horizontal axis and the values of the four standardized moments are
shown on the vertical axis.

Overall this exercise is the basis of our labeling of the three FPCs as disagreement, shift,

and inflationary ambiguity.

(a) First FPC (blue): the second moment varies more than the first moment across all

loadings. The variations in the third and fourth moments are implied by those in the

first and the second. Therefore it makes sense to name the first FPC and call it as the

disagreement component. While we observe that a significant variation in the fourth

moment (kurtosis) with loadings, the movement in the second moment has a clear

economic interpretation.
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(b) Second FPC (red): It is the first moment (mean) that shows the strongest relationship

with the loading. Therefore, we label the second functional component as the ’shift’

component.

(c) Third FPC (green): the first three moments are pretty stable across all loadings, while

the fourth moment shows a clear relationship with the loadings. As it is difficult

to interpret the economic meaning of the fourth moment, we label this functional

component as the ’ambiguity’ component.
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C Three-Dimensional Impulse Response Function Surfaces

of EIDs to Economic Shocks

Figure 16 shows three-dimensional IRF surfaces of one-year ahead (top row) and medium-

run EIDs (bottom row) to monetary (blue), government spending (red), personal income

tax (green), and gasoline price (black) shocks.

Figure 16. Three-dimensional Impulse Response Function Surfaces of EIDs to Economic Shocks

Notes: Top panel shows cumulative IRFs of EIDs of one-year inflation expectations. Bottom panel shows
IRFs of EIDs of medium-run inflation expectations. IRFs to monetary policy shocks, government spending
shocks, personal income tax shocks, and gasoline price shocks are represented in blue, red, green, and black,
respectively. Horizon is in months.
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