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Abstract

In this paper, we to explore the relationship between node nestedness contribution and network
stability in financial networks. We rely on data from the Brazilian interbank market. For each bank
in the network, we computed the individual nestedness contribution (INC), beside two measures
of systemic risk: systemic impact (SI) and systemic vulnerability (SV). The INC is computed
considering the different roles played by the banks: lender and borrower. We found banks with a
higher INC would cause more damage to the network if they were hit by a shock – i.e, they have
a higher SI. However, they are not necessarily those with a higher SV – i.e., more vulnerable to
shocks on the network. A positive correlation between INC and vulnerability is observed only
when the lenders’ INC is considered.
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1 Introduction

Nestedness is a hierarchical structure commonly observed in complex networks. In a perfectly
nested network, the neighbors of a node also interact with the nodes with a higher topological measure
– usually, the degree. The nodes with many (few) counterparties are called generalists (specialists).
Specialists interact mostly with generalists and interactions among specialists are unusual (Bascompte
et al., 2003).

A simple illustration of a perfectly nested network is depicted in Figure 1. We portray a bank-
firm credit network. Each row (column) corresponds to a firm (bank). Banks (firms) are labeled as
B1,..., B6 (F1,..., F7). A colored square represents a loan extended by the bank in the corresponding
column to the firm in the corresponding row. The two types of nodes – banks and firms – are ranked
in descending order according to the degree (firms from top to bottom, banks from left to right). The
banks connected to a given firm are also connected to firms with a higher degree. For instance, bank
3 is connected to firm 5 (the blue square in the figure) and it is also connected to firms above firm
5 (with a higher degree). Similarly, firms connected to a given bank are also connected to banks
with a higher degree (e.g., firm 5 is connected to banks on the left of bank 3). The more generalist
(specialist) banks correspond to the columns located on the left (right) of the figure. Similarly, the
more generalist (specialist) firms correspond to the rows located at the top (bottom) of the figure.
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Figure 1: Example of a perfectly nested bank-firm credit network. The connection between bank 3 and firm 5 is repre-
sented by the blue square. Bank 3 is connected to the firms above firm 5, as they have a degree higher than that of firm 5.
Similarly, firm 5 is connected to the banks on the left of bank 3, i.e., those with a degree higher than that of bank 3.

Nestedness is closely related to some network topological properties. Some studies (Abramson
et al., 2011; Jonhson et al., 2013) confirmed that nestedness is significantly correlated with disassor-
tativity. Lee et al. (2016) point out that nestedness is a generalization of the core-periphery structure.
Payrató-Borras et al. (2019) propose that the most heterogeneous networks in terms of degree distribu-
tion are also the most nested ones. Moreover, nestedness also correlates with properties not captured
by the topological structure of the network. Nestedness minimizes competition and allows for the
coexistence of a higher number of species in ecological networks (Bastolla et al., 2009). Bustos et al.
(2012) show nestedness in industrial ecosystems is quite stable, and hence it predicts the appearance
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and disappearance of individual industries in each location. The nestedness of world trade networks
plays an important role in the prediction of countries’ growth trajectories (Cristelli et al., 2017; Tac-
chella et al., 2012).

Saavedra et al. (2011) follow a slightly different approach, in the sense their focus is on how
the nodes’ contribution to the network nestedness – rather than the nestedness itself – is related to
network properties. Assessing an ensemble of flowering plant/insect pollinator networks and a net-
work of designer and contractor firms in the New York City garment industry, they reached two main
conclusions. First, the removal of a strong contributor to network nestedness tends to decrease over-
all network persistence more than the removal of a weak contributor. Second, strong contributors to
nestedness are the nodes most vulnerable to extinction.

The purpose of this paper is to explore the relationship between node nestedness contribution
and network stability in financial networks.1 Using quarterly information from March 2012 through
December 2015 of the Brazilian interbank market, we apply the methodology developed by Saavedra
et al. (2011) to compute the individual nestedness contribution (INC) of banks. The INC of a given
node is computed by comparing the nestedness of the network when the interactions of this node are
randomized. Keeping the same number of connections, the original links are deleted and new con-
nections are created. The average nestedness of the randomized network is computed by performing
such randomization as many times as possible. The INC of the node is given by comparing the aver-
age nestedness of the randomized network to that of the original network. If the average nestedness
increases (decreases) when the node links are randomized, its INC is positive (negative).

We innovate in this study by computing the INC according to the role played by the bank in
the interbank network – borrower or lender. To obtain the lending INC of a given bank, we ran-
domize only its outgoing links – the loans granted by the bank – and keep its incoming links — the
loans received by the bank -– fixed. The borrowing INC is computed similarly, through the opposite
operation.

After computing the INC of the nodes, we assess the correlation between INC and two systemic
risk measures presented in Alexandre et al. (2021): the systemic impact (SI) and the systemic vulner-
ability (SV) of the banks. While the former refers to the loss caused by a shock in the bank to the
whole system, the latter measures the loss suffered by the bank in case of a shock in the system. In
order to compute both SI and SV, we consider different levels of shock. Note, according to Saavedra
et al. (2011) findings, we expect to find a positive relationship between the INC and both SI and SV.

Our main conclusions are the following: i) INC correlates positively to SI. Thus, nodes that
contribute to the nestedness of the network are those that would cause more damage to the network
if they were hit by a shock, and ii) nodes with higher INC are not necessarily the most vulnerable to

1Despite nested networks having been discovered (Patterson and Atmar, 1986) and mainly studied in ecology (Bas-
compte and Jordano, 2013), nestedness has also been reported in financial (König et al., 2014), as well as in other economic
networks (De Benedictis and Tajoli, 2011; Saavedra et al., 2009; Tacchella et al., 2012).
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shocks on the network. A positive correlation between INC and vulnerability is observed only when
the lenders’ INC is considered. Therefore, the findings of Saavedra et al. (2011) are only partially
corroborated by this study.

We extend the analysis performed by Saavedra et al. (2011) in at least three ways. First, this
is the first study to apply the methodology developed in Saavedra et al. (2011) to financial networks.
Second, we assess the relationship between nestedness contribution and network stability considering
partial shocks. In Saavedra et al. (2011), shocks are complete – i.e., nodes are removed. Here, we
consider also the case in which nodes lost a fraction of their resources. Third, we disentangle the
INC according to the role played by the node. Specifically, we compute the lending INC and the
borrowing INC of the banks. Finally, this study is related to the literature on the role of topological
features in identifying systemically important banks (Alexandre et al., 2021; Ghanbari et al., 2018;
Kuzubas et al., 2014; Martinez-Jaramillo et al., 2014).

This paper proceeds as follows. Sections 2 and 3 discuss, respectively, the data set and method-
ological issues. In Section 4, we bring the results concerning the correlation between INC and sys-
temic risk. Finally, final considerations are presented in Section 5.

2 The data set

Using several unique Brazilian databases which comprises supervisory and accounting data, we
extract quarterly information from March 2012 through December 2015 (16 periods) and build the
bank-bank (interbank) network.

The interbank network comprises all types of unsecured financial instruments registered in the
Central Bank of Brazil (BCB). Credit, capital, foreign exchange operations, and money markets are
among the main types of financial instruments. Different custodian institutions register and control
these operations: Cetip2 (private securities), the BCB’s Credit Risk Bureau System – SCR3 (credit-
based operations), and the BM&FBOVESPA4 (swaps and options operations).

2Cetip is a depositary of mainly private fixed income, state and city public securities, and other securities. As a central
securities depositary, Cetip processes the issue, redemption, and custody of securities, as well as, when applicable, the
payment of interest and other events related to them. The institutions eligible to participate in Cetip include commercial
banks, multiple banks, savings banks, investment banks, development banks, brokerage companies, securities distribution
companies, goods and future contracts brokerage companies, leasing companies, institutional investors, non-financial
companies (including investment funds and private pension companies) and foreign investors.

3SCR is a very thorough data set that records every single credit operation within the Brazilian financial system worth
200BRL or above. Up to June 30th, 2016, this lower limit was 1,000BRL. Therefore, all the data we are assessing have
been retrieved under this rule. SCR details, among other things, the identification of the bank, the client, the loan’s time
to maturity and the parcel that is overdue, modality of loan, credit origin (earmarked or non-earmarked), interest rate, and
risk classification of the operation and the client.

4BM&FBOVESPA is a privately-owned company that was created in 2008 through the integration of the Sao Paulo
Stock Exchange (Bolsa de Valores de Sao Paulo) and the Brazilian Mercantile & Futures Exchange (Bolsa de Mercadorias
e Futuros). As Brazil’s main intermediary for capital market transactions the company develops, implements and provides
systems for trading equities, equity derivatives, fixed income securities, federal government bonds, financial derivatives,
spot FX, and agricultural commodities. On March 30th, 2017, BM&FBOVESPA and Cetip merged into a new company
named B3.
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We compute the net financial exposures taking into account financial conglomerates or indi-
vidual financial institutions that do not belong to conglomerates (classified as "b1", "b2", or "b4" in
the BCB’s classification system5), removing intra-conglomerate exposures. We exclude institutions
with negative equity. Financial institutions’ equity was retrieved from https://www3.bcb.gov.br/

ifdata. Some statistics of the interbank network are presented in Table 1.

Table 1: Summary statistics of the interbank network.

Quarter-year N. of banks Density Avg. weighted degree* Avg. net worth*
01-2012 128 0.0843 2747.6 3516.2
02-2012 128 0.0850 2940.7 3598.1
03-2012 130 0.0825 3142.7 3620.7
04-2012 130 0.0802 3257.2 3690.7
01-2013 130 0.0823 3604.7 3609.1
02-2013 128 0.0837 3401.2 3610.6
03-2013 127 0.0796 3474.4 3728.4
04-2013 127 0.0777 3557.1 3840.9
01-2014 130 0.0773 3551.3 3724.5
02-2014 130 0.0773 3433.9 3830.6
03-2014 130 0.0781 3756.4 3908.8
04-2014 129 0.0732 3970.7 3878.8
01-2015 129 0.0757 3966.3 3943.7
02-2015 130 0.0743 3819.8 4071.2
03-2015 128 0.0781 4023.9 4127.6
04-2015 126 0.0792 4111.5 4181.9
*: in BRL million.

3 Methodology

3.1 Measuring nestedness and INC

In this paper, we quantify nestedness using the NODF (Almeida-Neto et al., 2008).6 The nest-
edness of the network N is defined by the following equation:

N =
∑

C
i< j Mi j +∑

R
i< j Mi j[

C(C−1)
2

]
+
[

R(R−1)
2

] . (1)

In Eq. 1 above, C (R) is the number of nodes of the type displayed in columns (rows). Note
that these numbers can be different in bivariate networks, but will necessarily be equal in univariate
networks. For every pair of nodes i and j, Mi j = 0 if ki = k j, and Mi j = ni j/min(ki,k j) otherwise,

5See https://www.bcb.gov.br/content/estabilidadefinanceira/scr/scr.data/metodologia.pdf.
6There is not a consensus on how nestedness should properly be quantified. For this reason, there are other metrics to

measure nestedness being used, such as the spectral radius (Staniczenko et al., 2013). To more details, see, for instance,
Payrató-Borràs et al. (2020) and Mariani et al. (2019), Section 3.1.
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where ki is the number of interactions of node i, and ni j is the number of interactions in common
between i and j. N varies between 0 and 1, where 1 designates a perfectly nested network.

The INC is quantified following the methodology developed by Saavedra et al. (2011). The INC
of node i is given by the following equation:

ci =
(N−〈N∗i 〉)

σN∗i
, (2)

where N is the network’s observed nestedness, 〈N∗i 〉 is the average nestedness across an ensemble
of random replicates within which the interactions of node i have been randomized, and σN∗i is the
standard deviation of N∗i . We randomize the interactions of a node following the null model specified
in Bascompte et al. (2003), generating 1,000 random replicates. The randomization of the interactions
of a given node i works as follows: we cancel some link between i and another node, and then we
connect i with another node with which i does not have a connection. Node i is connected to another
node j with probability7

pi j =
1
2

(
ki

C
+

k j

R

)
, (3)

supposing i is a node of the type displayed in columns (if i is a row-type node, ki and k j are divided
by R and C, respectively, in Eq. 3). We innovate in the computation of the INC by considering the
different roles a node can play in a network. In bivariate networks, nodes play only one role. For
instance, in a bank-firm credit network, banks are always lenders and firms, borrowers. However, in
univariate, directed networks, our innovation can be quite useful. For example, in interbank networks,
all nodes are of the same type (banks), but a given node i can be a lender, a borrower, or both. We will
compute the lending INC INCL and the borrowing INC INCB. The former is obtained by randomizing
only its outgoing links, which represent loans granted by i, and keeping its incoming links – loans
received by i – fixed. The latter is computed similarly, through the opposite operation. Finally, we
compute for each node its total INC INCT = INCB + INCL. Observe INCT will be equal to INCB

(INCL) if i acts only as borrower (lender) in the interbank market.

3.2 Systemic risk

Saavedra et al. (2011) show the nodes with higher INC are those whose removal leads to a
decrease in network persistence, as well as are the more vulnerable to extinction. That is, shocks
in strong contributors cause more damage to the whole network, and shocks in the network affect
mostly the strong contributors. To test this hypothesis, we compute the systemic impact and systemic

vulnerability – SI and SV, respectively (Alexandre et al., 2021) – for the banks participating in the

7See Saavedra et al. (2011), esp. Figure 1 and Methods, for details.
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Brazilian interbank market. We take into consideration various levels of the initial shock.

Both SI and SV are computed following the differential DebtRank methodology (Bardoscia
et al., 2015).8 The exposure network of the interbank market is represented by A ∈ N×N, where N is
the number of banks and Ai j is the asset invested by i in j. At period 0, we impose an exogenous shock
on FI j, reducing its equity by a fraction of ζ . It will cause a subsequent loss Li j(1) to its creditors,
indexed by i, equal to Ai jζ . At period 2, j’s creditors will propagate this loss to their creditors in a
similar fashion, and so on. Formally, we have

Li j(t) = min
(

Ai j,Li j(t−1)+Ai j
[L j(t−1)−L j(t−2)]

E j

)
, (4)

Li(t) = min

(
Ei,Li(t−1)+∑

j
Ai j

[L j(t−1)−L j(t−2)]
E j

)
, (5)

in which t ≥ 0 and E j is financial institution (FI) j’s equity. Thus, when an FI j suffers an additional
loss equal to fraction ζ of its equity, it will impose a loss to its creditors that corresponds to ζ times
their exposures towards j. Observe equity positions as well as the exposure network are time-invariant,
i.e., they are taken as exogenous. The propagation considers stress differentials rather than stress
absolute values (hence the methodology’s name) to avoid double-counting.

Observe Li j cannot be greater than Ai j. It means that j cannot impose to i a loss greater than i’s
exposures towards j. When Li j = Ai j, j stops imposing losses on i. Moreover, Li cannot be greater
than Ei, i.e., i’s losses cannot be greater than its equity. When Li = Ei, i stops propagating losses to
other FIs.

The system converges after a sufficiently large number of periods T � 1. Then we have the
final matrix of losses L j,ζ ∈ N×1, where Li,ζ

j is the total loss suffered by agent j after an initial shock
of size ζ on agent i. After repeating this process for the other FIs, we compute our two measures of
SR. The systemic impact (SI) of bank i is defined as

SIiζ =
∑ j

[
Li,ζ

j −Li,ζ
j (0)

]
∑ j E j

, (6)

where Li,ζ
j (0) = ζ E j if j = i and 0 otherwise. The systemic vulnerability (SV) is represented by the

following equation:

8The rest of this subsection strictly follows Alexandre et al. (2021).
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SViζ =
1
N ∑

j

L j,ζ
i −L j,ζ

i (0)
Ei

. (7)

Therefore, SIiζ measures the fraction of the aggregate FIs’ equity which is lost as a consequence
of an initial shock of size ζ at FI i’s equity. On the other hand, SViζ refers to the average i’s equity
loss when the other FIs are reduced by ζ .

As we are interested only in the losses caused by the contagion, we remove the initial shock
from the computation of the SR measures. Observe we also compute SIiζ for the FI that suffered the
initial shock. Due to network cyclicality, a shock propagated by a given FI can hit it back. For the
same reason, we include the loss imposed by an FI on itself in the calculation of SViζ .

4 Nestedness and systemic risk

Both SI and SV are computed for each node. We vary the level of the initial shock ζ within the
interval (0.1,1] with step 0.1. Finally, we compute the correlation between INC (INCT , INCB, and
INCL) and systemic risk (SV and SI).

Considering the total INC, we did not observe the correlation between INC and vulnerability
found by Saavedra et al. (2011) (Figure 2, left panel). The correlation between total INC and SV
is negative; moreover, it is not significantly different from zero for all levels of the initial shock ζ .
However, as in Saavedra et al. (2011), the INC is positively correlated to SI (Figure 2, right panel).
Therefore, the nodes that contribute the most to the nestedness of the network are also those that would
cause more damage to the network in case of suffering a shock. Also, this correlation is nonlinear
concerning ζ .

Figure 2: Correlation between INCT and SV (left) and SI (right). Except for the left panel, the correlation is statistically
different from zero for all levels of ζ (p-value < 10−100).

Decomposing the INC of the nodes considering both their roles – lender and borrower –, we
find that, while INCL and node vulnerability are positively correlated (Figure 3, left panel), this cor-
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relation is negative in the case of INCB (Figure 4, left panel). In both cases, the absolute value of the
correlation increases with the size of the initial shock. Both INCL and INCB are positively correlated
to SI (Figures 3 and 4, right panel). While in the latter case the correlation increases with ζ , in the
former one this relationship is nonlinear, represented by an inverted U-shaped curve.

Figure 3: Correlation between INCL and SV (left) and SI (right). In both panels, the correlation is statistically different
from zero for all levels of ζ (p-value < 10−4).

Figure 4: Correlation between INCB and SV (left) and SI (right). In both panels, the correlation is statistically different
from zero for all levels of ζ (p-value < 10−6).

5 Final considerations

In this study, we assessed the correlation between nestedness and systemic risk of the Brazilian
interbank market. Considering the nestedness of the network as measured by the NODF, we calculated
the individual nestedness contribution (INC) of the banks, which is a measure of the bank contribution
to the network nestedness. The INC was computed separately for the different roles played by banks
in interbank markets, lender and borrower.

We assessed the relationship between INC and systemic risk. We computed the correlation
between the INC and the systemic impact (SI) – the loss caused in the network by a shock on the
node – and systemic vulnerability (SV) – the loss suffered by the node due to a shock in the network
– in the interbank network. The INC is positively correlated to the SI. Thus, nodes that contribute
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the most to the nestedness of the network are those that would cause more damage to the network if
they were hit by a shock. The correlation between the total INC and SV is not significantly different
from zero. However, while the lending INC is positively correlated to SV, the correlation between the
borrowing INC and SV is negative. It means that nodes with a higher lending (borrowing) INC are
more (less) vulnerable to shocks on the network. Furthermore, the absolute value of this correlation
increases with the size of the initial shock.

This study contributes to the literature on identifying systemically relevant banks through the
analysis of the topological features of the financial network. We show the INC is correlated to the
systemic importance of banks. Shocks on banks with higher INC would cause a higher loss in the
whole system. Moreover, shocks on the system would cause more damage to banks with a greater
lending INC, while banks with a higher borrowing INC would be less impacted by such shocks. A
natural follow-up study of this paper would investigate the INC as a driver of the systemic importance
of the banks, in a model including other explanatory variables.
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