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Abstract

This study examines whether and how important it is to adjust output gap frameworks during the

COVID-19 pandemic and similar unprecedentedly large-scale episodes. Our proposed modelling

framework comprises a Bayesian Structural Vector Autoregressions with an identification setup based

on a permanent-transitory decomposition that exploits the long-run relationship of consumption with

output and whose residuals are scaled up around the COVID-19 period. Our results indicate that (i) a

single structural error is sufficient to explain the permanent component of the gross domestic product

(GDP); (ii) the adjusted method allows for the incorporation of the COVID-19 period without assuming

sudden changes in the modelling setup after the pandemic; and (iii) the proposed adjustment generates

approximation improvements relative to standard filters or similar models with no adjustments or

alternative ones, but where the specific rare observations are not known. Importantly, abstracting

from any adjustment may lead to over- or underestimating the gap, too-quick gap recoveries after

downturns, or too-large volatility around the median potential output estimations.
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1 Introduction

The COVID-19 pandemic unprecedentedly affected humanity, not only in terms of public health

but also economically. Unlike other crises, economic deterioration has been globally synchronised.

According to the International Monetary Fund, the world economy contracted by approximately

3.0% in 2020, with both developed and emerging economies falling by 4.8% and 1.9%, respectively.

Colombia’s economy was no exception to this pattern and reported the lowest growth rates

historically during this episode (−7.0%). Ensuing recovery was relatively quick owing to the

distribution of vaccines and the gradual opening during and after the lockdown. This allowed

most economies to bounce back to positive growth rates in one to three quarters, which, given the

magnitude of the initial downturn, led to the worldwide growth of 6.0% in 2021. In summary, we

witnessed extreme macroeconomic data, which also led to high levels of uncertainty.

The fluctuations observed naturally raise questions about the macroeconomic effects of the

COVID-19 shock, particularly on variables such as the potential output and gap. On simple

inspection, it is difficult to label a downturn of that magnitude as trivial for long-run variables.

However, the pace of recovery makes it challenging to deem the shock as highly influential.

With this in mind, we aim to answer whether estimations of the output gap should be adjusted

to account for the COVID-19 shock. We intend to determine a way to reconcile the magnitude of

the shock with its transitory nature when approximating the potential output.

Our approach must, therefore, cover two fronts: first, how to obtain a good econometric frame-

work for estimating the output gap, and second, how this can be adjusted in a manner that allows

incorporating the COVID-19 shock information but prevents it from influencing the model as if

it was representative of the data-generating process. For the first point, we rely on a permanent-

transitory (PT) decomposition framework to identify the fluctuations of a set of macroeconomic

variables (where the output is included) in a Bayesian Structural Vector Autoregression (BSVAR)

setting; this is done by following Uhlig (2003, 2004). Based on the resulting model, we recover a

path for the potential output that covers the COVID-19 period. For the second point, we adjust

the model estimation with a scale factor around the rare shock date along the lines of Lenza and

Primiceri (2022)).

2



Primarily, we include an ample set of variables in our model that contrasts with the usual

output gap estimation frameworks, such as univariate statistical filters or production function

approaches.1 This enables us to include additional sources of information in our setup and account

for the permanent income hypothesis through the relationship between consumption and long-run

output, which, as mentioned by Cochrane (1994), facilitates identifying the permanent component

of the output.

Nonetheless, the identification task in the context of SVAR models can be challenging, as these

frameworks usually rely on imposing strong assumptions about the nature of shocks that can be

too restrictive. For example, it is usual to impose that long-run output is driven only by supply

shocks, while demand is only associated with transitory components (e.g., Barsky and Sims, 2011;

Blinder and Rudd, 2013; Keating and Valcarcel, 2015; Chen and Gornicka, 2020). However, recent

data has vindicated the potential long-term role of demand-driven phenomena; for example, in the

Global Financial Crisis (GFC) and the protracted recovery that followed, a weak demand affected

both the current output and its future expectations in such a persistent way that it shifted down the

path of potential growth (Fontanari, Palumbo, and Salvatori (2020)).2 The literature has followed

suit and has recently pointed out that other shocks, such as demand (Furlanetto, Lepetit, Robstad,

Rubio-Ramírez, and Ulvedal, 2021) and monetary (Jordà, Singh, and Taylor, 2020) shocks, can also

have long-run effects.

The aforementioned consideration is even more valid in the context of the COVID-19 shock,

which was considered a supply-driven shock, but eventually showed to involve demand-driven

fluctuations.3 We circumvent this issue of a separate identification of supply and demand shocks

and their association with different terms by adopting an agnostic identification approach along

the lines of Uhlig (2003, 2004), that is, based on the maximization of the explained fraction of

long-horizon Forecast Error Variance (FEV) of the gross domestic product (GDP). Such an approach

is particularly reasonable for gauging the potential output when we observe shocks such as

the COVID-19 downturn that are perceived as a combination of supply- and demand-driven

1See Álvarez and Gómez-Loscos (2018) for an overview of the gap estimation methods.
2This experience even led to revisiting the literature on hysteresis, such as Cerra, Fatás, and Saxena (forthcoming),

Benati and Lubik (2021) and Aikman et al. (2022).
3See Guerrieri, Lorenzoni, Straub, and Werning (2022) and Fornaro and Wolf (2020) for further discussion on demand

to output spillovers and stagnation traps.
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fluctuations (rather than either exclusively).

This identification scheme has been used by recent studies, such as Angeletos, Collard, and

Dellas (2020) and Brignone and Mazzali (2022) and with the same objective of decomposing the

permanent and transitory fluctuations of macroeconomic variables. We follow a similar approach

while adjusting the econometric modelling along the lines of Lenza and Primiceri (2022), which

allows us to incorporate the COVID-19 downturn in the sample but limits the impact of the rare

event on the estimated parameters. The joint application of the identification setup and adjustment

for high-magnitude shocks in the context of output gap estimations represents our contribution.

We apply our approach to the Colombian economy and find that a single structural shock is

sufficient to characterise the long-run behaviour of GDP. By contrast, the remaining shocks tend to

explain their transitory effects more significantly. This result aligns with the findings of Dieppe,

Francis, and Kindberg-Hanlon (2021), Angeletos, Collard, and Dellas (2020) and Brignone and

Mazzali (2022) for the US and European countries. Based on this result and the structural shocks,

we approximate the GDP gap at each date as the weighted sum of the transitory shocks (and use

the other shock to recover potential output).

Our estimates suggest that the potential output in Colombia was only marginally affected by the

COVID-19 episode, which generated a large decrease in the output gap (−18.9% in 2020Q2) and the

volatility of the estimates increased starting that quarter and relative to the pre-COVID-19 period.

In addition, we find that the output gap decrease around this downturn is not persistent, which

contrasts with previous recessions and instead bounces back rapidly in the following quarters.

Finally, we obtained a reduction of 1.4% in the potential output during 2020 owing to the lockdown.

We address our main research question and compare the potential output (and gap) estimates

with standard gap estimation methods and the BSVAR counterpart with no COVID-19 adjustment.

We find that our proposal (PT identification with COVID-19 adjustment) prevents the potential

output from falling too rapidly at the onset of the shock and does not induce a fast recovery in

subsequent periods, a known drawback of the usual univariate filtering techniques.

Then, we compare our method with an alternative BSVAR with the same identification scheme

but a stochastic volatility setup. This alternative is, in principle, also adjusting for the effect of the
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COVID-19 episode on the model. However, in contrast to our scaling method around the shock

date, the adjustment is entirely endogenous because the variance is time-varying. This model

leads to a stronger decrease in the potential output, but even by 2022 shows no sign of recovery,

suggesting that the large magnitude of the shock could persistently affect the estimates. In light of

this, our model represents a more appropriate alternative for a shock of large magnitude but small

persistence that is less representative of the data-generating process of the sample.

Finally, we evaluate our method in a simulation setting to compare it with alternatives in a

more general light, not only with the specific COVID-19 episode and economy of reference in

mind. The results reveal that the proposed method can increase the cross-correlation between the

target (economic model simulated potential output) and the estimates from 0.5 to 0.72 at its peak,

compared with standard filtering techniques.

In summary, these results and exercises consistently indicate that the model’s performance is

not only associated with the structural identification of the BSVAR but also with the adjustment of

the model to include the large shock. The benefits of adjusting the gap estimates in the presence

of shocks of unprecedented magnitude are non-trivial. The performance gains terms are present

even in models, successful at approximating the potential output. In addition, our setup prevents a

strong decrease in the potential output after the outlying downturn and a quick recovery once its

transitory nature is made evident; that is, it improves on the drawbacks of complex counterparts

and standard filters.

Related literature Our paper is related to various strands of the literature. At large, this paper

belongs to the large literature on the estimation of the output gap, and to a greater extent to those

based on multivariate approaches.4 More specifically, our paper is related to studies using PT

decomposition-type of methods for estimating the output gap; among these papers, Angeletos,

Collard, and Dellas (2020), Brignone and Mazzali (2022) and Dieppe, Francis, and Kindberg-Hanlon

(2021) use the same approach of this paper, that is, based on explaining the highest possible share

of the FEV of the output in the long-run, while studies such as Morley, Palenzuela, Sun, and Wong

(2022), Berger, Morley, and Wong (2023), and Berger and Ochsner (2022) use a Beveridge-Nelson

4For an overview of this literature see Álvarez and Gómez-Loscos (2018), Guisinger et al. (2018); and for a discussion
about multivariate approaches see Cochrane (1990)
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(BN) type of decomposition based on the optimal forecast at long horizons. Our contribution

relative to the first group of these studies is that we adjust our baseline model along the lines

of Lenza and Primiceri (2022) to include the COVID-19 period in the sample. Simultaneously,

relative to the second group, rather than calling the optimal long-run forecast (obtained via BN

decomposition) the potential GDP, we structurally identify a model where the share of the long-run

variance is explained by a limited number of shocks.

This study also relates to the literature on the adjustment of econometric models to include

COVID-19 periods. In particular, it closely follows the work of Lenza and Primiceri (2022) by

scaling the model information around a researcher-specified date but allowing the scale factor

parameters to be obtained in a Bayesian setting. Other studies proposing alternative adjustments

in this direction are Hartwig (2022), Carriero, Clark, Marcellino, and Mertens (2022), and Ng (2021).

Finally, in an even more closely related study, Morley, Palenzuela, Sun, and Wong (2022) adjusted

the model to include COVID-19 information and used a PT type of decomposition to estimate the

output gap for the Eurozone using a VAR-X setup. Our study uses a different identification setup

in a Bayesian-SVAR setting (based on Uhlig (2003, 2004)) rather than BN decomposition. In that

sense, this study contributes to the literature by showing the effects of adjusting potential output

models by the COVID-19 shock in the context of structural models.

The remainder of this paper is organised as follows. We explain the methodology in Section 2.

Section 3 describes our data and main results, including a comparison of the proposed estimates

with those yielded by other methods. In Section 4, we evaluate the performance of the proposed

method in a simulation exercise and conclude the paper.

2 Methodology

Our empirical strategy was divided into two stages. First, we fit a reduced-form Vector Autore-

gressive (VAR) model with a scale factor adjustment around the COVID-19 crisis as in Lenza

and Primiceri (2022). This allows us to account for the increased variance in the macroeconomic

variables around the shock date. Second, we recast our model into an SVAR form by identifying

the main shock explaining the Colombian business cycle in the long run, which is done, along the
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lines of Uhlig (2003, 2004), that is, by maximizing the explained fraction of the total FEV of the

GDP5 at a long-run horizon (e.g. 15 or 25 years ahead).

In the first stage, following Lenza and Primiceri (2022), a scale factor st is added to the VAR

model’s reduced-form residuals to capture the increased uncertainty during the COVID-19 crisis.

st is set to one in the sample period before the COVID-19 shock (t∗), st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2

and st∗+j = 1 + (s̄2 − 1)ρj−2 for j ≥ 3.6 The scaled (reduced-form) VAR model is given by:

Yt = B0 + B1Yt−1 + B2Yt−2 + . . . + BpYt−p + stut, ut ∼ N(0, Σ) (1)

The COVID-19 outbreak dates back to the first quarter of 2020 (t∗ = 2020Q1); therefore, s̄0 is

estimated for that date, and s̄1, s̄2 for the next two quarters. Then, the scale factor decays at a rate ρ

for all future periods.7 Thus, θ ≡ [s̄0, s̄1, s̄2, ρ] is the vector of additional parameters to be estimated

together with those of the VAR (B0, B1, . . . , Bp, Σ). Equation (1) can be estimated as in Giannone,

Lenza, and Primiceri (2015) by assuming the prior distributions of the coefficients to be conjugate

Normal-Inverse Wishart and by including the scale factors into the posterior hyperparameters.

They are jointly estimated using Bayesian techniques by drawing those parameters in a Metropolis-

Hasting procedure. The priors of β and Σ can be described as

Σ ∼ IW (Ψ, d)

β|Σ ∼ N(b, Σ ⊗ Ω)

where β ≡ vec([B0, B1, . . . , Bp]′) and γ ≡ (Ψ, d, b and Ω) are the hyperparameter vectors. The

posterior of θ is used to capture the dynamics of st, which is jointly evaluated with the posterior of

5It is also possible on other variables, such as household consumption.
6This setup allows the scale factor to take three different values in the first three periods after the outbreak and then

decay at a rate ρ in subsequent periods. This assumption seems in line with empirical evidence for the year after the
onset of the pandemic.

7As mentioned, alternative adjustments to COVID-19 data for VAR models have emerged in the literature in both
frequentist and Bayesian frameworks, several of which are based on the inclusion of additional pandemic-related
variables as controls (dummies or indicators). See Ng (2021), Carriero, Clark, Marcellino, and Mertens (2022), and
Hartwig (2022).
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γ as proposed by Lenza and Primiceri (2022):

p(γ, θ|Y ) ∝ p(Y |γ, θ) · p(γ, θ)

When (1) is estimated, we proceed with the second state, consisting of identifying structural

shocks (εt) linked to the reduced-form errors by an impact matrix A0such that ut = A0εt and

Σ = A0A′
0.. It should be noted that there is not a unique A0 that satisfies these relationships. For

any candidate matrix A0 an alternative matrix Ä0 exists that can be derived using an orthonormal

matrix Q where A0 = Ä0Q and QQ′ = I ; in that sense, our approach also falls within the “set-

identification” category.

In this context (which is common to most BSVAR identification setups) we apply our specific

identification strategy; that is, the maximum fraction of the long-horizon FEV, along the lines of

Uhlig (2003, 2004). This method seeks a target q1 that satisfies:

q1 = argmax q′
1Mq1 ≡ q′

1

k∑
h=0

Ä0
′
C ′

h(eje′
j)ChÄ0q1

subject to q′
1q1 = 1

where q1 is a column of Q that explains the k-step-ahead forecast error of the j-th variable in

Yt (in our case, the log of GDP), whose variance is given by M . Simultaneously, as shown in

Uhlig (2003), q1 is the eigenvector associated with the largest eigenvalue of the matrix M . ej is a

selector vector with zeros everywhere and a 1 in the j-th position, and Ch is a component of the

long-run impact matrix of the VAR associated to the horizon h.8 The constraint guarantees that q1

is a unit-length column vector that belongs to an orthonormal matrix.

Notably, the method recovers all eigenvalues and eigenvectors of M, which, given the decom-

8Note that C(L) = I + C1L + C2L2 + C3L3 · · · + ChLh + . . . and the moving average representation of the model is
given by Yt = B(L)−1ut = C(L)ut.
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position method, are ordered from higher to lower fractions, explained by the FEV of the target

variable. Thus, we can verify whether one or more shocks explain a larger component of the

long-run FEV of the GDP. In other words, this approach identifies the shock that best explains the

long-run component of the target variable.9 This is done in the following section.

3 Results

3.1 Data and empirical strategy

We set an eight-variable B-SVAR in levels for the period 1995Q2 to 2022Q1 using Colombian data.10

The variables included are GDP, household consumption (CON), government consumption (GOV),

investment (INV), inflation (CPI), real exchange rate (RER), interbank interest rate (ITB), and Brent

oil price.

The domestic account variables (first five in the VAR) were obtained from the Colombian

National Statistics Department (DANE), the exchange rate and interest rate from the Central Bank

of Colombia (Banco de la República), and the oil price from Bloomberg.

We select a lag length of two (p = 2) following the Bayesian and Hannan-Quinn Information

criteria, and estimate the VAR in levels using a hierarchical modelling approach that allows us to

make inferences about the informativeness of the prior distribution of the BSVAR, as proposed

by Giannone, Lenza, and Primiceri (2015) which automatically determines a suitable measure of

the shrinkage by considering a combination of conjugate priors such as a Minnesota prior and

tighter priors when the model includes many coefficients relative to the number of observations.

We ran 20.000 draws and kept half for estimation after burn-in. In addition, we explicitly modelled

the COVID-19 extreme observations, as in Lenza and Primiceri (2022). From this first stage, we

obtain a reduced-form VAR that has already been adjusted by the scale factor st and incorporates

the pandemic shock.

In the second stage, we identified the impact of the matrix of the SVAR by maximizing the

9It is not necessarily capable of replicating its entire FEV, but it explains a large proportion of it. In other words, even
more shocks could be used to increase the percentage of explained FEV if a second or third shock is also found to explain
the permanent component of the target.

1010We report unit root and cointegration tests that are consistent with our model choice in Appendix A
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explained share of the forecast variance error of the GDP for a 25 years horizon, as in Uhlig (2003,

2004). As part of the procedure, we restrict that the share of the FEV one step ahead of consumption

explained by the first structural error, or (the majority of the) permanent component, is larger

than that of the output and for the latter to be larger than that of the investment. As explained

by Cochrane (1994) and King, Plosser, Stock, and Watson (1987), this accounts for the fact that

consumption is more closely aligned to the permanent component of GDP, while investment should

reflect its most volatile and transitory components. After verifying these restrictions and keeping

the draws that comply with them, we conducted PT decomposition and computed the permanent

(and transitory) output component.11

As aforementioned, the decomposition and resulting impact matrix already consider the ordering

of structural shocks according to their share of the explained variance of the target variable. This

can be verified in Figure 1, where we can see that only the first structural error is necessary to

account for approximately 90% of the long-run (permanent) component of the GDP. Concurrently,

the next most important shock explain the GDP’s FEV in the short run which is more resembling

the transitory output component.

In light of these results, we compute the output gap based on the second to eighth structural

shocks and use only the first one to recover the potential GDP.12 On a related point, it should also

be noted that the first structural error will explain the majority of the long-run FEV of the GDP

(target variable), but not necessarily the largest share of the FEVfor other variables. The relative

importance of the shocks to the other variables can be seen in the FEV decomposition per variable,

as shown in Figure 9 in the Appendix C.1.13

11As a check, we increased the number of draws to 100.000 and obtained similar results.
12Analogously, the potential GDP can be obtained as the original series minus the transitory component.
13We leave additional results that are related to other variables and shocks for the appendix, as we are only concerned

with approximating the target variable, but also because the trade-off of this method is that you compromise a structural
interpretation of the shocks as separable types of drivers (e.g. monetary, financial, global, local, supply, or demand,
among others), as by construction, the method only gauges the overall importance of shocks at different horizons.
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Figure 1: Contribution of FEV explanation over each variable (first two largest shocks that maximize
FEV of GDP)

(a) First shock (permanent) (b) Second shock (transitory)

Note: The left panel shows the contribution to the FEV of each variable by the structural error identified as the one with the highest

percentage of explanation for the FEV of GDP. The right panel shows the second-largest shock that explains the GDP’s FEV.

3.2 Baseline Results

Figure 2 shows the output gap and potential GDP for the Colombian economy obtained from our

proposed BSVAR, using a combined PT decomposition and a scale factor adjustment to include and

adjust for the COVID-19 period observations. Before COVID-19, our estimated gap and potential

output reflected the recession of the late 1990s, a slight deterioration during the GFC.14 In both

cases, we can see decreases in the gap dynamics and dips in the potential output. An additional

gap decrease occurred during 2016, reflective of a reduction in terms of trade due to exogenous

shocks in the international price of oil.15 In general, these dynamics are aligned with previous

business cycle dating exercises carried out for Colombia (e.g., Alfonso et al., 2013), despite the high

uncertainty one may expect to see around these estimates also reflected in the amplitude of the

percentile intervals shown in the figure.

14For the Colombian case, our main downturns of reference are the 1999 and GFC crises. The former is one of the
worst recessions to date, while the latter is relatively mild compared with the dynamics of advanced economies.

15Colombia’s main export commodity is crude oil and related products.
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Figure 2: Baseline results: Output gap and potential GDP for Colombia

(a) Output gap (b) Potential GDP

Notes: The solid black line represents the median estimates. The solid and dotted red lines represent the percentiles of 5% , 95% , 16%

and 84% , respectively.

During the COVID-19 pandemic, the gap underwent a steep decline (−18.9%) in the second

quarter of 2020; however, unlike in the 1999 recession, the downturn was not persistent. Instead, it

bounced back in the following quarters. As in most economies, the decrease is largely explained by

lockdown measures, while the recovery is induced by the gradual reopening of the economy. The

potential output also displays different dynamics than the 90s recession as it dips down, but more

mildly and less persistently during the lockdown quarters. In the late nineties, the potential GDP

growth went negative, contrasting with the pandemic when it only decelerated (from 3.5% in 2019

to 2.2% in 2020). The recovery paths are also in contrast with the potential output trending upward

and gap closing by 2022Q1.

3.2.1 Comparison with alternative estimation methods

We also compare our estimations with those generated by usual filtering techniques, namely the

Hodrick-Prescott (HP) and Christiano-Fitzgerald (CF) filters, as well as to an estimation computed

using a production function approach (PF).16 The output gap estimates for the compared methods

and our proposal are shown in Figure 3. We can see that the univariate filters (HP, CF) tend to

16The PF approach reconstructs the potential output from the individual inputs of GDP, aside from the total productiv-
ity, in the context of a Cobb-Douglas technology setup
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deliver a large gap right before COVID-19 and rapid and sizeable subsequent recovery, which

sends that gap onto positive territory (and at or beyond 5%) in a few quarters. These features

may indicate an overestimation of the gap, specifically when we see that the other estimates,

including our proposal, do not display such behaviour, and instead suggest a dynamic yet more

moderate recovery. Notably, when tying these results to the associated potential output dynamics,

these results indicate that our proposal does not lower the potential output significantly during

the period, which is related to adjusting the model to incorporate COVID-19 observations in the

estimation sample without assuming drastic changes in its data-generating process.

By contrast, the PF function seems to draw the gap in the opposite direction and could indicate

its underestimation. First, it is below all competing methods throughout the sample, but primarily,

it lowers the gap too steeply during every downturn (1999, 2008, 2016, COVID-19). These patterns

also contrast with our proposal; thus, we see our method as a middle point. In particular, concerning

the PF method, our proposal has the advantage of including more information in the model and

pinpointing the long-run behavior of the GDP through its link to consumption. While the PF,

conversely, can be too quick to associate the bulk, if not all, of the fluctuations in capital and labor

inputs to the short-run behavior of the GDP, which is counterfactual to recent studies on hysteresis

and the scarring effects of protracted recessions (e.g., Cerra, Fatás, and Saxena, 2023; Aikman,

Drehmann, Juselius, and Xing, 2022).

Figure 3: Comparison methodologies for output gap estimation
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Finally, we compared the proposed BSVAR model with two models of the same type. That is

models with the same identification setup (PT decomposition as in Uhlig, 2003). We consider an

alternative BSVAR without a scaling adjustment for the COVID-19 episode and another where,

instead of using a scale factor, the model is allowed to feature stochastic volatility (BSVAR-SV).

The associated output gaps and potential outputs of the two B-SVAR alternatives are shown in

Figure 4 and 5. A large contrast between the baseline and the alternatives emerges at first sight:

both the BSVAR (unadjusted) and the BSVAR-SV generate a less negative gap during the COVID-19

outbreak, which implies that the potential output is affected more drastically relative to our baseline

model. In that sense, as with some of the simpler filters, the alternatives tend to overestimate the

impact of the shock on the long-run output.

Regarding the volatility around the estimates, the BSVAR (unadjusted) displays the largest

uncertainty, as reflected by percentile ranges that are twice as large as in the baseline. Nevertheless,

the BSVAR-SV successfully mitigates volatility (at a similar range span as the baseline); however, it

is the method where the potential output is affected the most during the downturn.

Figure 4: Output gap and Potential GDP- BSVAR without scale factor

3.2.2 Outlier observations around the COVID pandemic

Given that our main concern is to study the adjustment of potential output estimates to drastic

magnitude shocks, such as those observed in the COVID-19 outbreak, verifying the estimates of

the scale factors generated by our baseline estimates can be insightful. Principally, if scaling is

irrelevant, the posterior estimates should suggest s̄0 = s̄1 =s̄2 = 1; otherwise, they should be

14



Figure 5: Output gap and Potential GDP-Stochastic volatility BSVAR without scale factor

sizeable. We estimate these parameters, as in Lenza and Primiceri (2022), and present our estimate

of scale factors (and shrinkage) in Figure 6.

The parameters posteriors are drawn based on a Metropolis Hastings algorithm with a Minnesota

Prior. Thus, we estimated the scaling factors together with other hyperparameters in a hierarchical

structure. The resulting posteriors for s̄0, s̄1, s̄2 peak around 1.5, 10, and 4.5, respectively, indicating

that, in effect, it is relevant for this sample to scale up the errors around the COVID-19 observations

to account for the steep increase in volatility of that period, but that may not characterise its

data-generating process, nor should it drastically influence the BVAR estimates. Nonetheless, the

posterior of the decay coefficient (ρ) peaks around 0.75, which, together with s̄2, implies that the

volatility scale factor falls by a third after 2020Q3 and then non-linearly towards one.17

To further illustrate the impact of the COVID-19 shock on the output gap, we can depict the

distributions of the draw estimates for dates around the episode, as shown in Figure 7. We reveal

the quarter of the shock (2020Q1), the subsequent two quarters, and the first quarter of 2022 as a

reference for a date when the potential output dynamics are, in principle, back to normal (here

implicitly recognise the transitory nature of the pandemic shock).18

As we can see in the figure, the distribution of the gap has a large shift to the left, implying that

the potential GDP was not largely affected by the downturn (and instead, the gap lowered in line

17We also obtain the posterior for the shrinkage parameter of Minnesota prior (λ), depicting a mode around 0.19.
18As an additional exercise, we present a counterfactual exercise in Appendix D.2, where we discuss the gap and

potential output that would have been observed in the absence of the pandemic shock.
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Figure 6: Posterior distribution of the overall standard deviation of Minnesota prior and volatility
scaling factors

with the observed GDP). In addition, the distribution spread increased, reflecting an increase in

uncertainty around the estimate during the pandemic. Afterwards, we observe the distribution

shifts back to pre-COVID-19 levels, although it still reflects increased volatility. In summary, we

can see that the impact on the mean gap was transitory, although a somewhat larger uncertainty

remains. Nonetheless, the larger uncertainty is approximately one percentage point higher than

before, rather than orders of magnitude larger, as may be induced by a model without a scale factor

adjustment for the COVID-19 downturn.

4 Evaluation of the method

Evaluating the relative performance of our estimates is a hard task, given that our target, the

potential GDP, is an unobserved variable. There is no well-defined target against which to perform

a "horse race" using a set of competing methods.

However, an assessment of these methods is in order, and alternative evaluation methods can be

proposed. These usually imply assuming knowledge of relevant features of the actual potential

output that can be tested. One route taken by the literature (e.g., Chen and Gornicka (2020))

comprises setting up a Phillips Curve with the output gap on the right-hand side of the equation;
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Figure 7: Distribution of the output gap estimation during COVID-19 shock and 2022Q1.

subsequently, an estimation method of the output gap is assessed according to its capacity to

forecast inflation in the context of the Phillips Curve. Here, we assume that the output gap is a

relevant variable for determining inflation and that the relationship captured in the Phillips curve

is stable over time; that is, the curve setup is an appropriate device for testing the relationship

between the output gap and inflation.

Although that is a feasible venue, it also opens discussions about how stable the Phillips Curve

in each country is considered, whether such a relationship exists (e.g., McLeay and Tenreyro (2020))

or if its slope has flattened over time (Hazell, Herreño, Nakamura, and Steinsson (2022)). These

discussions are relevant more in recent times when the trade-off between output stabilisation and

inflation is strongly felt worldwide. However, such debates are beyond the scope of our study and

may divert attention from what we aim for in this study, approximating the potential output.

Alternatively, we take a more direct approach and assume to count with a real measure of the

potential output and then approximate it with a set of methods whose estimates are assessed based

on their co-movement with the actual output gap. We do this in the context of a Monte Carlo

simulation, where the set of economic variables and potential output is simulated based on an
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economic model taken as given.

4.1 The model used to simulate the output gap

We consider a standard three-equation New Keynesian DSGE model along the lines of Benati (2008),

but where the output is assumed to have a unit root component that behaves as a random walk

with a drift:

yP
t = δ + yP

t−1 + vt, vt ∼ WN(0, σ2
v) (2)

The associated log-linearized model is given by:

πt = β

1 + αβ
πt+1|t + α

1 + αβ
πt−1 − κŷt + ut, ut ∼ WN(0, σ2

u) (3)

ŷt = γŷt+1|t + (1 − γ)ŷt−1 − σ−1(Rt − πt+1|t) − (1 − γ)∆yP
t (4)

Rt = ρRt−1 + (1 − ρ) [ϕππt + ϕyŷt] + ϵR,t, ϵR,t ∼ WN(0, σ2
R) (5)

The first two equations, the hybrid Phillips curve, and dynamic IS feature both backward- and

forward-looking components, whereas the monetary policy rule, is given by a Taylor rule with

smoothing. πt is inflation, Rt is the nominal rate, and the real GDP is Yt which in the model is

rescaled by its unit root component (Y P ) as ŷt = ln
(
Yt/Y P

t

)
to achieve stationarity. The latter

implies that ŷt is the output gap or the output as a deviation of the potential GDP given by its

stochastic trend. The other variables were set as log deviations of their non-stochastic steady-state

values.

The parameters of the model, Θ = {σ2
R, σ2

u, σ2
v , κ, σ, α, γ, ρ, ϕπ, ϕy}, were estimated using Bayesian

methods. The posterior mode is found via simulated annealing, as in Benati (2008), and the posterior

distribution of Θ is characterized by implementing a Random-Walk Metropolis-Hastings algorithm,

as in An and Schorfheide (2007). Both simulated annealing and Metropolis simulations require

the evaluation of the likelihood (and posterior) of the model based on its Sims canonical form and

associated state-space representation.
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Table 1 shows the parameters’ priors, posterior modes, and percentiles obtained in our estima-

tions. An additional step in the simulations is the scale factor adjustment of the variances, which is

revised every 10% of the iterations and adjusted depending on the fraction of accepted draws in

the subset draws. With that, the acceptance ratio of the simulation is 0.219.

Table 1: Prior and Posterior modes and standard deviations for the parameters

Prior Posterior

Parameter Prior Density Mode Standard Deviation Mode 68% coverage percentiles

σ2
R Inverse Gamma 0.01 0.01 0.004 [0.0013, 0.0017]

σ2
u Inverse Gamma 0.01 0.01 0.004 [0.0013, 0.0018]

σ2
v Inverse Gamma 0.01 0.01 0.004 [0.0030, 0.0044]

κ Gamma 0.10 0.10 0.058 [0.0355, 0.0836]

σ Gamma 1 2 24.611 [16.9698, 24.9687]

α Beta 0.90 0.05 0.906 [0.8266, 0.9301]

γ Beta 0.50 0.25 0.732 [0.5239, 0.5480]

ρ Beta 0.7500 0.10 0.742 [0.6260, 0.7297]

ϕπ Gamma 1.50 0.25 1.751 [1.7818, 2.2218]

ϕy Gamma 0.50 0.15 0.466 [0.3700, 0.6076]

Note: The acceptance ratio of the Metropolis algorithm is 0.219.

4.2 Evaluation method of the output gap estimations

Based on the estimated New Keynesian model, a Monte Carlo simulation is carried out, where, in

each iteration, a sample (33 years long) of the model variables is simulated, and a corresponding

output gap is obtained. The simulated economic variables are used as inputs for a set of competing

econometric methods that estimate the output gap of the simulated model. For each iteration, the

cross-correlation between each econometric estimate of the output gap and the simulated output

gap of the model is calculated and recorded.

In other words, in the last simulation, we construct an output gap and feed the econometric

methods with a set of other economic variables that are consistent with this gap. Then, we assess

the methods using the co-movement between the estimated gap and the actual gap (simulated).
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The methods compared are (i) the PT decomposition, (ii) a CF Band Pass type of filter, and (iii)

an HP filter. The two filters are frequently used and widely available methods for estimating the

potential output, whereas the PT decomposition method represents a relatively more complex

alternative set to achieve an SVAR model structural identification as a function of its long-run

forecasting performance.

The median cross-correlations are depicted in Figure 8. The results suggest that the HP filter is

slightly better than the CF filter for low orders of correlation (up to two lags); however, the two

methods perform similarly. Nonetheless, there is a noticeable improvement when using the PT

decomposition. For example, the best of the other two methods’ median is not even within the

one standard confidence interval of the PT decomposition for lags of order 5 and up to leads of

order one; moreover, the 68% confidence intervals between the best alternative (HP) and the PT

decomposition do not overlap for the contemporaneous correlation and two first-order lags (0, -1,

-2 in the horizontal axis of the plot).

Finally, at their peaks, the highest cross-correlations between the HP and CF filters do not exceed

0.5, whereas the PT at its peak features a correlation of 0.72%.

Figure 8: Cross-correlation between the output gap estimates and their simulated target

Note: median (black), 68% coverage (red, dotted) and 90% coverage percentiles (red) of the cross-correlations between

the output gap estimate of each method and the simulated output gap of the economic model.

Given these results, we observe a substantial improvement in the output gap estimates when
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performing a PT decomposition to identify structural shocks in the BSVAR.

At the same time, we can verify whether the method favored by the simulation (BSVAR-PT) is

more aligned with the Covid adjustment we propose in our baseline (SVAR-PT-PL) or with the

alternative Stochastic Volatility Model method (SVM). For carrying this comparison, we use the

(median) estimated gaps for the Colombian economy (shown in the left panels of Figures 2, 4, and

5) and consider the output gap correlation and similarity measures following Mink, Jacobs, and

de Haan (2012), according to which, the correlation can be insufficient to describe the similarity

between different output gaps given that it does not account for the synchronization in the signs of

the gaps and the amplitude of the generated cycles. Thus, we report a similarity measure (and the

correlation) in Figure 10 in appendix D.1.

Both the similarity and correlation and measures show a tighter link between the permanent-

transitory decomposition method (SVAR-PT) with the adjustment based on our baseline (SVAR-

PT-PL). This result is favorable as it supports our objective of preserving the properties of the

structural model while adjusting to the Covid period. In contrast, the SVM model features a lower

performance because the embedded time-varying variance structure still affects the point output

gap estimations.
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5 Concluding remarks

This study examined whether potential output models should be adjusted to account for rare,

large-magnitude shocks, such as those experienced during the COVID-19 lockdown in 2020. It

aimed to include a complete set of observations in the model while preventing observations

of unprecedented magnitudes (that do not resemble the sample data-generating process) from

affecting the quality of the resulting econometric modelling framework.

To address this question, we considered a baseline model incorporating ample information

sources into a structural framework that allows for the application of an identification strategy that

exploits the relationship between consumption and output to recover the permanent and transitory

components of GDP, as in Uhlig (2003, 2004). Based on this setup, we adjusted the model with a

scaling factor of the residuals around the COVID-19 pandemic outbreak along the lines of Lenza

and Primiceri (2022).

Our results indicate that only one structural error is enough to account for most of the long-

run behaviour of GDP (and potential output) and that the remaining shocks majorly explain

transitory fluctuations (i.e. the gap). However, simulation exercises show that the adjusted model

outperforms both simple filtering alternatives and similarly complex models that abstract from

adjusting the large shock periods or that do so in alternative setups that do not explicitly account

for outlying observations at the specific dates of the high-magnitude shocks (e.g. models with

stochastic volatility). Concurrently, our setup prevents quick output gap reversals after downturns

or drastic changes in the potential output after high-magnitude transitory observations. In that

sense, while our setup aligns with the findings of recent studies on the scarring effects of economic

downturns (e.g., Cerra, Fatás, and Saxena, 2023; Aikman, Drehmann, Juselius, and Xing, 2022),

it still prevents the unprecedented-magnitude observations from affecting the resulting model

substantially.

It is relevant to mention that we can make a good approximation of the potential GDP (and

gap) by trading off the possibility of disentangling output dynamics into separate drivers (e.g.

monetary, financial, global, supply, and demand). Not being able to carry out such a type of exercise

is the cost of accessing our identification strategy, which is strictly concerned with an endogenous
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determination of the horizon profile of the structural shocks. In that spirit, a separation of the

output dynamics into fundamental drivers is left for future research, where we can draw lessons

from the results of this study that allow mitigating the approximation costs of ad-hoc changes in the

term horizon of the shocks, common to other identification setups.
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A Additional descriptive data

Table 2: Unit root test

Variable-Test ADF PP KPSS ERS
Level First Diff Level First Diff Level First Diff Level First Diff

GDP 0.9609 0.0000 0.9684 0.0000 1.16079 0.101328 198.0309 0.505899
CON 0.9962 0.0000 0.9984 0.0000 1.152888 0.313152 158.1545 0.478252
INV 0.8669 0.0000 0.842 0.0000 0.971256 0.145345 26.53758 0.495762
GOV 0.8951 0.0000 0.6729 0.0000 1.188665 0.136647 715.5667 0.679222
CPI 0.2782 0.0006 0.4451 0.0000 0.826933 0.075889 45.25559 0.030919
TIB 0.0948 0.0000 0.0664 0.0000 0.77068 0.322704 9.37788 0.866045
ITCR 0.3569 0.0000 0.2941 0.0000 0.723053 0.222996 75.03317 0.92045
OIL 0.1299 0.0000 0.2149 0.0000 0.246352 0.069921 1.960358 0.556965

Note: * For ADF and PP the data in table corresponds to p-values, and the test statistic are reported for KPSS
(1%: 0.739, 5%:0.463, 10%: 0.347) and ERS (1%: 1.9472, 5%:3.1142, 10%: 4.1812)
Source: Authors’ calculations.

Table 3: Cointegration test

GDP CON INV GDP CON INV GOV CPI TIB ITCR OIL
Hypothesized Trace Hypothesized Trace
No. of CE(s) Eigenvalue Statistic p-value* No. of CE(s) Eigenvalue Statistic p-value*
None 0.191276 30.49843 0.0415
At most 1 0.081933 8.844121 0.38 None * 0.556582 260.3158 0

Unrestricted At most 2 0.001222 0.124712 0.724 At most 1 * 0.455536 177.3651 0
Cointegration At most 2 * 0.342743 115.3538 0.0012

Rank Test At most 3 * 0.238327 72.54651 0.0298
(Trace) At most 4 0.199753 44.7783 0.0946

At most 5 0.131228 22.0492 0.2958
At most 6 0.066799 7.700448 0.498
At most 7 0.00634 0.648709 0.4206

Hypothesized Max-Eigen Hypothesized Max-Eigen
No. of CE(s) Eigenvalue Statistic p-value* No. of CE(s) Eigenvalue Statistic p-value*

Unrestricted None 0.191276 21.6543 0.0422 None * 0.556582 82.95069 0
Cointegration At most 1 0.081933 8.719409 0.3103 At most 1 * 0.455536 62.01128 0.0005

Rank Test At most 2 0.001222 0.124712 0.724 At most 2 * 0.342743 42.80733 0.024
(Maximum At most 3 0.238327 27.7682 0.2244
Eigenvalue) At most 4 0.199753 22.72911 0.1853

At most 5 0.131228 14.34875 0.3371
At most 6 0.066799 7.051739 0.483
At most 7 0.00634 0.648709 0.4206

*MacKinnon-Haug-Michelis (1999) p-values

Source: Authors’ calculations.

27



B Survey: methods

Table 4: Univariate estimation methods

Model based Decision variables Complexity Need or advisability
of using forecats

Hodrick & Prescott No Smoothness parameter Low Yes
Baxter & King No Pass band Filter length Low Yes
Butterworth filtering No Pass band Filter length High Yes
Wavelet-based methods No Wavelet basis High Yes
Linear detrending Yes None Low No
Beveridge & Nelson Yes ARIMA model High Yes
Structural time series Yes STS model High No
Hamilton Yes Regime switching model High No
Kim & Nelson Yes Regime switching model High No

Source: Álvarez and Gómez-Loscos (2018).

Table 5: Multivariate estimation methods

Underlying Decision variables Complexity
economic theory

Okun‘s Law Okun‘s Law VAR model Medium
Production function Production function Production function High

Cyclically adjusted
inputs

Blanchard & Quah Supply and demand shocks SVAR model High
Phillips curve Phillips curve Output gap time series High

process
Natural rate of interest Natural rate of interest Lags in the Phillips High

curve, Output gap
time series process

RBC model General equilibrium VECM model High
DSGE model General equilibrium Model specification High

Source: Álvarez and Gómez-Loscos (2018).

C Baseline model: Results

C.1 Forecast Error Variance decomposition (FEVs)
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Figure 9: Forecast Error Variance decomposition (FEVs) by variable
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D Other models: Results

D.1 Comparison between adjusted gap measures and SVAR-Permanent-Transitory

decomposition

We consider a measure of output gaps similarity described in Mink, Jacobs, and de Haan (2012).

The measure is given by:

φit = 1 − |gi(t)gr(t)|∑n
i=1 |gi(t)|

,

where gi(t) is the output gap in period t that is compared with an output gap of reference gr(t),

and n refers to the number of countries in an economic region where the comparison is made. In

our simpler case, n = 1. The similarity φit will take values equal lower to one, and will approach

one where the output gaps are more similar (in fluctuations and amplitude).

For completeness, we also consider the correlation. In both cases, we estimate each indicator

over a rolling window (of four years for the similarity and of eight years for the correlation).19

Figure 10: Comparison measures between adjusted SVAR models and SVAR-PT

19The result is robust to different windows’ sizes; we also considered windows of sizes 12, 20, and 24 quarters for each
measure but chose 16 and 32 to strike a balance between the data lost in the calculation and the amount of information
considered in each estimate. On the other hand, we also compared a synchronicity measure but do not report it as the
signs between either adjusted gap measure and the benchmark show a coincidence ratio of over 90%.
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D.2 Counterfactual exercise (no covid) vs baseline model

In this subsection we compute a counterfactual output gap where the COVID downturn is ab-

stracted from. We run the B-SVAR model (with the proposed identification setup) until December

2019 and forecast nine quarters ahead. Then we obtain the gap as the transitory component of the

GDP.

In a world without COVID we obtain the potential GDP would have grown 3.6% in 2020, i.e.,

1.4% higher than in our baseline model with COVID (which grows by 2.2%). In terms of the output

gap, the counterfactual shows a median around zero which contrasts with the estimates of the

COVID period that show a median of -18.9.

Figure 11: Counterfactual exercise vs baseline model
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