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Abstract

The majority of the New Keynesian DSGE literature assumes that
the macroeconomic effects of monetary policy can be satisfactorily
described by an interest rate rule without addressing the details of the
money supply. We investigate whether this approach remains valid
in the presence of inside money created by the banking system. To
analyze this issue we present a framework based on the generalization
of the IS and LM curves to dynamic general equilibrium models. We
find that it is possible to implement a policy based on an interest rate
rule even in the presence of inside money, although it requires a more
complex toolkit of monetary policy implementation than it is assumed
in models with only outside money.
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1 Introduction
Over the past two decades, New Keynesian DSGE models have become the
main workhorse for macroeconomic analysis of monetary policy, consisting of
a generalized, dynamic IS curve, an interest rate rule representing monetary
policy, and a pricing block (often a Phillips curve), see for example Clar-
ida, Galí and Gertler (1999) and Galí (2015). Details of the money supply
mechanism do not usually appear explicitly in these models, as it is assumed
that the quantity of money does not provide additional relevant information
compared to the model blocks listed.

Central bankers, however, have never been fully convinced by the ap-
proach of academic researchers. Although they have not formally proved it,
they still believe that ignoring the mechanism of money creation can lead
to substantial errors in macroeconomic analysis. This doubt has intensified
since the financial crisis of 2007-2008. Their main argument is that because
the banking sector is also involved in money creation by supplying inside
money, the relationship between the outside money issued by the central
bank and the economy has become more indirect and complicated.

In contrast, the New Keynesian counter-argument can be intuitively sum-
marized as that no matter how complicated the relationship between outside
and inside money, the LM curve can always be “fitted” to the intersection
of the IS curve and the interest rate rule, so its role is redundant from a
macroeconomic point of view. In other words, the implementation of mone-
tary policy may be more complicated in the presence of inside money, but the
interest rate rule, the IS curve and the pricing block are still form a sufficient
toolkit for macroeconomic analysis.

Since the above debate is mainly based on conjectures and non-formal
partial analyses, the aim of our study is to create a simple formal macroe-
conomic model for examining whether the prevailing academic view that the
consequences of banks’ money creation are macroeconomically negligible can
be justified or, on the contrary, neglecting inside money leads to fundamen-
tally flawed results.

The starting point of our analysis is the observation that there are two
main functions in the modern banking system: financial intermediation and
the provision of transaction instruments for economic agents by issuing liquid
liabilities. Banks’ provision of transaction instruments is part of the money
creation process and therefore part of the LM curve, and as Woodford (2010)
showed, financial intermediation can be incorporated into the IS curve. In
the modern banking system, these two functions are mixed when long-term
loans are financed by liquid liabilities (deposits). Hence, a link is created
between the IS and the LM curve that is absent when only outside money

2



exists.1 We show that in the case of inside money, for example, a monetary
easing results in an increase in investment not only because of falling interest
rates, but also because the growing stock of liquid deposits directly finances
more investment loans. That is, a monetary easing shifts not only the LM
but also the IS curve.

This observation is in strong contrast to the the standard New Keyne-
sian approach that monetary policy affects the IS curve only through the
nominal interest rate, and the information on the money supply is therefore
redundant, and the inside money is only significant to the extent that the
relationship between the outside money and the LM curve becomes more
complicated. In our paper, we investigate whether, despite the previous ar-
gument being flawed, the New Keynesian approach can still provide valid
macroeconomic analysis.

We examine the above issue in a simple general equilibrium model. The
central element of our model is the banking block based on Piazzesi and
Schneider (2018). The banking system provides investment loans, and its
liability side consists of long-term and liquid deposits of households. Liquid
deposits fulfill the function of a transaction instrument, i.e., money. An
individual bank has an incentive to use as many liquid deposits as possible
to fund investment loans, as they are cheaper.

At the same time, there is a risk associated with holding liquid deposits,
since when a buyer withdraws his deposit from his bank during a transaction
and it is transferred to the seller’s bank at the end of the transaction, the
movement of deposits must be accompanied by the movement of central bank
reserves. Due to the resulting liquidity risk, banks are forced to cover part
of their liquid deposits with central bank reserves. In the model, the money
multiplier, i.e., the ratio of total money stock and central bank reserves, is
the result of optimal liquidity management of banks.2 Liquidity and lending
decisions, i.e., the provision of transaction instruments and financial inter-
mediation are interrelated in the banking system of the model, which creates
a new, additional relationship between the IS and LM blocks.

In the above framework, it is not trivial whether the New Keynesian
approach remains valid, which is based on the assumption that when a shock
shifts the IS curve, it is “only” a monetary policy implementation issue to
shift the LM curve to the new intersection of the IS curve and the interest rate

1As well known, if the money term in the utility function of households is non-separable
then the IS and LM curves are also related. What we want to show is that even the
separable utility function is not sufficient for the independence of the IS and LM curves
in the presence of inside money.

2The way we model the banking system is in line with the view of central bankers, see
Maclay, Radia, and Thomas (2014) from the Bank of England.
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rule. However, as discussed, shifting the LM curve changes the position of
the IS curve, too, thus, the size of the money supply is not merely redundant
information.

At the same time, if the banking system is also involved in money creation,
the central bank has other instruments at its disposal besides the stock of
outside money: it can control the interest rate on central bank reserves and
it can influence liquidity in the interbank market. We show that with these
tools the central bank can not only shift the IS curve, but also influence its
slope. As a consequence, it can compensate for the shift in the IS curve
caused by the change in the money stock.

The implication of the above is that it is possible to implement a policy
based on an interest rate rule and the IS curve even in the presence of inside
money, however, it requires a more complex and sophisticated toolkit of
monetary policy implementation than it is assumed in models with only
outside money.

However, the validity of the above equivalence of the inside and outside
money models is limited to a certain range of the shocks. Moreover, the
policy toolkit required for the appropriate policy is based on a very detailed
knowledge of the economy and it is so complicated that legitimate doubts
may arise that it cannot be applied in practice. Because of that we take
a less complicated approximation of the perfect policy rule and analyse its
errors. However, we find that the error of the approximation is rather small
for most shocks.

Since the financial crisis of 2007-2008, a lot of effort has been made in
macroeconomics to incorporate the specifics of the financial system into the
models,3 however, most of these models typically focus on the role of the
banking system in financial intermediation and neglect the role it plays in
the mechanism of money supply, assuming that the total amount of money
is equal to the outside money issued by the central bank.

On the other hand, since 2008 central bank studies on the role of the
banking system in money creation have proliferated, see for example Maclay,
Radia and Thomas (2014), Deutsche Bundesbank (2017) and Jordan (2018).
Werner (2016) takes an even more radical view, totally disagreeing with the
mainstream academic approach and claims that the process of money creation
is not a negligible detail, and any analysis that omits it is fundamentally
flawed. However, these studies focus on the description of the banking system
and the macroeconomic context is only superficially considered, furthermore,
they lack formal models.

3See, for example, Gertler and Kiyotaki (2015), Clerk et al. (2015) and Boissay, Collard
and Smets (2016).
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Although there are macroeconomic models in which the money creation
of the banking system appears explicitly, these are rather exceptions. Good-
friend and MacCallum (2007) is an early example of a formal macroeconomic
model with inside money. They study the implications of binding reserve re-
quirements as a constraint on the deposit production by banks. Another early
example is the Post Keynesian model of Godley and Lavoie (2007, chapter
10 ) where liquidity risk and the constraint for deposit creation arises from
the tendency of households to convert their demand deposits into cash.

Jakab and Kumhoff (2019) add inside money to a standard DSGE model,
and like Werner (2016), they question whether it makes sense to talk about
financial intermediation in the case of bank money creation. However, their
model completely lacks liquidity risk and the only constraint on banks’ money
creation is non-bank economic agents’ demand for money.4

Rodríguez Mendizábal (2017) explicitly takes into account the liquidity
risk management of banks in a static model and studies the benefits and costs
of narrow banking. Rivero Lieva and Rodríguez Mendizábal (2019) considers
the financial stability consequences of banks’ money creation.

Piazzesi, Rogers and Schneider (2021) also studies interest rate rules in
the presence of inside money. They compare the implications of different
monetary policy regimes (floor system, corridor system) and investigate how
the aggressiveness of the response to inflation affects the stability properties
of the model. However, in their model there is no investment and corporate
behaviour is not affected by bank lending.

The paper is structured as follows. In Section 2 the model is presented.
Section 3 analyzes the adjustment of the IS and LM curves in response to
exogenous shocks if monetary policy is passive. In Section 4 we investigate
whether it is possible to implement a monetary policy determined by the IS
curve and the interest rate rule in the presence of inside money. Section 5
discusses the case when instead of implementing perfectly the above policy,
it is only approximated. Finally, Section 6 concludes.

2 The model
In the model, households and firms are represented in a standard way. Invest-
ments are financed by the banking sector, the liabilities of which are stable
long-term and liquid deposits, with the latter playing the role of money in

4In Világi and Vonnák (2022) we also study this issue using a model similar to the
one presented in this paper, and we conclude that the existence of inside money does
not invalidate the common macroeconomic wisdom that investments are linked to savings
through the financial intermediation of banks.
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the model. Households’ savings portfolios include both stable and liquid de-
posits. Firms also hold liquid deposits for transaction purposes. The banking
system has two types of assets: corporate loans and central bank reserves.
Banks are actively involved in the money-creation process, as they hold more
liquid deposits than central bank reserves.

Banks are subject to idiosyncratic liquidity shocks. If the outflow of liquid
deposits from a given bank exceeds the amount of its central bank reserves,
it has to borrow on the interbank market, which is relatively expensive. As a
result, banks need to actively manage their liquidity risk, which is explicitly
reflected in the model. The ratio of liquid deposits to the central bank
reserve, i.e. the money multiplier, is determined in the model by liquidity
management.

In addition to idiosyncratic liquidity shocks, the model also includes ag-
gregate macroeconomic shocks.

Production takes place in three stages. First, an intermediate good is
produced using physical capital, then intermediate goods producers compet-
itively sell goods to retailers. Retailers use this intermediate good and labor
to produce differentiated goods for the final good producing sector. Retail-
ers’ prices are sticky, they cannot adjust their prices within a given period
after the realization of macroeconomic shocks. Finally, firms in the final good
producing sector aggregate input goods and sell them for consumption and
investment purposes. Final goods producers then bundle retail goods into
final goods usable for consumption and capital.

Due to the presence sticky prices, monetary policy has real effect in the
model.

The timing of the shocks and economic decisions within a given time pe-
riod is the following: First, firms set prices and quantities on the basis of the
expected values of macroeconomic shocks. Then the macroeconomic shocks
are realized, the product, labor, loan and deposit markets open and mone-
tary policy sets the relevant interest rate and the macroeconomic allocation
decisions are made: since firms cannot readjust their prices, they react by
adjusting labor input and the quantity of retail and final goods production.
Then the idiosyncratic liquidity shocks are realized and the interbank market
opens, where monetary policy is also active.
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2.1 Components of aggregate demand

2.1.1 Households

Households’ instantaneous utility function is given by

U (ct, nt, Dt, ζt) =
c1−ν
t

1− ν
+
ζt (Dt/Pt)

1−ν

1− ν
− ϕnt.

where ct is consumption, Dt/Pt is real money holding, nt is labor and ζt is a
time varying preference parameter. The intertemporal budget constraint is:

Ptct + F h
t +Dt = Y h

t + (1 + it−1)F h
t−1 +

(
1 + iDt−1

)
Dt−1,

where Y h
t is the income of households, F h and Dh denote their time and

demand deposits with it and iDt being the nominal interest rates paid on
them. Households’ income consists of the following components:

• Labor income received from the production sector, Wtnt, where Wt is
the nominal wage.

• Labor income received from the banking sector, W κ
t n

κ
t . We assume

that the banking sector uses different type of labor (nκt ) than the pro-
duction sector which is also supplied by households. For simplicity, the
disutility of this type of labor does not appear in U . W κ

t is the nominal
wage of this type of labor.

• Profit income, Πt = Πy
t +Πz

t , where Πy
t is the profit of final good produc-

ers and retailers, and Πz
t is the profit of intermediate good producers.

• Dividend from banks, Dt.

• Lump-sum transfer from the government, Tt.

Households’ lifetime is infinite, however, due to bounded rationality, they
have finite planning horizon, as in Woodford (2018), Lustenhouwer and
Mavrotamis (2021) and Boutros (2022). At each date t households want to
maximize their discounted utility of consumption and leisure over their plan-
ning horizon (T periods). Their income and price expectations are rational
over the planning horizon. However, they do not have sufficient information
and calculation capacity to forecast events after date t+ T . Hence they use
a rule-of-thumb: they assume that they will choose the steady-state deposit
levels at date T + 1. Furthermore, they assume that their date T + 1 income
will be consistent with the steady-state consumption level.
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Formally, they solve the following finite horizon optimization problem:

max
{ct+j ,nt+j ,Fht+j ,Dt+j}

T+1∑
j=0

Et [Γt+jU (ct+j, nt+j, Dt+j, ζt+j)] ,

subject to the budget constraints,

Pt+jct+j + F h
t+j +Dt+j = Y h

t+j + (1 + it+j−1)F h
t+j−1 +

(
1 + iDt+j−1

)
Dt+j−1,

for all j = 0, . . . , T + 1, and the terminal conditions

ct+T+1 = c,
F h
t+T+1

Pt+T+1

= fh,
Dt+T+1

Pt+T+1

= d,

where Γt = βtΓt−1, Γ0 = 1, 0 < βt < 1 is the time varying discount factor of
households, c, fh and d are the steady-state levels of real consumption, and
real deposit holdings. Furthermore, as discussed, households’ date t+ T + 1
income expectation is consistent with the above terminal conditions:

Y h
t+T+1 = Pt+T+1

(
c+ d+ fh

)
− (1 + it+T )F h

t+T −
(
1 + iDt+T

)
Dh
t+T . (1)

The solution of the above optimization problem is derived in Appendix A.2.

2.1.2 Intermediate good producers

In the model, intermediate goods producers are the only ones who use phys-
ical capital (k), so investment demand can be derived from their behavior.
They operate on a perfectly competitive market with the following technol-
ogy:

zt+1 = At+1

(
kt − ωk2

t

)
, (2)

where zt+1 denotes the intermediate good, and At+1 is a time varying and ω
is a constant productivity parameter.

Their initial wealth is zero, hence they need bank loan to buy the neces-
sary capital for production. The capital fully depreciates after production.
As a consequence, the intermediate good producer firms’ demand for bank
loan will be:

Lt = Ptkt.

Intermediate good producer solve the following profit maximization prob-
lem,

max
kt

P z
t+1zt+1 −

(
1 + iLt

)
Ptkt.
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Since zt+1 = At+1(kt − ωk2
t ), the first order condition is

P z
t+1At+1 − P z

t+1At+12ωkt =
(
1 + iLt

)
Pt,

from which the demand for physical capital is

kt =
pzt+1At+1 −

(
1 + rLt

)
2pzt+1At+1ω

(3)

where rLt is the real loan rate, and pzt+1 ≡ P z
t+1/Pt+1 is the expected relative

price of the intermediate good. It is shown in section 2.2 that pzt+1 is constant
and function of the parameters of the production functions of final and retail
goods.

Substituting formula (3) into the production function (2) yields the sup-
ply of zt+1 as a function of its (relative) price and the real loan rate. The
aggregate profit of the sector:

Πz
t+1 = P z

t+1zt+1 −
(
1 + iLt

)
Ptkt. (4)

2.1.3 The banking sector

The banking block of the model is inspired by Piazzesi and Schneider (2018).
The main feature of their model is that the banks make decisions on their
balance sheet facing liquidity risk and subject to a cost function which we will
specify later. Banks can create liquid deposits, that is money, but this money
creation is constrained by the costs of expanding their balance sheet as well
as by the need to maintain a liquidity buffer for future liquidity shocks.

The banking system is formed by a continuum of homogenous banks
owned by the households. Banks are operated by independent managers,
whose decisions are not influenced by the owners. The task of the managers
is to maximize the discounted net real cash flow (dividends) of households.
Households take the cash flow stream as given by passively collecting positive
cash flow from the banks and providing the necessary resources if the cash
flow is negative.

Assets and liabilities of banks

The liability side of the banks’ balance sheet consists of time deposits (Ft),
demand deposits of households and firms (Dt = Dh

t + Dz
t ), and loans from

the interbank market (Bb
t ). On the asset side they hold reserves (Mt), loans

to the intermediate goods producing corporate sector (Lt) and loans to other
banks (Bl

t). The net interbank position is denoted by Bt with positive value
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indicating a net lender position. Consequently, lending and borrowing can
be written as Bl

t = max[0, Bt] and Bb
t = max[0,−Bt], respectively.

The interest rates paid on reserves, interbank loans, corporate loans, de-
mand and time deposits are denoted by iRt , iBt , iLt , iDt and it, respectively.

At the beginning of date t the bank collects deposits Ft and Dt, provides
loans to firms producing intermediate goods Lt and borrows reserves Mt

from the central bank for expected future transactions with other banks. At
this stage the interbank market is not open yet, and thus the balance sheet
constraint is

Mt + Lt = Dt + Ft. (5)

Idiosyncratic liquidity shocks

After having decided on their balance sheets, banks are hit by an idiosyncratic
liquidity shock λ̂t. This idiosyncratic shock is different from the macroeco-
nomic shocks discussed in section 2.3. The idiosyncratic liquidity shock aims
to capture the real life fact that banks’ customers often initiate payments to
counterparties having account at another bank, so the payer’s bank has to
transfer the corresponding amount in reserves to the payee’s bank account
at the central bank. We assume that λ̂tDt has to be paid by the bank. If
λ̂t > 0, the depositors withdraw part of their deposits. If λ̂t < 0, new de-
posits arrive to the bank. We assume that λ̂t has a continuous distribution
over the [−λ̄t, λ̄t] interval described by the cumulative distribution function
G and the corresponding probability density function g.

Holding reserves is costly because the interest paid on it is less than the
interest on corporate loans. Therefore, banks may hold less reserves than
what would cover outflows. Those banks that do not have enough reserves
to make interbank payments have to borrow on the interbank market. If we
define the reserve ratio as λt = Mt/Dt, a bank must borrow on the interbank
market if Mt < λ̂tDt or λt < λ̂t. That is, a bank with liquidity shock λ̂t

borrows at least Bb
(
λ̂t

)
amount,5

Bb
(
λ̂t

)
≥ λ̂tDt −Mt. (6)

It is assumed that a bank with net deposit outflow does not pay interest on
λ̂tDt. On the other hand, it receives the interest paid by the central bank on

5The variables Bt(λ̂t), Bl
t(λ̂t), Bb

t (λ̂t) are functions of λ̂t. Whenever it is necessary to
avoid confusion, we will explicitly indicate this in the notation, and the letters without
the (λ̂t) extension will represent the related aggregate variables. However, to simplify
notation, when it does not result in confusion we will omit the term (λ̂t) even in the case
of individual, non-aggregate variables.
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Bb
(
λ̂t

)
.

A bank does not have extra liquidity need ifMt ≥ λ̂tDt, that is, if λt ≥ λ̂t.
In this case the bank can lend part of its excess liquidity on the interbank
market

Bl
(
λ̂t

)
≤Mt − λ̂tDt. (7)

A bank with net deposit inflow has to pay interest on −λ̂tDt and it will lose
the interest paid by the central bank on Bl

(
λ̂t

)
.

Operation cost of banking

The main focus of the banking block in our model is representing liquidity
risk management and considering its consequences. On the other hand, we
do not want to provide a deeper understanding of other aspects of banking
behavior. Therefore, following Cúrdia and Woodford (2016) and Piazzesi and
Schneider (2018), we simply posit a reduced-form intermediation technology
represented by a cost function to capture the operation of banks.

Specifically, we assume the banks’ have the following real cost function:

κt = τL
Lt
Pt

+ φL
(
Lt
Pt

)2

+ τF
Ft
Pt

+ τD
Dt

Pt

− φDL
DtLt
P 2
t

+ φB
(
Bl/Pt

)2(
Mt − λ̂tDt

)
/Pt

. (8)

The first four terms on the right hand side represent the operation cost of
collecting deposits and providing loans, including the marketing cost.

The term −φDLDtLt/P
2
t , (φDL > 0) can have two interpretations:

• First, as in Piazzesi and Schneider (2018), it takes resources to convince
the owners of demand deposits that their claims are satisfied on demand
at any time. Moreover, we assume that convincing depositors is cheaper
if the bank owns more assets to back the commitments, especially if
those assets are relatively safe. Corporate loans are not immune to
uncertainty and are therefore not considered to be safe assets, but we
assume that bankruptcy losses do not jeopardize the ability of banks
to repay their deposits. According to this interpretation having more
assets, that is, more Lt, reduces the cost of deposit creation:(

τD − φDLLt
Pt

)
Dt

Pt
.
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• Just the other way around, according to the second interpretation more
demand deposits reduce the cost of lending:(

τL − φDLDt

Pt

)
Lt
Pt

+ φL
(
Lt
Pt

)2

.

This approach can be justified by the following line of thought. Beyond
liquidity risk, banks have to manage their solvency risk as well. This
can be captured by the value-at-risk approach of banks to keep the
probability of default within reasonable limits, as in the models in
chapters 2 and 3 of Shin (2010). Taking value-at-risk decisions into
account implies that not only the marginal cost of funding, but also
the average cost of liabilities determine lending since ceteris paribus
smaller repayment reduces the probability of default. Therefore, more
cheap funding by demand deposits facilitates corporate lending since
the value-at-risk constraint becomes looser and the higher leverage is
allowed.

However, this mechanism does not appear explicitly in our model. In-
stead of representing the above mechanism in detail we capture this
feature by a shortcut, that is, by assuming that Dt reduces the cost of
Lt.

The final term represents the cost of interbank lending. Since the inter-
bank market is a standardized and organized market, this cost is not pro-
portional to the magnitude of lending. Rather, this term wants to capture
the phenomenon that it is easier to lend overnight if the bank has abundant
liquidity, and it is more difficult if the bank’s liquidity is scarce. This term is
positive if the bank is a net lender on the interbank market and zero if she is
a net borrower. We assume that borrowing has no operating costs because
interbank borrowing is a coercive decision, if the outflow of deposits is large
enough and a bank wants to avoid bankruptcy, it must do so, in which case
no sophisticated liquidity management considerations are required. However,
it is exactly the sophisticated liquidity management that we assume to be
costly. Although the denominator can take negative values for banks that
do not have enough reserves to make the necessary transfer payments, the
whole term cannot go below zero, because if a bank is net borrower on the
market, the numerator will be zero. As a consequence of this type of cost,
banks with excess liquidity will hold reserves even if the interest on reserves
is lower than the interbank lending rate.

It is assumed the κt is the real cost paid for a special good which produced
by linear technology from the final good (also used for consumption and

12



investments) and from labor:

κt = pκt q
κ
t ,

qκt = yκt + nκt ,

where qκt denotes the quantity of the special good, pκt is its relative price, yκt
is quantity of final good used for the production of qκt . This simple linear
technology implies that the real wage for nκt is constant, wκt = W κ

t /Pt = 1,
furthermore pκt = 1. To simplify the analysis, we assume that in equilibrium
qκt = nκt , only the labor input is used by the banking sector.6

Behavior of the banking system

At date t banks collect the principal and interest on their assets and pay
the principal and interest on their liabilities. The banks’ net income is the
dividend which is transferred to the household sector:

Dt =
(
1 + iLt−1

)
Lt−1 +

(
1 + iRt−1

) (
Mt−1 − λ̂t−1Dt−1 −Bt−1

)
(9)

+
(
1 + iBt−1

)
Bt−1 − (1 + it−1)Ft−1 − (1 + iDt−1)

(
1− λ̂t−1

)
Dt−1 − Ptκt.

Individual banks take as given the interest rates iRt , iLt , it, iDt , iBt and the
price level Pt. The problem of a bank is to maximize the discounted value of
the real dividends paid to the households (recall, that banks are owned by
households), subject to the constraints:

Mt + Lt = Dt + Ft,

Mt − λ̂tDt ≥ Bt,

The first constraint represents the balance sheet of the bank, the second
liquidity constraint is derived from equations (6) and (7).

To get closed form solutions we assume that λ̂t is drawn from a uniform
distribution over the interval [−λ̄t, λ̄t]. Here we characterize the most impor-
tant properties of the solution of an individual banks’ optimization problem.
For more details see Appendix A.4.

First of all, the optimal solution does not depend on the absolute level
of the interest rate, only relative interest rate matters, that is, the spreads
between the different interest rates and the interest rate on time deposits,

∆R
t ≡

1 + iRt
1 + it

, ∆L
t ≡

1 + iLt
1 + it

, ∆B
t ≡

1 + iBt
1 + it

, ∆D
t ≡

1 + iDt
1 + it

.

6This assumption ensures that the equilibrium income of households and thus the IS
and LM curves derived in section 2.1.5 are independent of κt. However, relaxing this
assumption does not change the result significantly, see Világi and Vonnák (2022).
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The first order condition determining reserve holding can be expressed in
the following way,

∆R
t +

δt
2λ̄t

2φBρt +
ςt

2λ̄t
φBρ2

t = 1 + τF , (10)

where δt ≡ max
[
0, λ̄t − λt

]
and ςt ≡ max

[
2λ̄t, λ̄t + λt

]
, furthermore, in equi-

librium

ρt =
Bb
t −BCB

t

TLt
< 1.

The variable ρt represents the tightness of liquidity on the interbank market,
where Bb = δ2

t /
(
4λ̄t
)
is the demand on the interbank market, BCB

t is the
liquidity supplied by the central bank, and TLt = ς2

t /
(
4λ̄t
)
is the total

liquidity stock of potential lenders.
The first order condition with respect to corporate loans is the following:

∆L
t = 1 + τ̄L + 2φL

Lt
Pt
− φDLDt

Pt
, (11)

where τ̄L ≡ τF + τL.
Considering the liability side, the first order condition determining de-

mand deposits (Dt):

∆D
t = 1− τ̄D + φDL

Lt
Pt
−
(
2φBρt − φBρ2

t

) δtςt
4λ̄t

, (12)

where τ̄D ≡ τD − τF .
Using equation (9) it is easy to show that the aggregate dividend of the

banking sector is given by

Dt =
(
1 + iLt−1

)
Lt−1 +

(
1 + iRt−1

)
Mt−1 − (1 + it−1)Ft−1 − (1 + iDt−1)Dt−1

+
(
iBt−1 − iRt−1

)
BCB
t−1 − Ptκt, (13)

since ∫ λ̄t

−λ̄t
λ̂Dt dλ̂ = 0,

∫ λ̄t

−λ̄t
Bt

(
λ̂
)

dλ̂ = Bl
t −Bb

t = −BCB
t .

2.1.4 The government and the central bank

Monetary policy

The central bank has three instruments. First, the central bank sets the
interest rate paid on reserves (iR) which determines ∆R

t .
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Second, the central bank lends on the interbank market after the realiza-
tion of the liquidity shock (BCB

t ) in order to control the interest rate on the
market (iB) which determines ∆B

t .
Finally, it determines the total quantity of reserves (Mt) available for

banks at the beginning of date t. In practice, the aggregate quantity of
reserves is often controlled by open market operations. In our model this
option is not available since there is no government debt. Instead, we assume
that the central bank lends to commercial banks before the realization of the
liquidity shock. From the point of view of an individual bank, households
ex ante lending F h

t and central bank ex ante lending FCB
t = Mt are perfect

substitutes, thus total time deposits (Ft) are the sum of the two.7
The central bank can influence the magnitude of the money multiplier

(1/λt) by ∆R
t and ∆B

t , furthermore, for a given value of the multiplier, it can
control the quantity of inside money stock (Dt) by Mt. In Appendix A.4 it
is shown that

ρt =
∆B
t −∆R

t

2φB
, (14)

and
λt = m̄tλ̄t, (15)

where

m̄t ≡
φBρt(2 + ρt)− 2

(
1 + τF −∆R

t

)
φBρt(2− ρt)

> 0.

Furthermore, by using the definition of λt,

Dt =
Mt

λt
.

At the beginning of each period all economic agents have uniform and
time independent8 expectations for the values of macroeconomics shocks, de-
noted by ξ0. Taking into account ξ0, monetary policy announces the expected
values of its instruments, and they are chosen in such a way that Pt = Pt−1

(the details are in Appendix A.5 and A.6). If the realized values of shocks co-
incide with the expectations then monetary policy sets the announced values
of the intsruments.

However, if the realized values of shocks, ξ∗t , are different from the expec-
tations, the central bank adjusts its instruments to implement the nominal

7Perfect substitution implies that lending from households and from the central bank
have the same operation cost, see Section 2.1.3. This is just a simplifying assumption.

8For simplicity we assume that the macroeconomic shocks are temporary.
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interest rate level determined by the following standard interest rate rule:

1 + it
1 + r0

t

=

(
yt
y0
t

)ψy ( Pt
Pt−1

)ψπ
,

where y0
t and r0

t flexible-price real output and real interest rate. (The flexible-
price allocation is described in details in Appendix A.6). Since in this model
retail prices cannot be adjusted within a time period even after the realization
of macroeconomic shocks, Pt remains unchanged, and the inflation rate is
zero. Thus the above interest rate rule is simplified to the following form:

1 + it
1 + r0

t

=

(
yt
y0
t

)ψy
. (16)

Consolidated budget constraint

The central bank’s profit at date t has two components. First, the difference
between the revenue on lending at the beginning of a time period and the
interest paid on reserves: (1+ it−1)FCB

t−1 −
(
1 + iRt−1

)
Mt−1. Second, the differ-

ence between the revenue and expenditure related to BCB
t−1. Recall that after

the settlement of interbank payments BCB
t−1 is held as a reserve, hence the

central bank has to pay the reserve rate on it, hence this component of the
profit is given by

(
iBt−1 − iRt−1

)
BCB
t−1. Since Mt−1 = FCB

t−1 , the central banks’
profit: (

it−1 − iRt−1

)
Mt−1 +

(
iBt−1 − iRt−1

)
BCB
t−1.

The central bank pays the profit to the central government. We assume
that there is no government consumption and the government’s budget is
always balanced, the central bank’s profit is transferred to the household
sector:

Tt =
(
it−1 − iRt−1

)
Mt−1 +

(
iBt−1 − iRt−1

)
BCB
t−1. (17)

2.1.5 IS and LM curves

Since prices are rigid in the model within a time period, aggregate demand
determines the evolution of macroeconomic allocations in the short run. In
this section, we introduce the IS and LM curves to describe the behavior of
aggregate demand. These curves are similar to the textbook IS-LM curves in
terms of their economic content, but unlike them they are not static, as they
are derived from a dynamic equilibrium model and contain expectations in
addition to the present variables.

Our goal with the introduction of the IS and LM curves is to make the
adjustment of the economy to unexpected shocks at date t transparent and
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understandable. These curves are suitable tools to clarify the role of inside
money in the adjustment process and to point out the essential difference
between the macroeconomic effects of inside and outside money.

Similar to Woodford (2010), the IS curve is derived from the savings func-
tions of households and retailers’ investment demand, as well as the supply
of intermediation of banks, while the LM curve is derived from households’
demand for transaction instruments and banks’ need for liquid liabilities. So
the behavior of the banking system affects both curves.

From a macroeconomic point of view, this is just the significance of inside
money: as we will see later, in the case of outside money, banks do not affect
the LM curve, but inside money creates an additional link between the two
curves through the banking system.

First, consider the intermediate good producers’ demand for capital. Re-
call that monetary policy ensures that expected future inflation rates are
always zero. As a consequence, nominal and real interest rate coincide, thus
rLt = iLt . Furthermore, as shown in section 2.2, the relative price of the in-
termediate good pz = az/ϑ. Taking all this into account, equation (3) takes
the following form:

kt =
az

ϑ
At+1 −

(
1 + iLt

)
2a

z

ϑ
At+1ω

.

Substituting formula Lt/Pt = kt into the corporate loan rate spread equation
(11)yields

1 + iLt = (1 + it)∆
L
t = (1 + it)

[
1 + τ̄L + 2φLkt − φDL

Dt

Pt

]
. (18)

Combining the above two equations provides an expression for kt:

kt =

az

ϑ
At+1 − (1 + it)

(
1 + τ̄L − φDLDt

Pt

)
2a

z

ϑ
At+1ω + 2 (1 + it)χtφL

. (19)

As the above equation reveals, monetary policy can influence the level of
capital stock through two channels: by the nominal interest rate it and the
quantity of demand deposits Dt (see section 2.1.4). The presence of Dt

in the above expression is a consequence of the fact that in the modern
banking system the function of financial intermediation is inseparable from
the function of providing transaction instruments.

Equation (12) can be expressed as

∆D
t = 1− τ̄D + φDLkt −Ψt, (20)
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where

Ψt ≡ φBρt(2− ρt)
δtςt
4λ̄t

= φBρt(2− ρt)
λ̄2
t − λ2

t

4λ̄t
.

The spread ∆D
t is also determined by monetary policy. Not only kt is a

function of monetary policy but also ρt, δt, and ςt and thus Ψt, as discussed
in section 2.1.4.

In Appendix A.2 it is shown that real savings is given by the following
function,

st =
BTt − 1

BTt
yt −

YTt
BTt

,

where

BTt =
T∑
j=0

(
1 + η

(
1−∆D

t+j

)1−σ
)
βjσ
(
Rt+j
t

)σ−1

+ β(T+1)σ
(
Rt+T+1
t

)σ−1
, (21)

YTt =
T∑
j=1

yht+j

Rt+j
t

− f + d

Rt+T+1
t

, (22)

where

Rt
t = 1, Rt+j

t = (1 + it)(1 + it+1) · · · (1 + it+j−1), j > 0,

furthermore, yt is the real GDP, yht+j = Y h
t+j/P

h
t+j and in equilibrium

yht+j = yt+j − (1 + it+j−1)
[
kt+j−1 −

(
1−∆d

t+j−1

)
dt+j−1

]
.

The aggregate balance sheet of the banking system:

Mt + Lt = Ft +Dt = F h
t + FCB

t +Dt.

Since
Lt = Ptkt, Mt = FCB

t ,

the balance sheet equation can be expressed as

Ptkt = Lt = F h
t +Dh

t = Ptst,

that is,
kt = st, (23)

the real savings of households is equal to the capital stock (which is quite
clear intuitively since kt is equal to investments in this model).
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Combining the above saving function with equation (23) yields the IS
curve:

yt =
1

BTt − 1

(
BTt kt + YTt

)
. (24)

Households’ demand for real money is derived in Appendix A.2. Rearranging
it yields the LM curve:

yt =

(
1−∆D

t

)σ BTt
ηt

Dt

Pt
− YTt . (25)

The right hand side of the IS and LM curves are functions of it, since both
BTt and YTt , the expected discounted future income stream of households,
are also functions of it. Furthermore, monetary policy can also influence the
curves through kt, ∆D

t and Dt.
It is important to emphasize that the money stock (Dt) influences both

curves in our model. This is in sharp contrast with the approaches of most
textbooks or New Keynesian models (see Clarida, Galí and Gertler (1999),
Galí (2015)) that the IS curve is not affected directly by the money stock.

We will also apply the following notations for the equations (24) and (25):

yt = yIS
(
it, kt,∆

D
t , ξ

LM
t , ξISt

)
, (26)

yt = yLM
(
it,
Dt

Pt
, kt,∆

D
t , ξ

LM
t , ξISt

)
, (27)

where ξLMt =
[
λ̄t, ηt

]
and ξISt = [βt, At+1]. The above formulas emphasize

that the IS and LM curves are functions mapping it to the real output, yt.
and they also depend on monetary policy represented by ρt, λt, Dt.

The IS and LM curves define two equations for yt and it. We denote the
solution, that is, the intersection of the two curves by

yislmt = yislm
(
Dt

Pt
, λt, ρt, ξ

LM
t , ξISt

)
, (28)

iislmt = iislm
(
Dt

Pt
, λt, ρt, ξ

LM
t , ξISt

)
. (29)

The above formulas reveal that the equilibrium values of yt and it are func-
tions of monetary policy and the exogenous shocks. Then using the equilib-
rium value of iislmt , one can calculate the equilibrium values iLt , kt, ∆D

t by
equations (18)–(20).
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2.1.6 The outside-money version of the model

As benchmark for comparison, we provide the toutside-money version of the
model. In this version instead of the liquid deposits of the banking system,
Mt the outside-money issued by the central bank plays the role of transaction
instruments.

Households

Households’ instantaneous utility function is similar in both versions of the
model, the only difference is that Mt/P represent households’ real money
holding:

U (ct, nt,Mt, ζt) =
c1−ν
t

1− ν
+
ζt (Mt/Pt)

1−ν

1− ν
− ϕnt.

Households’ has two instruments of saving, time deposits (F h
t ), and the

outside-money. As a consequence the intertemporal budget constraint be-
comes

Ptct + F h
t +Mt = Y h

t + (1 + it−1)F h
t−1 +Mt−1,

where it is assumed that the interest paid on outside-money is zero. In
Appendix A.2 it is shown that the saving function is given by

st =
BT,omt − 1

BT,omt

yt −
YT,omt

BT,omt

,

where

BT,omt =
T+1∑
j=0

βjσ
(
Rt+j
t

)σ−1
, (30)

YT,omt =
T∑
j=1

yht+j

Rt+j
t

− fh

Rt+T+1
t

. (31)

The banking sector

In the outside-money version financial intermediation is the only function of
banks, and they do not play any role in providing transaction instruments.
Banks collect time deposits and supply corporate loans. Since demand de-
posits are missing from the balance sheet, banks do not have liquidity risk,
hence they do not need central bank reserves and interbank loans. Their cost
function becomes

κt = κ̄+ τL
Lt
Pt

+ φL
(
Lt
Pt

)2

+ τF
Ft
Pt
.
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At each date t banks solve the following optimization problem:

max
Lt,Fht

Et

[
β̄t
Dt+1

Pt+1

+
Dt
Pt

]
subject to the balance sheet constraints,

Lt = F h
t .

where
Dt =

(
1 + iLt−1

)
Lt−1 − (1 + it−1)F h

t−1.

The solution of the above problem is characterized by the following condition:

∆L
t = 1 + τ̄L + 2φL

Lt
Pt
.

The government and the central bank

As the interbank market is missing from the outside-money version, mone-
tary policy has only one instrument, Mt. It is assumed that money supply
is controlled by direct lump-sum transfers (or taxes) to households (i.e. by
helicopter money). Again, we assume that there is no government consump-
tion and the government’s budget is always balanced, hence the transfer paid
to (tax levied on) households is the following:

Tt = Mt −Mt−1.

IS and LM curves

It is straightforward to show that the capital stock is determined by the
following formula:

komt =
az

ϑ
At+1 − (1 + it)

(
1 + τ̄L

)
2a

z

ϑ
At+1ω + 2 (1 + it)χtφL

.

Unlike in equation (19), the capital stock is independent of the money stock,
since financial intermediation is independent of provision of transaction in-
struments.

In this case the IS and LM curves have the following forms:

yt =
1

BT,omt − 1

(
BT,omt komt + YT,omt

)
. (32)

yt =

(
1−∆M

t

)σ BT,omt

ηt

Mt

Pt
− YT,omt , (33)
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where ∆M
t = 1/(1 + it) since the interest rate paid on Mt is zero. Unlike in

the general case, here the money stock does not affect directly the IS curve,
since it is missing from komt , BT,omt , YT,omt .

We will also apply the following notations for equations (32) and (33):

yt = ỹIS
(
it, ηt, ξ

IS
t

)
, (34)

yt = ỹLM
(
it,
Mt

Pt
, ηt, ξ

IS
t

)
. (35)

The above formulas emphasize that the outside-money IS and LM curves are
independent of λ̄t, λt and ρt, because Mt = Dt and, as a consequence, the
interbank market does not exist. Furthermore, equation (34) reveals that the
outside-money IS curve does not depend on Mt either.

Figure 1 displays and compares the IS and LM curves in the general and
the outside-money cases. In the general case ∆D

t is decreasing in it, and,
consequently, the term

(
1−∆D

t

)σ (
1 + BTt

)
ηt in the LM curve is increasing

in it. On the other hand, its impact on Bt is negligible. Hence, the LM curve,
as a function of it, is flatter in the general case than in the outside-money
case.

Figure 1: The IS and LM curves in the outside money and the general versions
of the model. Note that the IS curves almost perfectly coincide in the two
versions if monetary policy instruments are consistent with the steady state
of the model.
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2.2 Aggregate supply

In this section, we discuss, on the one hand, how the level of production
is determined at flexible prices, on the other hand, how supply adapts to
unexpected shocks in the presence of sticky prices.

The retail goods (y(j)) are not perfect substitutes and are produced by
infinitely many firms indexed by j ∈ [0, 1] acting on a market described by
the concept of the Dixit-Stiglitz type monopolistic competition. Retail goods
are produced using intermediate goods (z) and labor (n) with a quasi linear
technology

yt(j) = an (nt(j))
1−α + azzt(j),

where an, az > 0 and 0 < α < 1.
The final good y is produced on a competitive market by a representative

firm using infinitely many retail goods and a CES production technology:

yt =

[∫ 1

0

yt(j)
θ−1
θ dj

] θ
θ−1

,

where θ > 1.
Because of perfect competition, the price of the final good is the CES

average of the input prices:

Pt =

[∫ 1

0

Pt(j)
1−θ dj

] 1
1−θ

.

Due to the assumption of perfect competition and the constant-return-to-
scale technology, the final goods producer earns zero profit.

It can be shown easily that demand for the jth retail good is a function
of its relative price and total output:

yt(j) =

(
Pt
Pt(j)

)θ
yt,

which implies that retailers operate on a Dixit-Stiglitz type monopolistically
competitive market.

As discussed, some parameters of the model are driven by macroeco-
nomics shocks, the vector of these shocks is denoted by ξt. Economic agents
have uniform expectation for the shocks, at the beginning of date t the ex-
pected value of the shocks is ξ0

t . At the beginning of period t the central
bank announces its monetary policy and retailers set their prices. The ag-
gregate price index becomes Pt, and wages and the price of the intermediate
input good are also chosen. The prices and wages set at the beginning of the
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period are market clearing conditional on ξ0
t and the announced monetary

policy. The allocation of goods consistent with the market clearing prices is
the flexible price allocation described in details in Appendix A.6.

As shown in Appendix A.3 the demand for labor is

nt =

(
P z
t

Wt

an(1− α)

az

) 1
α

,

and the demand for intermediate goods is

zt =
yt − ann1−α

t

az
, (36)

where P z
t is the price of the intermediate good, Wt is nominal wage.

Hence the cost function becomes

C(Wt, P
z
t , yt) = Wtnt +

P z
t

az
(
yt − ann1−α

t

)
.

Since labor demand does not depend on the output, the marginal cost func-
tion is simply

MCt =
P z
t

az
.

Observe that all retailers face the same marginal cost. Profit maximization in
the Dixit-Stiglitz type monopolistic competition model implies the following
price formula:

Pt = ϑMCt = ϑ
P z
t

az
,

where
ϑ =

θ

θ − 1
> 0

is the markup. Since the marginal cost is the same for all firms, prices and
production quantities will also be uniform.

The above formula implies that the relative price of the intermediate
goods is constant, that is

pzt =
P z
t

Pt
=
az

ϑ
,

As a consequence, the flexible price labor demand is a function of the real
wage,

n0
t =

(
an(1− α)

ϑw0
t

) 1
α

, (37)

where w0
t = W 0

t /Pt and W 0
t is the nominal wage set at the beginning of the

period.
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After setting the prices and wages the shocks, denoted by ξ∗t , are realized.
Of course, ξ∗t is not necessarily equal to ξ0

t . Retailers cannot adjust their price
after the shocks, however, wages can be adjusted.

We also assume that firms cannot adjust the quantity of zt set at the
beginning of the period, they can adjust only labor. Hence labor demand
and the real marginal cost after the realization of ξ∗t become

nt =

(
yt − azzt

an

) 1
1−α

, (38)

mc(wt, yt) = wt
∂nt
∂yt

= wt
(an)

1
α−1 y

α
1−α
t

1− α
. (39)

The representative final good producer firm earns zero profit due to the
constant-return-to-scale technology:

Ptyt =

∫ 1

0

Pt(j)yt(j) dj

As a consequence, the aggregate profit of the final and retail goods sectors
can be expressed as

Πy
t = Ptyt −Wtnt − P z

t zt, (40)

since the profit of final goods production is zero.

2.3 Exogenous shocks

As discussed, there are two types of shocks in the model: macroeconomic
shocks, ξt, and an idiosyncratic liquidity shock λ̂t.

The vector of macroeconomic shocks consists of the following variables:

ξt =
[
λ̄t, ηt, βt, At+1

]
,

where λ̄t is the upper limit of the liquidity shock’s absolute value, ηt ≡ ζ
1
ν
t

is a parameter of households’ money demand, βt is the discount factor of
households, At+1 is the productivity factor in the intermediate goods pro-
ducing sector. In this paper, only temporary shocks are considered, lasting
only over one time period.

We will also apply the following notations:

ξLMt =
[
λ̄t, ηt

]
, ξISt = [βt, At+1] .

The shocks in the ξLMt vector have an effect primarily on the LM curve, while
those within the ξISt have an effect primarily on the IS curve.

The timing of the shocks and economic decisions is the following:
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• First, firms set prices and the quantity of the intermediate good on the
basis of ξ0

t and the announced values of monetary policy instruments.
The chosen prices and quantity are the market clearing ones, if ξ0

t

coincides with the realized value of the shocks.

• Then the macroeconomics shocks are realized (ξ∗t ) and the product,
labor, loan and deposit market open, and allocation decisions are made.

I If ξ0
t = ξ∗t then monetary policy maintains the pre-announced val-

ues of its instruments and the flexible price allocation is realized.

I If ξ0
t 6= ξ∗t due to the rigid prices firm can only adjust quantities

and monetary policy also reacts to the shocks, sets it by adjusting
Mt, ∆R

t and ∆B
t .

• Then the liquidity shocks are realized and the interbank market opens.

3 The effect of shocks with unchanged mone-
tary policy

Although the main objective of our paper is to understand how interest rate
rule based monetary policy works in the presence of inside money, it is worth
breaking it down into two steps. First, we look at what happens as a result of
macroeconomic shocks if monetary policy does not respond.9 In the second
step, we examine the impact of the monetary policy response.

Our starting point is the steady-state allocation consistent with ξ0 (dis-
cussed in details in Appendix A.5). We examine how unexpected changes in
exogenous variables (ξ∗t ) shift the IS and LM curves and thus change the eco-
nomic allocation, and compare the adjustment processes in the inside-money
and outside-money versions.

To keep the analysis simple and transparent, as in Eggertsson and Krug-
man (2012), we analyze the effects of unexpected temporary shocks. That is,
at date t, it is assumed, that ξt = ξ∗t 6= ξ0, however ξt+j = ξ0, for all j > 0.
Therefore, from time period t+ 1 onwards the behavior of the economy can
be described by the flexible price allocation.

We restrict our analysis to cases where moderate shocks hit the economy.
In the case of shocks that cause an excessive recession, the nominal interest
rate reaches the zero lower bound. This problem is not addressed in our
model. In the case of shocks that cause excessively large expansion, the

9Recall that this means unchanged Mt, ∆R
t and ∆B

t .
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economy runs into capacity constraints, which has a strong inflationary effect
and the assumption of rigid prices is no longer plausible.

In Appendix A.1 we discuss how we calibrated the parameter values for
the following simulations.

LM shocks

First, we consider the effect of the unexpected change of the size of liquid-
ity shocks, captured by the λ̄ parameter. Note that λ̄ does not appear in
the formulas of the IS and LM curves of the outside money version. As a
consequence, the λ̄ shock does not have any impact on these curves.

Figure 2: The effect of the decrease in the liquidity shocks on the IS and LM
curves

In the general case λ∗t = m̄tλ̄
∗
t and m̄t > 0 (see equation (15)) and D∗

t =
Mt/λ

∗
t . As a consequence, a decrease of λ̄t results in an increase of the money

supply, therefore the LM curve shifts downward. Since φDL > 0, the capital
stock kt increases when the liquidity shocks become smaller. This implies
that the IS curve shifts upward, see Figure 2.

The next experiment is a decrease in money demand, that is, in ηt. Al-
though the variable ηt appears in BTt and BT,omt , and shifts the IS curves in
both cases, its impact is negligible with our parameter choice.

Obviously, the main effect of a negative money demand shock is shifting
the LM curve. In both cases decreasing money demand shifts the LM curve
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Figure 3: The effect of the decrease in money demand on the IS and LM
curves

downward. The effect will be expansionary in both cases, but in the inside-
money case the expansion is larger, see Figure 3.

IS shocks

Our next shock is an unexpected change in the discount factor (βt), which
affects the propensity to save, and thus, has direct impact on the IS curve.
Smaller βt implies less saving in period t.

Formally, if βt decreases, BTt and BT,omt decrease as well (see equations
(21) and (30)), which shifts the IS curve upward. The change of BTt and BT,omt

will shift the LM curves upward, too. The overall effect is expansionary in
both cases.

At+1 is the productivity in the intermediate good sector. If At+1 increases,
firms invest more and kt increases which shifts the IS curve to the right. As
equation (20) reveals, an increase in kt results in an increase in ∆D

t . As a
consequence, in the inside-money version the LM curve is shifted upward.
The overall effect results in a slight decrease in output. This is in sharp
contrast with the outside-money version, since kt does not affect ∆M , hence
in this case the overall effect of the productivity shock will be expansionary,
see Figure 5.
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Figure 4: The effect of the decrease of the discount factor on the IS and LM
curves

Figure 5: The effect of an increase in productivity on the IS and LM curves

Summary

Using the IS and LM curves, we compared how the economy responds to
macroeconomic shocks in the presence of outside and inside money. Since
the curves in the two cases differ already in the no-shock baseline scenario
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and also react differently to the shocks, it is not surprising that we obtain
numerically different results in the model versions. On the other hand, if we
focus on the direction of change in real output, except for the productivity
shock, the results will not differ qualitatively: if the effect of a shock is
expansive for inside money, it will remain expansive for outside money.

4 Implementation of an interest rate rule
In the previous section, we have shown how the presence of inside money
modifies the macroeconomic effects of exogenous shocks if monetary policy
does not respond to them. At the same time, it may rightly be argued that
all of this is not really important, as if monetary policy responds to shocks,
these differences may disappear or become insignificant. The objective of
monetary policy is to facilitate the achievement of some certain macroeco-
nomic goals in response to exogenous shocks, and the central bank controls its
monetary policy instruments to achieve these objectives. In the case of inside
money, monetary policy must be implemented differently in order to achieve
the same macroeconomic goal compared to the case of outside money, but
the exact mechanism of implementation is not necessarily interesting from a
macroeconomic point of view.

Of course, this line of reasoning is based on the implicit assumption that
the same macroeconomic objective can always be achieved with monetary
policy, regardless of the role of the banking system in the process of money
creation. In this section, we will investigate the validity of this assumption.

We assume that the monetary policy behavior required to achieve the
above objectives can be described by the interest rate rule (16). The rule
is a relationship between the output and an interest rate, and it can be
represented by an increasing curve in the output-interest rate space. The
actual output-interest rate combination desirable to monetary policy is given
by the intersection of the IS and the interest-rate-rule curves.

We introduce the following notation for the output and interest rate de-
termined by the interest rate rule and the IS curve:

yirt = yir
(
Dt, λt, ρt, ξ

LM
t , ξISt

)
, (41)

iirt = iir
(
Dt, λt, ρt, ξ

LM
t , ξISt

)
. (42)

Since the IS curve depends on the shocks and Dt, λt, ρt (recall equation (26)),
yirt and iirt also depend on these variables.
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4.1 LM shocks

As pointed out by Poole (1970), an important advantage of conducting mon-
etary policy on the basis of an interest rate rule is that it stabilizes the real
output in the presence of fluctuations in the supply and demand of money.
This is illustrated by Figure 6 in the case of outside money.

In the figure, the LM curve shifts because money supply increases from
M0

t to M∗
t due to an exogenous shock. If monetary policy did not react, the

equilibrium output would be the intersection of the IS and LM curves, so the
output would increase. If, on the other hand, monetary policy reacts in line
with the interest rate rule, then it must implement the allocation (y0

t , i
0
t ) given

by the intersection of the unchanged IS and the interest-rate-rule curves.

Figure 6: Money supply shock in the outside-money version of the model

If we denote the reaction of monetary policy by M+
t , the post-reaction

money supply becomes M∗
t + M+

t . Monetary policy must choose M+
t so

that the LM curve returns exactly to its original position.10 Using the no-
tation introduced in equation (35), we can express the formal condition for
implementing the interest rate rule:

y0
t = ỹLM

(
i0t ,M

∗
t +M+

t , η
0
t , ξ

IS0
t

)
.

The above condition is obviously satisfied if

M+
t = −

(
M∗

t −M0
t

)
,

that is, if monetary policy reduces the money supply by exactly as much as
it increased as a result of the exogenous shock.

10Suppose monetary policy controls the amount of money, but it can only do so with
some stochastic error (εMt ) After the error is realized (M∗t = M0

t + εMt ), it tries to correct
it (M∗t +M+

t ).
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The example above illustrates why it is advisable to follow an interest
rate rule in the presence of inside money in the case of an LM curve shocks
(i.e. money market shocks). This is because by doing so the turbulence of the
money market does not cause unnecessary fluctuations in the real economy,
and the effects of the shocks can be completely eliminated.

In what follows, we examine whether the above implementation is feasible
in the presence of inside money in the case of shocks to money supply or
demand. However, the problem is now more complicated, since in contrast
to the case of outside money, the IS curve also reacts to changes in the
amount of money. That is, when monetary policy pushes the LM curve back
to its original position, the IS curve is also shifted, and it is not certain that
it will eventually return to its original position.

Although the task of monetary policy is more complicated in the case
of inside money, it has more instruments at its disposal: beyond the money
stock, it can also control λt and ρt, see section2.1.4. (Moreover, as shown
in Appendix A.4, monetary policy can unambiguously be represented by Dt,
λt and ρt instead of Mt, ∆R

t and ∆B
t .) As equation (20) reveals, monetary

policy can influence ∆D
t , too. Furthermore, it is also able to act on BTt and

YTt via ∆D
t , as shown in equations (21), (22). As a consequence, monetary

policy can offset the effect of changing money supply on the IS curve by the
change of BTt and YTt , see equation (24).

Let D+
t denote how much monetary policy changes the money supply in

response to shocks, and λ+
t and ρ+

t the values of the variables in question
as determined by the monetary policy response. Then, in order to stabilize
output, the monetary policy response must meet the following conditions:

y0
t = yIS

(
i0t , D

∗
t +D+

t , λ
+
t , ρ

+
t , ξ

LM∗
t , ξIS0

t

)
,

y0
t = yLM

(
i0t , D

∗
t +D+

t , λ
+
t , ρ

+
t , ξ

LM∗
t , ξIS0

t

)
where we applied the notations introduced in equations (26) and (27). As
discussed in Appendix A.7, there exist D+

t , λ
+
t , ρ

+
t which satisfy the above

conditions. Generally, the solution only makes economic sense if 0 < λ+
t ≤ λ̄t

and 0 < ρ+
t < 1. However, there is no guarantee that an economically

meaningful solution will be found for shocks of any magnitude. If not, the
monetary policy that would stabilize the output cannot be implemented.11

11If we take the interest rate rule strictly, in the case of inside money, monetary policy
should not push back the curves to the starting point. This is because in the presence of
inside money, the shocks of the money market shift the IS curve as well, and instead of
the starting point, the LM curve should be pushed to the intersection of the IS and the
interest-rate-rule curve. At the same time, this point is very close to the starting point,
and if the starting point is targeted, we retain the useful feature seen in the case of outside
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Generally it is not the case that all monetary policies that can be imple-
mented in the case of outside money can also be implemented in the case of
inside money. In the following we examine in what range of shocks λ̄∗t and
η∗t the interest rate rule can be implemented, or, in other words, the output
can be fully stabilized. Recall that yislmt is the output determined by the
intersection of the IS and LM curves, see equation (28), that is, the output
level that the shocks would cause without a monetary policy response. As
discussed in the previous section, we limit our attention to moderate shocks,
that is, where the effect on output in the absence of monetary reaction is less
than 5 percent.

We also exclude policies which require unrealistically low values of iR for
their implementation: the smallest possible value of iR we consider is -1%.12

First, consider the exogenous change of λ̄t, which can be interpreted as a
money supply shock in the inside money case. As discussed in section 2.1.4,
a decrease of λ̄t results in a decrease of λt and an increase in the money
supply, Dt. It is easy to show that in this case, if λ+

t and ρ+
t are chosen in

such a way that they restore the pre-shocks value of Ψt in equation (20), and

D+
t = −

(
D∗
t −D0

t

)
,

then the money supply shock can be eliminated and the output remains equal
to y0

t .
Figure 7 displays the range [0.6463, 0.84] around the baseline value (λ̄0 =

0.7464) where the deviation of yislmt from y0
t is no more than 5 percent (see

the left panel). The right panel reveals that over the whole range 0 < λ+
t < λ̄t

and 0 < ρt < 1, that is, the interest rate can be implemented, and the output
can be stabilized at y0

t .
The next shock we investigate is a shock to the households’ money de-

mand. Contrary to the λ̄ case, it is not always possible to neutralize the effect
of the shock within the range that would result in less than 5 percent change
in the output without the response of monetary policy. The baseline value of
ηt is 0.0241. As it turns out, monetary policy can fully offset shocks that are
within the range of [0.0216, 0.0257], which would correspond to a change in
output between −3.35 and 5 percent without monetary policy reaction (see
Figure 8).

money that turbulences in the money market do not cause real economic fluctuations at
all.

12As discussed, there is no cash in our model, so the zero lower bound on nominal
interest rates does not appear explicitly. However, we want to avoid examining cases that
are irrelevant in practice. Therefore, we exclude from our analysis the cases where the
interest paid on the central bank reserve is unrealistically low.
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Figure 7: Implementation of the interest rate rule – money supply shock

Figure 8: Implementation of the interest rate rule – households’ money de-
mand shock

The figure also reveals that the appropriate policy in this case leaves the
money supply unchanged, that is, D+

t = 0, and the positions of the IS and
the LM curves are adjusted only by λ+

t and ρ+
t .

4.2 IS shocks

As an illustrative example, let us first examine how the monetary policy
based on the interest rate rule can be implemented in the outside money
version of the model in the presence of households’ discount factor shock.
In this case, monetary policy should achieve the output determined by the
intersection of the moving IS curve and the interest rate rule (see Figure 9).
This is possible by shifting the LM curve to this point by changing the money
supply.

Formally, M+
t must be chosen so that the following condition is met,

ỹir∗t = yLM,om
(
ı̃ir∗t ,Mt +M+

t , ηt, ξ
IS∗
t

)
,

where ỹir∗t and ı̃ir∗t are determined by the IS and the interest-rate-rule curves.
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Figure 9: Households’ discount factor shock in the outside-money version of
the model

In the case of inside money, the problem is similar to that of the previous
section: if the LM curve is shifted to the desired point by changing the
money supply, then the IS curve will move away from the intersection point.
This can still be handled by changing monetary policy to affect λt and ρt.
Formally, the following conditions must be met:

yir∗t = yIS
(
iir∗t , Dt +D+

t , λ
+
t , ρ

+
t , ξ

LM0
t , ξIS∗t

)
,

yir∗t = yLM
(
iir∗t , Dt +D+

t , λ
+
t , ρ

+
t , ξ

LM0
t , ξIS∗t

)
,

where, using the notations introduced in equations (41) (42), yir∗t and iir∗t are
defined as

yir∗t = yir
(
Dt, λt, ρt, ξ

LM
t , ξIS∗t

)
,

iir∗t = iir
(
Dt, λt, ρt, ξ

LM
t , ξIS∗t

)
,

that is they are determined by the intersection of the post shock IS curve
and interest rate rule.

In the following, we examine the size of the shocks for which the monetary
policy defined by the interest rate rule can be implemented in the manner
defined by the above equations, and we measure the output effect of the
shocks by the change of yir∗t relative to y0

t . Again, we focus on the range of
shocks when |yirt − y0

t | is no more than 5 percent, and exclude policies which
require too low values of ∆R to implement.

First, we investigate shocks to the discount factor (βt). Its baseline value
equals to 0.97. Although, in finite time horizon it is not necessary to assume
that βt < 1, we use this widespread assumption, hence the highest value of
βt we consider is 0.999. In a wide range of βt the interest rate rule can be
implemented. Figure 10 displays the range of [0.8052, 0.999] where at the
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Figure 10: Implementation of the interest rate rule – households’ discount
factor shock

lower limit the output is higher by 5 percent than its baseline value, as the
left panel reveals.

In the case of the productivity shock the central bank can implement the
interest rate rule over the full range of shocks that cause output fluctuations
of up to 5 percent, that is over the interval [1.3201, 1.4063] (baseline value is
1.3633).

Figure 11: Implementation of the interest rate rule – productivity shock

4.3 Summary

In this section, we have demonstrated that the interest rate rule can be
implemented for inside money as well, but requires a more sophisticated
monetary policy than for outside money. It needs all the three instruments
of monetary policy used in a coordinated way.

In the case of money supply, discount factor shocks and productivity
shocks, the above implementation is possible for a fairly wide range of shocks.
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In the case of money demand shock, the interest rate rule can only be
implemented in a narrower range of possible values of shocks. In this case,
the problem is that for large enough shocks, unrealistically low values of iRt
(interest paid on reserves) would be required for implementation.

5 Approximation of the interest rate rule
In the previous section, we saw that it is possible to implement a monetary
policy based on an interest rate rule even in the case of inside money, but we
have also shown that this is only true for a limited range of shocks.

But there is another problem with the implementation. In order to be
perfectly able to implement the interest rate rule, the central bank must know
the exact structure of the economy and the numerical values of the parame-
ters, and on this basis it must coordinate the control of its three instruments
with extreme precision. In reality, central banks do not have such an ac-
curate knowledge of the economy and cannot conduct such a sophisticated
monetary policy.

Therefore, in this section, we examine the consequences of the limited
ability to implement the interest rate rule. Specifically, we assume that the
central bank responds to shocks only with the money supply, and as a result,
it can only approximately stabilize the output in the presence of LM shocks
and reach the (yir∗t , iir∗t ) allocation in the presence of IS shocks.

Let us denote the central bank’s post shock reaction in money supply
by Da

t . Assume that the central bank chooses this so that the IS, LM, and
interest-rate-rule curves intersect each other at the same point, but this point
does not necessarily match the (y0

t , i
0
t ) or (yir∗t , iir∗t ) allocations. That is, Da

t

is chosen in such a way that the resulting (yat , i
a
t ) allocation satisfies the

following conditions:

yat = yir
(
D∗
t +Da

t , λ
∗
t , ρt, ξ

LM∗
t , ξIS∗t

)
,

iat = iir
(
D∗
t +Da

t , λ
∗
t , ρt, ξ

LM∗
t , ξIS∗t

)
,

yat = yLM
(
iat , D

∗
t +Da

t , λ
∗
t , ρt, ξ

LM∗
t , ξIS∗t

)
.

The first two conditions guarantee that (yat , i
a
t ) is at the intersection of the

IS and the interest-rate-rule curves. The third assures that the LM curve is
also on this point.

5.1 LM shocks

Figure 12 displays the approximate implementation of the interest rate rule
for the money supply shock. The left panel shows the shift of the IS and LM
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curves as a result of the shock without monetary policy response. The symbol
‘F’ represents the (y0

t , i
0
t ) allocation that monetary policy would achieve if

the interest rate rule were perfectly implemented.
The right panel shows the shift of the IS and LM curves as a result of the

monetary policy response. The symbol ‘�’ represents the (yat , i
a
t ) allocation.

The figure reveals that the two allocations are very close to each other, so
in the case of a money supply shock, the simpler monetary policy closely
approximates the results of the sophisticated one.

Figure 12: Approximate implementation of the interest rate rule – money
supply shock

This is confirmed by Table 1. The table shows the fluctuation of output
for different sizes of the shock if there is no monetary policy reaction, and
the extent to which the approximate implementation of the interest rate rule
will stabilize output. It is clear that the stabilization is quite successful:
even in the case of shocks capable of causing 5 percent change in output, the
approximation deviates from y0

t at most by 0.07 percent.

Table 1:

λ̄∗t 0.8400 0.8030 0.7654 0.7272 0.6879 0.6463
yislmt 95 97 99 101 103 105
y0
t 100 100 100 100 100 100
yat 99.94 99.96 99.99 100.01 100.04 100.07

Figure 13 displays the approximate implementation of the interest rate
rule in the case of households’ money demand shock. It can be seen visually
that the error of the approximation is now larger than in the previous case.

This is confirmed in Table 2. Even in the case of shocks that could
potentially cause 5 percent output fluctuations, monetary policy allows only
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Figure 13: Approximate implementation of the interest rate rule – house-
holds’ money demand shock

Table 2:

η∗t 0.0265 0.0255 0.0245 0.0236 0.0226 0.0216
yislmt 95 97 99 101 103 105
y0
t 100 100 100 100 100 100
yat 100.26 100.15 100.05 99.95 99.85 99.74

around 0.25 percent fluctuations. So it can neutralize around 95 percent of
the output impact of the shock. Although this is an order of magnitude larger
fluctuation than in the previous case, it is still a fairly successful stabilization
of the economy.

5.2 IS shocks

Figure 14 displays the approximate implementation of the interest rate rule
for the discount factor shock. As can be seen, similarly to the money supply
shock, the approximation is almost perfect in this case as well, which is also
confirmed by Table 3

Table 3:

β∗
t 0.999 0.9333 0.8658 0.8052
yirt 99.25 101 103 105
yat 99.23 101.02 103.06 105.11

In contrast to the previous case, as Figure 15 reveals, in the case of a pro-
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Figure 14: Approximate implementation of the interest rate rule – house-
holds’ discount factor shock

ductivity shock, the error of approximation is no longer negligible, although
it is still not very large. The figure also shows that in the case of an approx-
imate implementation, the shock causes more fluctuation in output than in
the case of a perfect implementation.

Table 4 also demonstrates that the approximate implementation amplifies
the output effect of shocks by increasing it by about 1.06 times.

Figure 15: Approximate implementation of the interest rate rule – produc-
tivity shock

Table 4:

A∗
t 1.3201 1.3374 1.3547 1.3719 1.389 1.4062

yirt 95 97 99 101 103 105
yat 94.75 96.84 98.95 101.06 103.18 105.34
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5.3 Summary

In this section we considered what happens when the central bank has limited
ability to pursue sophisticated monetary policy and controls only the supply
of reserves.

We found that, of course, it is not possible to perfectly implement the
monetary policy rule in this case, only to approximate it, but the error of
the approximation does not seem significant from a practical point of view.

6 Conclusions
We generalized the traditional IS and LM curves to dynamic general equilib-
rium models to examine the macroeconomic consequences of banks’ creation
of inside money. We used a simple dynamic model to study the problem,
however, our framework based on the generalized IS and LM curves can be
applied in more complex general equilibrium models, too.

The starting point of our analysis was the observation that financial inter-
mediation and the provision of transaction instruments cannot be separated
in the modern banking system, they are inherently mixed. The close connec-
tion of the two function creates a link between the IS and LM curves since the
financial intermediation function is part of the relationship between savings
and investment, or, translated into the language of modeling, of the IS block
of macroeconomics models, while the provision of transaction instruments
is part of the LM block. Hence, unlike in models only with outside money,
changing the money supply affects both the IS and LM curves. Moreover,
this is true not only for monetary policy, but also for all exogenous shocks.
In models with only outside money, one can imagine exogenous shocks which
shift either the IS curve only or the LM curve only. However, adding inside
money to the model creates a new link between the IS and LM curves, and
it is no longer possible to affect the two curves separately.

First, we studied the impact of exogenous macroeconomic shocks in the
case of passive monetary policy. Due to the above additional relationship
between the two curves, there is always quantitative difference between the
impact of shocks in a model version with only outside money and the version
with inside money. However, despite the quantitative differences, the results
are qualitatively similar in the two model versions.

Then we examined whether the approach of the New Keynesian literature
is valid, namely, whether the macroeconomic effects of monetary policy can
be satisfactorily described by an interest rate rule and the IS block of the
model without addressing the details of the money supply. We have shown
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that despite the complexity of the creation of inside money, it is possible to
implement perfectly a monetary policy based on the IS curve and an interest
rate rule, although it requires a more complex toolkit of monetary policy
implementation than assumed in models with only outside money.

However, the above equivalence result is valid only in certain limited
ranges of the shocks. That is why, in addition to the perfect implementation
of a policy based on the interest rate rule, we also examined its approximation
and we have found that the error of the approximation is rather small for
most shocks.

This paper has demonstrated that a framework based on the generalized
IS and LM curves is suitable for investigating problems where the details of
the money creation process of the banking system matter. We have shown
that the approach of the New Keynesian macroeconomics to examine the
effects of monetary policy using the IS block and the interest rate rule of the
model, abstracted from money creation, is justified.

In our paper, we examined the role of inside money under normal cir-
cumstances when the economy is not hit by extreme shocks and the nominal
interest rate does not reach its zero lower bound. A natural extension of
this research could be to use the framework of generalized IS and LM curves
to examine situations where the nominal interest rate has reached its lower
bound, the economy is in liquidity trap, and the abundance of liquidity makes
monetary policy ineffective. The applied framework is also suitable for an-
alyzing issues related to the money creation process such as unconventional
monetary policies or central bank digital currency.
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A Appendix

A.1 Parameter values

The parameter values of the model are chosen in such a way to match the
most important stylized facts of the banking system and the aggregate econ-
omy.

Table 5 displays the steady-state values of balance sheet items of the
banking system (P = 1). The items represented in the table imply that

• The steady-state value of the money multiplierD/M = 5, see the online
dataset of Maclay, Radia and Thomas (2016).

• The ratio of stable and liquid liabilities F h/D = 1 which is in line
with Bigio and Weil (2016, page 5) who claim that demand deposit
correspond to 50-60% of banks’ liabilities. The empirical share of time
deposits is significantly smaller, only 10-20%. However, in our model
F h
t represents all other types of stable liabilities, hence it is not the

exact theoretical counterpart of time deposits in reality. That is why
we choose higher share for F h.

Table 5: Balance sheet of the banking system – baseline values

Assets Liabilities

M = 2.22 FCB = 2.22
L = 20 F h = 8.89

D = 11.11

In our model there is no explicit lower bound for nominal interest rate
(there is no cash in the model), however, we still want to avoid zero nomi-
nal interest rates in the simulations. Therefore we choose a relatively high
baseline value for the nominal interest rate: i = 0.0309. We choose β to
be consistent with the baseline interest rates, that is, β = 1/(1 + i), since
the expected inflation rate is zero. Since this is a stylized model, there is no
clear interpretation of the length of time periods, therefore, it should not be
inferred from the magnitude of households’ discount factor either.

∆R = ∆D = 0.97 implying iR = iD = 0. ∆L = 1.08, that is, we assume
8% premium on risky corporate loans which is roughly consistent with the
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equity premium literature. (In our model there are no equities, corporate
loans represent all types of risky assets.)

We assume that the volume of loans and deposits have very moderate
direct impact on the above spreads: one percent increase of loans/deposits
induce 10 basis points increase in the loan rate/deposit rate spread, that is
φL = 0.0019 and φD = 0.0039. We assume that the cost function parameter
capturing the cross effect of Dt and Lt is weaker than the parameters of the
direct effects, that is, φDL = 0.0015. If we also assume that one percent
increase in the loan stock implies on average 0.43 percent increase in demand
deposits, these parameters are consistent with Calice and Zhou (2018), who
estimated the effect of gross loans on the net interest margin from bank-level
panel data on more than 14,000 commercial banks in 160 countries for the
period 2005-2014.

The baseline consumption is 80%, the baseline investment is 20%, the
baseline cost of intermediation is 1.25% of the real GDP.

The following tables display the values of the parameters and the steady-
state values of the exogenous variable used in the model.

Table 6: Parameter values of the model

Name an az α θ ϑ ω ν σ ϕ
Value 49.70 1 0.67 6 1.2 0.0005 2 0.5 0.001

Name τF τ̄L φL τ̄D φDL φB

Value 0.004 -0.0033 0.0025 0.0482 0.0015 0.1656

Table 7: Steady-state values of the exogenous shocks

Name λ̄ η β A
Value 0.7464 0.0147 0.97 1.8178

A.2 The solution to the households’ problem

In this paper we consider the effects of unexpected temporary shocks at date
t. We assume that households do not expect further shocks from date t + 1
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onward. Hence after the realization of the shocks at date t they solve a
deterministic problem.

The Lagrangian of the household’s finite horizon optimization problem:

L =
T+1∑
j=0

Γt+j

(
c1−ν
t+j

1− ν
+
ζt+j (Dt+j/Pt+j)

1−ν

1− ν
− ϕnt+j

)

+
T+1∑
j=0

υt+j
(
Wt+jnt+j + Πt+j +Dt+j + Tt+j + (1 + it+j−1)F h

t+j−1 +
(
1 + iDt+j−1

)
Dt+j−1

)
−

T+1∑
j=0

υt+j
(
Pt+jct+j +Dt+j + F h

t+j

)
.

The first order conditions with respect to ct+j:

Γt+jc
−ν
t+j = Pt+jυt+j;

with respect to nt:
Γt+jϕ = Wt+jυt+j;

with respect to F h
t+j:

υt+j = (1 + it+j)υt+j+1;

and with respect to Dt+j:

Γt+jζt+j (dt+j)
−ν = Pt+jυt+j,

where dt+j ≡ Dt+j/Pt+j.
Combining the first order conditions one can easily derive the Euler equa-

tion
c−νt+j = βt+j (1 + rt+j) c

−ν
t+j+1,

where
1 + rt+j ≡

1 + it+j
Pt+j/Pt+j+1

is the real interest rate. The Euler equation can also be expressed as

ct+j+1 = βσt (1 + rt+j)
σ ct+j, (43)

where σ ≡ ν−1. From the first order conditions with respect to ct and nt one
obtains the labor supply:

ϕcνt+j =
Wt+j

Pt+j
≡ wt+j. (44)
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Consider the first order condition with respect to Dt and divide both side
by υt:

ζt+j (dt+j)
−ν

υt+j
= Pt+j

[
1− υt+j+1

υt+j

(
1 + iDt+j

)]
Using the first order conditions with respect to F h

t+j and ct+j, this can be
rewritten as

ζt+j (dt+j)
−ν

c−νt+j
= 1−∆D

t+j,

where ∆D
t+j ≡ (1 + iDt+j)/(1 + it+j). Rearranging it yields the money demand

at date 1:
dt+j =

ηt+j(
1−∆D

t+j

)σ ct+j. (45)

Recall that
Y h
t = Wtnt +W κ

t n
κ
t + Πt +Dt + Tt,

and define

yht ≡
Y h
t

Pt
.

Then the budget constraints can be written in real terms as follows:

fht+j

Rt+j
t

=
yht+j − ct+h − dt+j

Rt+j
t

+
fht+j−1

Rt+j−1
t

+
∆D
t+j−1dt+j−1

Rt+j−1
t

,

for all j = 0, · · · , T , and

fh + d

Rt+T+1
t

=
yht+T+1 − ct+T+1

Rt+T+1
t

+
fht+T
Rt+T
t

+
∆D
t+Tdt+T

Rt+T
t

,

where fht+j = F h
t+j/Pt+j, dt+j = Dt+j/Pt+j, ∆D

t+j = (1 + iDt+j)/(1 + it) and

Rt−1
t = (1 + rt−1)−1, Rt

t = 1,

Rt+j
t = (1 + rt)(1 + rt+1) · · · (1 + rt+j−1), j > 0.

Applying recursive substitutions yields the following present-value budget
constraint:

T∑
j=0

ct+j +
(
1−∆D

t+j

)
dt+j

Rt+j
t

+
cT+1

Rt+T+1
t

= ȳht +
T+1∑
j=1

yht+j

Rt+j
t

− f + d

Rt+T+1
t

,

where
ȳht = yht + (1 + rt−1)fht−1 + (1 + rt−1)∆D

t−1dt−1.
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Substituting the Euler equation (43) and the money demand equation (45)
into the above formula yields[

T∑
j=0

(
1 + η

(
1−∆D

t+j

)1−σ
)
βjσ
(
Rt+j
t

)σ−1
+ β(T+1)σ

(
RT+1
t

)σ−1

]
ct =

ȳht +
T+1∑
j=1

yht+j

Rt+j
t

− f + d

Rt+T
t

.

After rearranging, we obtain the following consumption function:

ct =
ȳht + YTt
BTt

,

where

BTt =
T∑
j=0

(
1 + η

(
1−∆D

t+j

)1−σ
)
βjσ
(
Rt+j
t

)σ−1
+ β(T+1)σ

(
Rt+T+1
t

)σ−1
,

and

YTt =
T∑
j=1

yht+j

Rt+j
t

− f + d

Rt+T
t

.

Consequently, the real savings function becomes

st = ȳht − ct =

(
BTt − 1

)
ȳht − YTt
BTt

,

By combining equations (4), (13), (17), (40) and condition Ptκt = W κ
t n

κ
t

one can show that

yht = yt − (1 + rt−1)fht−1 + (1 + rt−1)∆D
t−1dt−1.

As a consequence ȳht = yt and the consumption function can be expressed as

ct =
yt + YTt
BTt

, (46)

and the real savings function as

st =

(
BTt − 1

)
yt − YTt
BTt

. (47)

50



Combine equations (45) and (46) to get a formula for real money demand,

dt =
ηt

(1−∆D
t )

σ

yt + YTt
BTt

,

and the demand for time deposits is given by

fht = st − dt.

In the outside-money version the first order conditions have the same
form. As a consequence, money demand is the following:

mt =
ηt

(1−∆M
t )

σ ct, (48)

where mt = Mt/Pt, and the spread ∆M
t = 1/(1 + it) since the interest rate

paid on Mt is zero.
To find the consumption function, first, define

ŷht ≡ wtnt + wκt n
κ
t +

Πt +Dt
Pt

,

thus
yht = ŷht +

Tt
Pt
.

As a consequence, the intertemporal budget constraints become

ct + fht +mt = ŷht +
Tt
Pt

+ (1 + rt−1)fht−1 +mt−1,

In equilibrium Tt = Mt −Mt−1, thus

ct + fht = ŷht + (1 + rt−1)fht−1.

Furthermore, equations (4), (13), (17), (40) and condition Ptκt = W κ
t n

κ
t

imply that
ŷht + (1 + rt−1)fht−1 = yt.

Thus the series of budget constraints can expressed as,

ft+j

Rt+j
t

=
ŷht+j − ct+j
Rt+j
t

+
ft+j−1

Rt+j−1
t

, j = 0, · · · , T − 1,

f

Rt+T+1
t

=
ŷht+T − ct+T
Rt+T+1
t

+
ft+T−1

Rt+T
t

.
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Applying recursive substitutions yields

T∑
j=0

ct+j

Rt+j
t

= yt +
T∑
j=1

yht+j

Rt+j
t

− f

Rt+T+1
t

.

Substituting the Euler equation (43) and the money demand equation (48)
into the above formula results in[

T∑
j=0

βjσ
(
Rt+j
t

)σ−1

]
ct = ȳht +

T∑
j=1

yht+j

Rt+j
t

− f

Rt+T+1
t

.

One can obtain the consumption function by rearranging the above formula:

ct =
ȳht + Y om,T

t

Bom,Tt

=
yt + Y om,T

t

Bom,Tt

,

where

Bom,Tt =
T∑
j=0

βjσ
(
Rt+j
t

)σ−1
.

and

Y om,T
t =

T∑
j=1

yht+j

Rt+j
t

− f

Rt+T+1
t

.

A.3 The cost minimization problem of retailers

The cost minimization problem of an input producer is the following:

min
nt,zt

Wtnt + P z
t zt,

subject to
ann1−α

t + azzt ≥ yt,

where Wt is the nominal wage. Here we dropped the (j) index to simplify
the notation.

The Lagrangian of the cost minimization:

L = Wtnt + P z
t zt + υ

(
yt − ann1−α

t − azzt
)
,

where υ is the multiplier.
The first order conditions with respect to labor and intermediate goods

are
Wt = υan(1− α)n−α

t
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P z
t = υaz.

Eliminating υ yields the demand for labor,

nt =

(
P z
t

Wt

an(1− α)

az

) 1
α

,

and by substituting it into the production function we get the demand for
intermediate goods:

zt =
yt − ann1−α

t

az
.

Hence the cost function:

C(Wt, P
z
t , yt) = Wtnt +

P z
t

az
(
yt − ann1−α

t

)
.

Since labor demand does not depend on the output, the marginal cost func-
tion is simply

MCt =
P z
t

az
.

A.4 The solution to the banks’ problem

Banks solve the following problem:

max
xt,Bt

Et

[
β̄t
Dt+1

Pt+1

+
Dt
Pt

]
subject to

Mt − λ̂tDt ≥ Bt,

Mt + Lt = Dt + Ft,

and
xt ≥ 0,

where xt = Lt,Mt, Dt, Ft and

Dt =
(
1 + iLt−1

)
Lt−1 +

(
1 + iRt−1

) (
Mt−1 − λ̂t−1Dt−1 −Bt−1

)
+
(
1 + iBt−1

)
Bt−1

− (1 + it−1)Ft−1 − (1 + iDt−1)
(

1− λ̂t−1

)
Dt−1 − Ptκt,

Dt+1 =
(
1 + iLt

)
Lt +

(
1 + iRt

) (
Mt − λ̂tDt −Bt

)
+
(
1 + iBt

)
Bt

− (1 + it)Ft − (1 + iD)
(

1− λ̂t
)
Dt − Pt+1κt+1,
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and

β̄t = βt
c−νt+1

−νct
=

1

1 + rt
.

Multiplying the objective function by a positive constant does not alter
the results, therefor we can multiply it by Pt

1

1 + rt

Pt
Pt+1

Dt+1 +Dt =
1

1 + it
Dt+1 +Dt.

Date t−1 variables do not constraint the date t decisions. Hence they can be
treated as constants from the point of view of optimization. Hence all date
t− 1 terms can be omitted from the objective function. On the other hand,
date t decisions do not have any impact on κt+1, therefore we can omit those
terms as well.

Expressing Ft from the balance sheet constraint and substituting into the
modified objective function yields

1 + iLt
1 + it

Lt +
1 + iRt
1 + it

(
Mt − λ̂tDt −Bt

(
λ̂t

))
+

1 + iBt
1 + it

Bt

(
λ̂t

)
−1 + iDt

1 + it

(
1− λ̂t

)
Dt +Dt −Mt − Lt − Ptκt.

We can form the Lagrangian of the optimization problem by the above
expression and the liquidity constraint:

L
(
λ̂t

)
= ∆L

t Lt + ∆R
t

(
Mt − λ̂tDt −Bt

(
λ̂t

))
+ ∆B

t Bt

(
λ̂t

)
− ∆D

t

(
1− λ̂t

)
Dt +Dt −Mt − Lt − Ptκt +

+ µt

(
λ̂t

)(
Mt − λ̂tDt −Bt

(
λ̂t

))
,

where

∆L
t ≡

1 + iLt
1 + it

, ∆R
t ≡

1 + iRt
1 + it

, ∆B
t ≡

1 + iBt
1 + it

, ∆D
t ≡

1 + iDt
1 + it

.

The Lagrangian is a function of the liquidity shock λ̂t since the variable
Bt and the multiplier µt are also functions of it. The expected Lagrangian
can be calculated as

E1 [L] =

∫ λ̄t

−λ̄t
L
(
λ̂
)
g
(
λ̂
)

dλ̂.

where g(λ̂) = 1/(2λ̄) is the density function of the uniform distribution on
the [−λ̄, λ̄] interval.
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First order conditions

The variables Lt, Mt, Dt, Ft are independent of λ̂t, which is the result of the
timing of decisions, since they are determined prior to the realization of λ̂t.
On the other hand, when Bt and µt are determined, λ̂t is already observed.
Thus, while the first order conditions for interbank lending have to be met for
all possible realizations of the liquidity shock, for the other choice variables
only in expectation.

Formally, the first order condition with respect to Bt:

∂L
(
λ̂t

)
∂Bt

(
λ̂t

) = 0, for all λ̂t ∈ [−λ̄t, λ̄t].

The first order conditions with respect to Lt, Mt, Dt and Ft:

∂E1 [L]

∂xt
≤ 0,

where xt = Lt, Mt, Dt, Ft. The inequalities in the above conditions are due
to the non-negativity constraints. A strict inequality implies that xt = 0.

To find the solution beyond the first order conditions one also needs the
constraints and the complementary slackness condition:

µt

(
λ̂t

)(
Mt − λ̂tDt −Bt

(
λ̂t

))
= 0, for all λ̂t ∈ [−λ̄t, λ̄t].

That is, a positive µt implies a binding constraint, Mt = λ̂tDt + Bt. On the
other hand, if Mt > λ̂tDt +Bt then µt = 0.

To derive the first order condition with respect to Bt, first calculate the
marginal cost of Bt. Using equation (8) one can obtain

∂Ptκt

∂Bt

(
λ̂t

) = 2φBρt

(
λ̂t

)
,

where

ρt

(
λ̂t

)
=

Bl
t

(
λ̂t

)
Mt − λ̂tDt

.

Therefore the first order condition:

∆B
t −∆R

t − 2φBρt

(
λ̂t

)
− µt = 0 for all λ̂t ∈ [−λ̄t, λ̄t].

First, consider the case when the bank has enough reserves to meet the
interbank payment obligations due to the liquidity shock, if any. This is the
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case when λ̂t ∈ [−λ̄t, λ̄]. These banks are potential lenders on the interbank
market. We assume symmetric solution, that is,

ρt

(
λ̂t

)
=

Bl
t

(
λ̂t

)
Mt − λ̂tDt

= ρt < 1 for all λ̂t ∈ [−λ̄t, λt]. (49)

Later we will show that such a symmetric solution is consistent with an
equilibrium on the interbank market. Since ρt < 1

Bl
t

(
λ̂t

)
< Mt − λ̂tDt for all λ̂t ∈ [−λ̄t, λt].

Then the complementary slackness condition implies that µ
(
λ̂t

)
= 0 for all

λ̂t ∈ [−λ̄t, λt]. Therefore the first order condition for the lenders becomes

∆B
t = ∆R

t + 2φBρt for all λ̂t ∈ [−λ̄t, λt]. (50)

Now, consider the case when the bank has to borrow on the interbank
market, because its reserves are not sufficient to cover the deposit outflow,
that is whenMt < λ̂tDt or, equivalently λ̂t ∈ (λt, λ̄t]. For such a bank Bl

t = 0,
thus ρt

(
λ̂t

)
= 0 and, consequently, the first order condition becomes

∆B
t = ∆R

t + µt for all λ̂t ∈ (−λt, λ̄t]. (51)

Since µt = ∆B −∆R
t > 0, the liquidity constraint will bind and

Bb
t = λ̂tDt −Mt. (52)

The first order condition with respect to Mt is∫ λ̄

−λ̄

(
∆R
t − 1− τF + µt + φBρ2

t

)
g
(
λ̂
)

dλ̂ ≤ 0.

Since we have just shown that if λ̂t ∈ [−λ̄t, λt] then µt = 0, ρt > 0, and if
λ̂t ∈ (λt, λ̄t] then µt > 0, ρt = 0, and both are independent of λ̂ inside these
two intervals, the above integral can be decomposed as

(
∆R
t − 1− τF

) ∫ λ̄t

−λ̄t
g
(
λ̂
)

dλ̂+ µt

∫ λ̄t

λt

g
(
λ̂
)

dλ̂+ φBρ2
t

∫ λt

−λ̄t
g
(
λ̂
)

dλ̂ ≤ 0.

Since ∫ λ̄t

λt

g
(
λ̂
)

dλ̂ = 1−G(λt),

∫ λt

−λ̄t
g
(
λ̂
)

dλ̂ = G(λt),
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and focusing only on solutions in which Mt is positive, the above condition
simplifies to the following equation:

∆R
t + µt [1−G(λt)] + φBρ2

tG(λt) = 1 + τF . (53)

Since we assume that λ̂t is drawn from a uniform distribution over the interval
[−λ̄t, λ̄t], as we will show later, the above formula has the following closed
form solution:

∆R
t +

δt
2λ̄t

µt +
ςt

2λ̄t
φBρ2

t = 1 + τF , (54)

where δt ≡ max
[
0, λ̄t − λt

]
and ςt ≡ max

[
2λ̄t, λ̄t + λt

]
.

The first order condition with respect to Lt is∫ λ̄

−λ̄t

(
∆L
t − 1− τF − τL − 2φL

Lt
Pt

+ φDL
Dt

Pt

)
g
(
λ̂
)

dλ̂ ≤ 0.

Since all terms inside the integral are independent of λ̂t, in equilibrium with
non-zero lending the previous expression simplifies to

∆L
t = 1 + τ̄L + 2φL

Lt
Pt
− φDLDt

Pt
,

where τ̄L ≡ τF + τL.
The first order condition with respect to Dt is∫ λ̄t

−λ̄t

(
∆D
t − 1− τF + τD − φDLLt

Pt

)
g
(
λ̂
)

dλ̂+∫ λ̄t

−λ̄t
λ̂
(
µt + φBρ2

t + ∆R
t −∆D

t

)
g
(
λ̂
)

dλ̂ ≥ 0.

Taken into account that if λ̂t ∈ [−λ̄t, λt] then µt = 0, ρt > 0, and if λ̂t ∈
(λt, λ̄t] then µt > 0, ρt = 0, in equilibrium with positive demand deposit the
above condition can be rewritten as

∆D
t + τD + 2φD

Dt

Pt
− φDLLt

Pt
+ µt

∫ λ̄t

λt

λ̂g
(
λ̂
)

dλ̂

= 1 + τF − φBρ2
t

∫ λt

−λ̄t
λ̂tg
(
λ̂
)

dλ̂. (55)

assuming uniform distribution implies that the above equation becomes

∆D
t = 1− τ̄D + φDL

Lt
Pt
−
(
µt − φBρ2

t

) δtςt
4λ̄t

, (56)

where τ̄D ≡ τD − τF .
Finally, time deposits (Ft) are determined by the balance sheet constraint:

Ft = Mt + Lt −Dt.
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Equilibrium on the interbank market

Since the banking sector is homogeneous and banks are similar before the
liquidity shock, in equilibrium all banks choose the same Mt, Lt, Dt, Ft and,
as a consequence, the same reserve ratio λt. Since there is a continuum of
banks in the model, the cross sectional distribution of λ̂t can be described
by the probability distribution of λ̂t.

The interbank equilibrium condition is

Bl
t +BCB

t = Bb
t , (57)

where 0 ≤ BCB
t ≤ Bb

t is central bank lending on the interbank market and

Bl
t =

∫ λt

−λ̄t
Bl
t

(
λ̂
) 1

2λ̄t
d λ̂,

Bb
t =

∫ λ̄t

λt

Bb
t

(
λ̂
) 1

2λ̄t
d λ̂,

where 1/
(
2λ̄t
)
is the uniform probability density function. Equation (52)

implies that

Bb
t =

∫ λ̄t

λt

(
λ̂− λt

)
Dt

1

2λ̄t
d λ̂. (58)

Figure 16: Liquidity demand and supply

In Figure A.4 the blue triangle represents Bb
t/Dt, the total demand for

liquidity per unit of demand deposit on the interbank market. Since the area
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of the triangle is equal to δ2
t /
(
4λ̄t
)
,

Bb
t =

δ2
t

4λ̄t
Dt. (59)

In Figure A.4 the inflow per unit of demand deposit as a function of λ̂t
is represented by the dashed line. However, the total liquidity of potential
lenders (λ̂t < λt) is greater than the aggregate liquidity inflow, since they
can lend their reserves plus the λ̂tDt. The total liquidity per unit of demand
deposit is represented by sum of the yellow and red triangle, its area is equal
to ς2

t /
(
4λ̄t
)
. Hence the total excess liquidity (TLt) is clearly greater than

the market demand for liquidity,

TLt =
ς2
t

4λ̄t
Dt >

δ2
t

4λ̄t
Dt = Bb

t .

We assumed that each lender supplies the same ρt fraction of its available
liquidity as equation (49) indicates. As a consequence, ρt < 1. The total
liquidity supply is equal to ρt times the total liquidity, that is,

Bl
t = ρt

∫ λ̄t

λt

(
λ̂− λt

)
Dt

1

2λ̄t
d λ̂ = ρtTLt. (60)

Now we can express equilibrium condition (57) as

ρtTLt +BCB
t = Bb

t .

Rearranging it yields

ρt =
Bb
t −BCB

t

TLt
< 1,

since TLt > Bb
t and 0 ≤ BCB

t ≤ Bb
t .

The impact of monetary policy on the interbank market

Rearranging equation (50) results in

ρt =
∆B
t −∆R

t

2φB
.

Combining equations (50) and (51) provides

µt = 2φBρt. (61)
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Then substituting the above expression into equation (54):

∆R
t +

δt
2λ̄t

2φBρt +
ςt

2λ̄t
φBρ2

t = 1 + τF ,

that is,
λ̄t − λt

2λ̄t
2φBρt +

λ̄t + λt
2λ̄t

φBρ2
t = 1 + τF −∆R

t .

Rearranging it yields a solution for λt,

λt = m̄tλ̄t,

where

m̄t ≡
φBρt(2 + ρt)− 2

(
1 + τF −∆R

t

)
φBρt(2− ρt)

> 0.

Using the definition of λt yields

Dt =
Mt

λt
.

Using formula (61) equation (56) can also be expressed in a simpler way:

∆D
t = 1− τ̄D + φDL

Lt
Pt
−
(
2φBρt − φBρ2

t

) δtςt
4λ̄t

.

As shown, Mt, ∆R
t and ∆B

t clearly defines ρt, λt and Dt However, this is
also true the other way round:

∆R
t = 1 + τF − λ̄t − λt

2λ̄t
2φBρt −

λ̄t + λt
2λ̄t

φBρ2
t ,

∆B
t = 2φBρt + ∆R

t ,

Mt = λtDt.

That is, (Mt,∆
R
t ,∆

B
t ) and (ρt, λt, Dt) mutually unambiguously determine

each other. As a consequence, it is possible to represent monetary policy by
ρt, λt and Dt as well.

Implications of the uniform distribution

In this section the closed form expressions are derived for the probabilistic
terms in equations (53), (55) and (58) assuming that λ̂t can be described by
a uniform distribution. Its cumulative distribution function is

G
(
λ̂
)

=
λ̂+ λ̄t

2λ̄t
, if λ̂ ∈ [−λ̄t, λ̄t],

= 0 if λ̂ < −λ̄t,
= 1 if λ̄t < λ̂.
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Figure 17: Uniform distribution

The probability density function:

g
(
λ̂
)

=
1

2λ̄t
, if λ̂ ∈ [−λ̄t, λ̄t],

= 0, otherwise.

Using the definition of G, the terms in equation (53) become

G (λt) =
ςt

2λ̄t
, 1−G (λt) =

δt
2λ̄t

,

where ςt ≡ max
[
2λ̄, λ̄t + λt

]
and δt ≡ max

[
0, λ̄t − λt

]
.

The term ∫ λ̄t

λt

(
λ̂− λt

) 1

2λ̄t
dλ̂.

in equation (58) is equal to the red shaded area AA in Figure 26, that is,

AA =
1

2
(λ̄t − λt)

(
1

2
− λt

2λ̄t

)
=
δt
4

(
1− λt

λ̄t

)
=

δ2
t

4λ̄t
.

Observe that the term ∫ λ̄t

λt

λ̂
1

2λ̄t
dλ̂.
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in equation (55) is equal to the sum of areas AA and BB in Figure 26,

BB = (λ̄t − λt)
λt
2λ̄t

=
δtλt
2λ̄t

.

Hence,

AA+BB =
δt

2λ̄t

[
δt
2

+ λt

]
=
δtςt
4λ̄t

.

Furthermore, consider the term∫ λt

−λ̄t
λ̂

1

2λ̄t
dλ̂.

in equation (55). First observe that∫ 0

−λt
λ̂

1

2λ̄t
dλ̂ = −

∫ λt

0

λ̂
1

2λ̄t
dλ̂.

As a consequence,∫ λt

−λ̄t
λ̂

1

2λ̄t
dλ̂ =

∫ −λt

−λ̄t
λ̂

1

2λ̄t
dλ̂. = −

∫ λ̄t

λt

λ̂
1

2λ̄t
dλ̂ = − δt

2λ̄t

[
δt
2

+ λt

]
= −δtςt

4λ̄t
.

A.5 The steady state

Suppose that for some ξ, ∆R and ∆B, ξt = ξ0 = ξ, ∆R
t = ∆R0 = ∆R

and ∆B
t = ∆B0 = ∆B for all t. Then equations (2), (19), (20), (36), (37),

(44), (45), (46), equilibrium condition yt = ct + kt, and formula yht = yt −
(1 + rt−1)fht−1 − (1 + rt−1)∆D

t−1dt−1 determine the steady-state values of the
following endogenous variables: k, z, n, y, yh, c, d, w, r, ∆D (we denote the
steady-state values by omitting time indeces).

The above system of equations defines the steady of real variables, the
price level and the nominal variables are determined by M set by monetary
policy. ∆R and ∆B determine the steady state value of λ by equations (14)
and (15). Then formula

d =
D

P
=
M/λ

P
.

provides the price level.
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A.6 Flexible price allocation and expectations

In section (2.1.5) the IS and LM curves are derived to calculate the equi-
librium outcome of the economy in the presence of sticky prices. However,
variables YTt and BTt contains expectations for future values of some en-
dogenous variables. This section discusses how the households form their
expectations in boundedly rational way.

As discussed, we restrict our analysis to temporary shocks, and it is as-
sumed that after the realization of macroeconomic shocks at date t, from
date t + 1 the economy returns to the flexible price allocation. As a conse-
quence, households expectations are based on the flexible price values of the
variables.

To calculate the flexible price allocation at date t + j, j ≤ 1, for a given
value of kt+j−1, one has to evaluate equations (2), (19), (20), (36), (37), (44),
(45), (46), at date t+ j, and take in account the equilibrium condition

yt+j = ct+j + kt+j.

The above eight equations determine the value of the following vector of
endogenous variable,

χt ≡ [kt, zt, nt, yt, ct, dt, wt, rt,∆
D
t ],

if the expectations are known.
Vector χt contains real variables, the price level and the nominal variables

depends on Mt set by monetary policy. For given ∆R0 and ∆B0, equations
(14) and (15) determine λt. Since Dt = Mt/λt, the price level is given by
Pt = Dt/dt.

We can calculate the necessary expectations by backward induction: we
start the calculations at the end of forecast horizon, at date t + T , then we
recursively calculate the allocations and expectations for dates
t+ T − 1, t+ T − 2, . . ., t+ 1.

Since households’ optimization problem is time consistent, the optimal
consumption and saving plan decided at date t coincides with the outcome
of optimal decision at date t + T . Consider the two-period optimization
problem of date T :

max
{ct+j ,nt+j ,Fht+j ,Dt+j}

t+T+1∑
j=t+T

Et [Γt+jU (ct+j, nt+j, Dt+j, ζt+j)] ,

subject to the following budget constraints,

ct+T + fht+T + dt+T = ȳt+T = yt+T ,

c+ fh + d = yht+T+1 + (1 + rt+T+1)
(
fht+T + ∆D

t+Tdt+T
)
,
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and the terminal conditions,

fht = fh, dt = d.

The present value budget constraint derived for the above problem:

ct+T +
(
1−∆D

t+T

)
dt+T = yt+T +

yht+T+1 − f − d
1 + rt+T

.

As assumed, households’ income expectations for date t + T + 1 is given by
formula (1), expressing it in real terms:

yht+T+1 = c+ d+ fh − (1 + rt+T )
(
fht+T + ∆D

t+Tdt+T
)
.

Equation (23) implies k = s = fh + d and kt+T = kt+T = fht+T + dt+T ,
furthermore, y = c+ k, as a consequence,

yht+T+1 = y − (1 + rt+T )
[
kt+T −

(
1−∆D

t+T

)
dt+T

]
.

Substituting the Euler equation (43) and the deposit demand equation (45)
into the above expression yields

ct+T =
yt+T + Y0

t+T

B0
t+T

,

where

Y0
t+T =

y − (1 + rt+T )
[
kt+T −

(
1−∆D

t+T

)
dt+T

]
− fh − d

1 + rt+T
,

B0
t+T = 1 + η

(
1−∆D

t+T

)1−σ
+ βσ(1 + rt+T )σ−1.

For a given value of kt+T−1, combining the above consumption demand
formula with equations (36), (37), (2), (19), (20), (44), (45) and equilibrium
condition yt+T = ct+T + kt+T provides

χt+T ≡ [kt+T , zt+T , nt+T , yt+T , ct+T , dt+T , wt+T , rt+T ,∆
D
t+T ].

Obviously all components of χt+T are functions of kt+T−1. As a consequence,
Y0
t+T (kt+T−1) and B0

t+T (kt+T−1) are also functions of it.
Similarly one can show that household’s optimization at date t + T − 1

yields the following consumption demand:

ct+T−1 =
yt+T−1 + Y1

t+T−1

B1
t+T−1

,
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where

Y1
t+T−1 =

yt+T − (1 + rt+T−1)
[
kt+T−1 −

(
1−∆D

t+T−1

)
dt+T−1

]
+ Y0

t+T (kt+T−1)

1 + rt+T−1

,

B1
t+T−1 = 1 + η

(
1−∆D

t+T−1

)1−σ
+ βσ(1 + rt+T−1)σ−1B0

t+T (kt+T−1).

Again, for given value of kt+T−2, combining the above formula with equa-
tions (36), (37), (2), (19), (20), (44), (45) and equilibrium condition yt+T−1 =
ct+T−1 + kt+T−1 provides χt+T−1 and Y1

t+T−1(kt+T−2) and B1
t+T−1(kt+T−2).

Following the iteration for any 0 ≤ j < T one can calculate

ct+j =
yt+j + YT−jt+j

BT−jt+j

,

where

YT−jt+j =
yt+j+1 − (1 + rt+j)

[
kt+j −

(
1−∆D

t+j

)
dt+j

]
+ YT−j−1

t+j+1 (kt+j)

1 + rt+j
,

BT−jt+j = 1 + η
(
1−∆D

t+j

)1−σ
+ βσ(1 + rt+j)

σ−1BT−j−1
t+j+1 (kt+j).

A.7 Implementation of an interest rate rule

As discussed in section 4, if monetary policy wants to implement an interest
rate rule, its instruments have to satisfy the following conditions:

y?t = yIS
(
i?t , D

∗
t +D+

t , λ
+
t , ρ

+
t , ξ

LM∗
t , ξIS∗t

)
,

y?t = yLM
(
i?t , D

∗
t +D+

t , λ
+
t , ρ

+
t , ξ

LM∗
t , ξIS∗t

)
,

where

y?t = yir
(
D0
t , λ

0
t , ρ

0
t , ξ

LM0
t , ξIS∗t

)
,

i?t = iir
(
D0
t , λ

0
t , ρ

0
t , ξ

LM0
t , ξIS∗t

)
,

if ξIS0 6= ξIS∗, and
y?t = y0

t , i?t = i0t ,

if ξIS0 = ξIS∗.
Observe that λ+

t and ρ+
t influences the IS and LM curves only via Ψt

in equation (20). Slightly changing our notation, express the above two
conditions as functions of Ψ+

t :

y?t = yIS
(
i?t , Dt +D+

t ,Ψ
+
t , ξ

LM∗
t , ξIS∗t

)
,

y?t = yLM
(
i?t , Dt +D+

t ,Ψ
+
t , ξ

LM∗
t , ξIS∗t

)
.
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The above two equations provide a solution for D+
t and Ψ+

t .
For a given Ψ+

t one can find λ+
t and ρ+

t to satisfy

Ψ+
t = φBρ+

t (2− ρ+
t )
λ̄2
t −

(
λ+
t

)2

4λ̄t
. (62)

Of course, the solution of the above equation is not unique. Monetary policy
should choose a pair of

(
λ+
t , ρ

+
t

)
such that

0 < λ+
t ≤ λ̄, 0 < ρ+

t < 1. (63)

Specifically, in section 4, the following simple procedure was used: we set λt =
λ (the steady-state value) and chose ρ+

t to satisfy equation (62). Over the
range of shocks investigated, the procedure used always provided solutions
that satisfied conditions (63).

As discussed, in addition to the above, one more constraint has been
taken into account:

iR+
t = ∆R+

t (1 + i?t )− 1 ≥ −0.01, (64)

as discussed in Appendix A.4,

∆R+
t = 1 + τF − λ̄t − λ+

t

2λ̄t
2φBρ+

t −
λ̄t + λ+

t

2λ̄t
φB
(
ρ+
t

)2
.

When we applied the above procedure condition (64) was binding in the case
of shock η. When the constraint was binding instead of setting λt = λ, we
tried several values of λt over a fine grid in the range (0, λ̄t], and chose a pair
of
(
λ+
t , ρ

+
t

)
satisfying both conditions (63) and (64). As discussed in section

4, there was a certain range of the shock η where it was impossible to find a
solution satisfying both constraints.
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