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Abstract
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that costs stemming from electricity, permanent workers and prices of beans and rice
are more relevant than those from gas, temporal workers and meat prices as inflation
determinants for this industry in Mexico City. The results from this paper adds on
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1 Introduction

The Food Away From Home (FAFH) industry has been one of the most affected by

the Covid19 pandemic. Temporal closures, restricted on-site dining capacity, as well as sup-

pressed demand are among the supply and demand shocks deemed by the industry as it is con-

sidered not essential.1 Understanding how FAFH prices evolve as the pandemic unfolds is im-

portant for the conduction of monetary policy as it accounts for a non-negligible weight in the

CPI basket. This is particularly true in Emerging Market Economies. For instance, FAFH

alone represents around 9% and 11% in the Mexican headline and core CPI, respectively.

This paper studies the FAFH inflation in Mexico City from two complementary angles.

First, using web scraped data from an online ordering and delivery platform, this paper

examines price dynamics stemming from over 120 million prices from more than 1.7 million

dishes offered by around 30,000 restaurants in Mexico City. In particular, the first part of

this study focuses on analyzing whether aggregate price levels by type of restaurant (e.g.

independent or multi-outlet) and type of dish (e.g. starters or desserts) have shown het-

erogeneous growth rates during the Covid19 pandemic. Aggregate price dynamics are then

decomposed into the extensive and intensive margins of price adjustments, and whether these

stylized facts of price changes exhibited diverse patterns around stiff episodes of the Covid19

pandemic. Machine learning techniques on text analysis are deployed in order to deal with

the unstructured nature of the dataset, compiled by Banco de México, and it covers since

the start of the pandemic, from April 2020 to December 2021.

Second, using shrinkage and non-linear machine learning frameworks, the latter part

of this study analyses 86 price determinants likely considered by price-setters surveyed in

Mexico City’s FAFH CPI and provides a counterfactual of the inflation rate stemming from

costs pressures during the Covid19 pandemic. These series reflect costs pressures from three

factor markets: wholesale food prices, labor costs and utility bills. The adoption of super-

vised learning models, as instead of standard regression analysis, is dictated by the large

set of likely price determinants, as well as the potential non-linearities each of them carry

in the production function of restaurants, and therefore their price-setting decisions. Using

the FAFH inflation rate in Mexico City at different horizons as target variable, the machine

1Restaurants, fast-food establishments, pizza places, taco shops, among others establishments that provide
ready-to eat meals (with or without premises for on-site dining) are considered as part of the FAFH industry.
FAFH prices are encompassed in the “Accommodation and Leisure” section in ILO’s CPI Handbook.
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learning algorithms are trained from 2006 to 2017 in order to assess and learn the relevance of

price determinants. Then, based on the state of the determinants, inflation counterfactuals

are computed for the 2018-2021 period. Thus, having measured the role of price determi-

nants in pre-pandemic times, this study provides estimates on the FAFH inflation in Mexico

City stemming sorely from local input costs and compare them to the observed inflation

rate. Hence, as the analysis provides evidence on inflation drivers, it sheds further light in

our understanding this phenomena as firms in this industry reopen.

The results from the first part of the study suggest that, first, the growth rate of the

aggregate price index computed using web scraped prices from the online platform lead the

FAFH CPI in Mexico City since the start of the pandemic. This is in line with the rapid

adoption of online ordering and delivery platforms by consumers in 2020. However, the gap

between the proposed index and the FAFH CPI in Mexico City has diminished in recent

months. Second, multi-outlet and independent restaurants have shared similar price trends

during the pandemic. Nonetheless, the aggregate price level of independent restaurants is

smoother than multi-outlet eateries. Staggered versus synchronized price adjustments are

likely to be behind this result. Third, soups and beverages (without alcohol), which con-

sumers could potentially substitute with home-production, exhibit lower growth rate, on

average, than other categories. In contrast, prices of mains and desserts have been on the

rise. Forth, by decomposing price changes into extensive and intensive margins, the lower

growth rate in the aforementioned dish categories comes from the former. Fifth, using a

simple panel data framework, estimates indicate that periods associated with great number

of contagions seem to mute price-setting decisions in both margins of adjustment.

With respect to the analysis of price determinants, the results from the second part of this

study can be summarized as follows. Electricity fees, the real wage bill and real average wage

of permanent workers, as well as wholesale prices of beans, rice and shrimps best describe

the FAFH inflation rate in Mexico City at different horizons. Regarding utilities, although in

the top 10 of inflation drivers, gas LP and natural gas are not the most important inflation

determinants as one might have expected. With respect to labor costs, wage indicators from

permanent workers generally outperform wage statistics form temporal workers in predicting

the FAFH inflation rate in Mexico City. Lastly, the frequent presence of beans and rice as

sides in most meals in the Mexican cuisine could be a potential explanation on their pre-

dictive power. In terms of meat, the price of shrimps in wholesale food markets in Mexico
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City is a robust explanatory variable across horizons. The price of beef only determines the

current inflation rate, suggesting perhaps from a faster cost pass-through.

The results from the former and latter parts of the paper are reconciled through the

models’ predictions for the 2020 FAFH inflation reported in the latter part. That is, pre-

dictions drawn from costs pressures suggest an uptick in the inflation rate in late 2020.

However, the FAFH CPI in Mexico City, computed with prices gathered through direct

visits to restaurants, remained with little variation throughout 2020 (due to temporal clo-

sures and infection risks in on-site dining). Thus, predictions seem to have missed the low

inflation rates in 2020. Nonetheless, the experimental index in the first part of the paper,

calculated using web scraped data, shows greater pace on price hikes.2 In fact, predictions

made by both Ridge and Random Forest Regressions hinted to a 6% year-on-year FAFH

inflation rate by the end of 2020, the experimental index reported a cumulative 5% inflation

rate from April to December 2020, while survey data outlined in the CPI reported a 3%

year-on-year inflation in December 2020.3 Hence, despite being different methodologically

both price indices (experimental and CPI), the variation of the experimental index is in line

with predictions from cost-related variables trained on predicting survey data outcomes. The

short time span prevents having a definitive answer but reconciling inflation measures using

web scraped data and survey data remains a promising venue of research.4

The study of price-setting by type of restaurant (independent or multi-outlet) arises

from the literature on firm dynamics showing that firms respond heterogeneously to shocks

depending on its characteristics. For instance, in the context of price-setting behaviour,

Gilchrist et al. (2017) find that liquidity constrained firms in the US increased prices in

2008, while their unconstrained competitors cut prices. In contrast, I find suggestive evi-

dence that independent and multi-outlet restaurants exhibit similar price trends, partially

rationalized by the different nature of shocks. Moreover, some dishes on restaurants’ menus

are more likely to be substituted by home-production when ordering food delivery. This sub-

stitution is not possible when on-site dining is the more prevalent channel of consumption.

One might think of soups, beverages or salads in this situation, while mains, desserts and

2Explained in great detail in Section 4, the experimental price index is computed by chain linking an
index to the products’ average variation (unweighted).

3I am unable to compute the y-o-y inflation rate of the experimental price index as the data collection
of the online ordering and delivery platform started in April 2020.

4Flower (2019) and Konny et al. (2019) argue on the benefits and challenges of using web scraped prices
when computing price indices.
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alcoholic beverages (cocktails) could be more difficult to substitute by home-production.

Another type of substitution could come in the form of value of time, potentially associ-

ated with the household size. That is, it is better to cook for few than cook for one. For

instance, Cortes and Pan (2013) show that outsourcing home production increased female

labor participation in Hong Kong. Although in a different context, their findings highlight

that cooking time for some type of dishes might make them more prone to substitution,

leading to a strategic response from multi-product price-setters, such as restaurants.

Despite the volume, velocity and variety features in the dataset under study in the first

part of the paper, web scraped data sources often arrive with little structure for answering

relevant economic questions. It is not the exception in this paper. Hence, I use machine

learning classifiers for tackling this problem. After examining a battery of classifiers, a multi-

nominal regression proved as the most accurate in classifying dishes in the manually created

training set. The model is then deployed in the complete dataset and maps dishes into one

of 18 proposed categories. The type of dishes used in this paper are common headers in

restaurant menus, like Starters, Soups, Salads, Mains, Tacos, Pizzas, etc.

This paper is related to three strands in the literature. First, although web scraped

data is increasingly used for analyzing inflation and its macroeconomic implications, to the

author’s knowledge this is the first paper studying inflation from the FAFH through the

lens of web scraped data. The literature has mainly focused on goods’ prices observed at

supermarkets or departmental stores.5 In contrast, this research focuses on prices from an

industry in the service sector. Since the FAFH market accounts for a non-negligible weight in

the CPI basket, the results from this paper are relevant for policymakers and central banks

interested in understanding the price formation process in this industry.

Second, the use survey micro-data from the underlying FAFH component of the CPI.

For instance, Hobijn et al. (2006) report that restaurant prices in the euro area increased

dramatically after the introduction of the Euro, while EU countries that did not adopt the

euro did not observed such increase. While the Covid19 pandemic does not provide a clear

focal period for resetting prices as the Euro changeover in Hobijn et al. (2006), I do find

firms concentrate otherwise staggered price increases around periods with a downward trend

5See, among others, Cavallo (2018); Peña and Prades (2021); Solórzano (2021) for an overview of web
scraped prices and its implications on price-statistics typically employed by macroeconomics models. Hull
et al. (2017) and Macias et al. (2019) used web scraped consumer prices for improving their inflation
forecasting models.

4



of infection rates. Furthermore, Fougère et al. (2010) study the impact of minimum wage

increases in France on price quotes from restaurants encompassed in the french CPI.6 Con-

sistent with the literature, I find that, among numerous inflation drivers in different factor

markets, labor costs remain a key determinant in FAFH inflation.7

Third, not directly addressing price responses but rather analyzing the economic im-

plications of the Covid19 pandemic in the FAFH industry, Fetzer (2022) reports that an

intervention designed to actively increase demand for on-site dining contributed to subse-

quent clusters of new infections in the UK.8 Fetzer (2022) elaborates on the known risks

of infection in restaurant settings, leading to low demand for on-site dining. However, this

paper studies prices from an online ordering and delivery platform, which experienced high

demand in the wake of the Covid19 pandemic.

The paper is organized as follows. Section 2, presents the data characteristics of web

scraped prices from the online ordering and delivery platform. Section 3 describes the clas-

sification of the unstructured data at hand. Section 4 centers at presenting aggregate price

indices used to analyze the FAFH price dynamics during the pandemic. Section 5 outlines

the stylized facts on the frequency and size of price adjustments. Section 6 presents price

determinants and counterfactuals of the FAFH inflation rate in Mexico City stemming from

costs pressures in 2020 and 2021. Section 7 concludes.

2 Data Description

The dataset used in this research comes from daily observations of dishes advertised by

restaurants in an online food ordering and delivery platform in Mexico City.9 The price

collection, compiled by Banco de Mexico, is carried out by a robot parsing the platform’s

website. In broad terms, the robot’s price collection consists in gathering data from each

and every dish or item displayed on the platform. That is, the robot collects the product’s

6Card and Krueger (1994) is other influential study on the fast-food industry. Though, the authors
mainly focus on employment.

7However, the inflation drivers stemming from the labor market used in this paper do not distinguish
between minimum wage workers or not.

8The policy, “Eat out to help out” (EOHO), subsidised the cost of meals and non-alcoholic drinks by up
to 50% across participating restaurants across the UK for meals served on Mondays-Wednesdays (capped
to GBP 10 per person). González-Pampillón et al. (2021) also look at the EOHO scheme and find that it
induced higher footfall and increased recruitment in the industry.

9For confidentiality reasons, the name of the platform cannot be disclosed. Nonetheless, the dataset is
available for research purposes through a non-disclosure agreement with Banco de México’s EconLab.
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identifier, description and price for each dish, as well as the restaurant offering the dish.

The dataset at hand starts in April 1st 2020 and ends in June 30th 2021.10 Figure 1

provides some descriptive statistics on the price collection task. Panel 1a depicts the number

of observations (dishes) reported by the robot throughout the day. Notably, prior April 2021,

the robot took around 17 hours for parsing all items in the platform. The collection time has

decreased to 12 hours on average since then. The number of items by the minute is greater

in recent months as highlighted by the red and orange colors in the figure.11

Panel 1b summarizes the number of food items or dishes (observations) and restaurants

reported on a daily basis. All in all, the median number of observations and restaurants per

day is about 210,000 and 5,000, respectively. One can observe a steady increase in both the

number of meals and restaurants between April and June 2020. This period was character-

ized by the toughest restrictions policies in terms of social distancing and temporal closures

of restaurants in Mexico City due to Covid19’s first wave. From July 2020 and before Febru-

ary 2021, the numbers remain fairly stable. Finally, there seems to be a new average number

of dishes and restaurants since March 2020.

Figure 1: Data Collection
Hourly and Daily Observations

(a) Robot’s Collection (b) Daily Observations
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Number of Observations (LHS)

Number of Restaurants (RHS)

Figure 2 shows the distribution of dishes and restaurants by the number of days in the

10The state of emergency in Mexico City started in late March 2020. Hence, it is not possible to have a
pre-pandemic benchmark unfortunately. Nonetheless, because of the rapid transition of events, it is believed
the dataset encompasses the responses taken by restaurants and the platform in the early stages of the
pandemic as it is later described in the paper.

11Changes in the offer of meals and restaurants, coupled with modifications on the platform’s operation
and adjustments in the robot’s execution explain the different colors in the graph.
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sample. For instance, Panel 2a reports that over 1.7 million different meals have appeared

in the sample. On average, a meal is observed for nearly 95 days in the sample. Moreover,

Panel 2b summarizes the distribution of the panel of restaurants by the number of days in

the dataset. There has been over 33,000 firms in the sample, each of them appearing, on

average, about 120 days in the sample.

Figure 2: Histogram on the Panel of Dishes and Restaurants

(a) Dishes

0
1

2
3

4
5

Pe
r c

en
t

0 200 400 600
Days in the Sample

Median =  44, Mean = 94.87, Meals = 1,750,250
Note: Restaurants with less than 5 days history and/or reporting less
than 5 meals are not considered.

(b) Restaurants

0
.5

1
1.

5
2

2.
5

Pe
r c

en
t

0 200 400 600
Days in the Sample

Median =  67, Mean = 119.69, Restaurants =  33,224
Note: Restaurants with less than 5 days history and/or reporting less
than 5 meals are not considered.

Finally, Figure 3 depicts if a given restaurant identifier (y-axis) is effectively observed

on a given day (x-axis). The number of scatters makes it difficult to observe when a single

scatter disappear. Nonetheless, when few firms stops appearing in the sample, it is reflected

as an horizontal white bar. One of these bar can be observed starting in October 2020, for

instance. Also, there are a number of ids which had disappeared from the sample in the last

three months.12

3 Data Classification

All the benefits of big data sources do not come without a price. Perhaps one of the most

cited drawbacks stemming from the use of big data is its unstructured nature. Unstructured

data can undermine all the benefits of these granular and fast arriving datasets. To this end,

the deployment of machine learning techniques come in hand for this task.

12Figure 3 and Panel 2b, on top of some investigative work on the dataset, suggest of some obfuscation
strategy i.e. the restaurant’s id changes over time. Although this strategy might widens standard errors
in the panel data estimates below, the classification and computation of experimental prices indices are less
sensitive to this strategy.
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Figure 3: Heatmap of Restaurants

Hence, in this Section I provide details on the classification of the dataset in two di-

mensions. The first classification divides dishes (observations) into 18 categories. These

categories come from common headers in restaurants’ menus (e.g. starters, desserts), as well

as few subcategories contained in the Mexican CPI (e.g. pizza or grilled chicken). The sec-

ond classification opens up firms into three types of restaurants: independent, with branches

and franchises.

3.1 Dish Classification

Dishes (cross-section dimension of the panel) are classified using machine learning tech-

niques. In what follows, I briefly outline the step taken for this task. A detailed description

of the classification process, as well as some forensic statistics on the classifiers performance

are left in the Appendix.

3.1.1 Automated Classification

First, this approach requieres the construction of a manually produced training set, under

which a number of algorithms are trained. To that end, out of the around 616,000 unique

descriptions in the dataset, I manually classify more than 13,000 random dishes based on the

descriptions provided by the restaurants. Thus, the manual classification considers a little

more than 2% of the dishes in question.

The dishes are classified into 19 categories. The categories are: (1) Starters, (2) Salads,
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(3) Soups, (4) Eggs, (5) Mains, (6) Pizzas, (7) Tacos, (8) BBC, (9) Grilled and Roasted

Chicken, (10) Desserts, (11) Beverages with Alcohol, (12) Beverages without Alcohol, (13)

Meals with Beverages, (14) Meals without Beverages, (15) Group Combos, (16) Dessert

Combos, (17) Extras, (18) Others (Non-Food) and (19) Ambiguos.13 These categories are

chosen on the basis of (i) well-recognized headers in many restaurants’ menus, (ii) categories

with direct mapping to Mexico’s CPI categories and (iii) research question at hand.

Second, after applying text cleaning procedures to the dataset, I convert the collection of

dish descriptions into a matrix of token (words) counts.14 Specifically, the matrix contains

unigrams (single words) and bigrams (pair of consecutive words) in the descriptions.15,16 The

matrix of unigrams and bigrams has over 32,000 columns, which are then used as explanatory

variables by the classifiers.

Third, the classifiers used for this analysis are (i) decision tree, (ii) random forest, (iii)

multinomial naive Bayes and (iv) multinominal logistic regression. All classifiers require

some form of hyper-parameter selection prior to estimation. To that end, I use k-fold cross

validation procedures, which is exposed in great detail in the Appendix.17

Forth, after training the classifiers using 80% of the training set, algorithms are deployed

over the remaining (unseen) 20% of the manually constructed training set.18

As shown in great detail in the Appendix, the multinomial logistic regression is picked as

the winner across models. It is the one with greatest accuracy (average point estimate), as

well with the lowest computational time. Figure 4 depicts the confusion matrix on the predic-

tion of dish labels using the multinomial logistic regression fitted under the complete training

13BBC stands for Barbacoa, Birria and Carnitas, which are common taco fillings, and are considered in
the Mexican CPI as a specific product category. Meals with/without Beverages consider two or three times
meals. For instance, a Meal with Beverage could be a bundle of starter, salad, main and a soft drink.

14That is, the columns in the matrix represent each and every single word appearing at least once in the
collection of descriptions, the rows of the matrix are the dishes in the dataset, and each matrix cell counts
the number of times a word (column) appears in the description (row). See the Appendix for more.

15For instance, the unigram representation of “Today is Monday” is [“Today”, “is”, “Monday”], while
the bigram representation is [“Today is”, “is Monday”].

16Unigrams and bigrams with a frequency less or equal than three in the overall word count of the dataset
are neglected. In the Appendix I show there are minor differences in the classifiers’ performance when using
(i) unigrams only with the same cut-off threshold (frequency less or equal than three) and (ii) unigrams
only with no cut-off threshold (universe of words in the dataset).

17Importantly, the grid of parameters used for this search is detailed in Table 5 and the optimal set of
parameters are reported in Table 6. Also, as category sizes are highly unbalanced in the training set, I
outline in the Appendix the steps taken to overcome the over specialisation of classifiers stemming from
this feature in the dataset.

18Forensic statistics on the performance of the various classifiers over the different matrices of token
(words) counts are depicted in Figure 15 in the Appendix.
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set. It provides a graphical representation on whether predictions are accurate relative to

the true values. Each cell reports the share of each instance such that every row (true labels)

adds up to one. Correct predictions lay in the diagonal, values outside the diagonal highlight

prediction errors. As shown in Figure 4, most cells on the diagonal report values close to one.

Figure 4: Multinomial Logistic Regression Confusion Matrix
Predictions Over the Entire Training Set
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Finally, Table 1 adds on the impact of the machine learning techniques used in this re-

search. The first bloc of columns reports the composition of the manually classified dataset.

The second bloc of columns summarizes the outcome labels generated through the logistic

regression. Thus, the classification burden of large and fast arriving data is alleviated, while

minimizing the classification errors, through the use of machine learning techniques. In turn,

this allows us to shed further insights on the highly detailed data at hand.

3.2 Restaurant Classification

The dataset is also classified regarding the nature of the restaurant. As shown by Gilchrist

et al. (2017), financially constrainted price-setters increased prices in the 2008 Global Finan-

cial Crisis, while their unconstrained counterparts cut prices. Thus, I classify restaurants
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Table 1: Dishes’ Labels
By Classification Approach

Classification
Course Manual Machine Learning
Type Count Share (%) Count Share (%)

1 Starters 640 5.24 16,625 3.27
2 Salads 996 8.15 15,049 2.96
3 Soups 64 0.52 5,604 1.10
4 Eggs 447 3.66 8,819 1.73
5 Mains 3,948 32.31 251,969 49.54
6 Desserts 1,063 8.70 55,010 10.81
7 Beverages wo/Alcohol 2,639 21.60 89,490 17.59
8 Beverages w/Alcohol 208 1.70 9,539 1.88
9 Tacos 429 3.51 23,256 4.57

10 Pizzas 1,444 11.82 20,819 4.09
11 Grilled/Roasted Chicken 15 0.12 345 0.07
12 BBQ, Birria, Carnitas 23 0.19 788 0.15
13 Combo wo/Beverage 55 0.45 355 0.07
14 Combo w/Beverage 100 0.82 7,647 1.50
15 Group Combo 124 1.01 3,171 0.62
16 Dessert Combo 25 0.20 175 0.05

Total 12,220 100.00 508,661 100.00
Note: Extras, Others and Ambiguous are also considered in the classification exercise
but not reported.

into independent, with branches and belonging to a franchise chain.19 This classification is

carried out manually as there is little uncertainty on the classification rules in place.

The composition by type of restaurant is summarized in Figure 5. First, Panel 5a shows

that, although restaurant chains have multiple outlets across Mexico City, they constitute

a small fraction of restaurants in the sample. In fact, the relative size of independent

restaurants has been growing since the pandemic started. Presumably, before the pandemic,

restaurant chains were more likely to outsource their online ordering and delivery services to

platforms like the one under study. As the pandemic advanced and temporal retail closures

were ordered, independent restaurants had no other option than use the online ordering and

delivery services.

Panel 5b depicts that restaurant with branches and belonging to a franchise chain offer

in general more dishes than independent restaurants. Also, the figure suggests a small trend

on the median number of dishes offered by restaurants regardless its type.

19Franchise chain are well-known restaurants brands often found on high streets and shopping centers.
These restaurants normally has sister-brands and belong to a corporates reporting their balance sheets as
they participate in financial markets. Restaurants with branches are those sharing the exact same name (or
in some cases the neighbourhood is added to the name e.g. “Taco Shop ABC Reforma” and “Taco Shop ABC
Insurgentes”). These groups of restaurants typically operate only in Mexico and are ofter family run. They
may or may not participate in financial markets. The remaining restaurants are considered independent.
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Figure 5: Dataset Composition by Type of Restaurant

(a) Share of Restaurants
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4 Experimental FAFH Price Indices

This Section provides evidence on the evolution of FAFH prices in Mexico City during

the pandemic based on the dataset above described. Aggregate price measures, summarizing

millions of prices, are computed using two types of price indices. Although they do not follow

the orthodox CPI methodology, they share broad similarities as it is explained below.

These aggregate price measures, or experimental prices indices, are reported (i) at the

aggregate, (ii) by type of restaurant and (iii) by type of dish. The first one provides a gen-

eral picture on price dynamics. The second two decompose the heterogeneity in price-setting

across dimensions that help understanding the inflation formation process in this industry.

As in any price survey, the treatment of product churn can have important implications

on aggregate statistics. This is particularly important in the context of web scraped data as

it has been reported that it tends to present greater product churn than survey data.20 In

order to ameliorate this problem, I opt for using dishes (and therefore restaurants) observed

at least one day in a given fortnight and appearing in at least 75% of the analyzed fortnights.

4.1 Definition of Price Indices

The first price index is named “Average Variation Index” or AVI. It is computed as:

20See, for instance, Solórzano (2021) and Flower (2019).
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yt = Πi∈Θ

(
pi,t
pi,t−1

) 1
Nt

AV It = ytAV It−1

The term yt computes the geometric average of prices changes in fortnight t relative to t-1

from dishes observed in at least 75% of fortnights, i ∈ Θ. The average variation yt is then

chain linked to a Jevons index Apr2020 = 100. Note, if a dish is observed in t-1 but not

t, it is not considered for the geometric average at time t.21 Since this index compares a

fixed basket of goods between t and t-1, this index is somewhat similar to the methodology

followed by most CPIs.22

The second index is named “Average Price Index” or API, which is calculated as:

xt = ΠiεΘ(pi,t)
1
Nt

APIt =
xt
xt−1

APIt−1

The term xt computes the geometric average of prices in fortnight t relative to t-1 from

dishes observed in at least 75% of fortnights, i ∈ Θ. Then, the variation in xt is chain linked

to a Jevons index Apr2020 = 100. Hence, API index is a Unit Value Index.23 Contrary to

AVI, API does consider the entry and exit of goods from one period to the next one (limited

by the definition of Θ though).

4.2 FAFH Price Evolution During the Covid19 Pandemic

Figure 6 provides evidence on the dynamics shown by FAFH prices in Mexico City for

the sample of restaurants considered in this study. It also overlays the dynamics from the

FAFH component of the official CPI for both Mexico City and National (overall).

There are a number of facts to highlight. First, Panel 6a illustrates AVI exhibited a steady

increase from April to July 2021, period in which it built a gap with respect to Mexico City’s

official FAFH CPI. In fact, Mexico City’s FAFH CPI lagged behind for nearly a year, from

June 2020 to April 2021. Second, Mexico City’s FAFH CPI exhibited changes in the positive

21By not considering the item in the average nor imputing a zero variation, this approach is equivalent
as if the average variation was imputed to dishes not observed in fortnight t. In fact, imputing the average
variation of observed goods on missing goods is a common approach used in price surveys by NSOs.

22AVI does not follow a fixed basket of goods in all periods as the CPI. It encompasses limited entries
and exits of products according to the definition of set Θ.

23Recent studies using Unit Value Indices in the context of price data are Diewert (2020); Diewert and
Fox (2020); ?; among others.
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trend at times of uplifts of restrictions in terms of the pandemic. That is early December

2020 and July 2021. Third, Mexico City’s CPI closed significantly the gap AVI in July 2021.

Panel 6a also illustrates AVI by type of restaurant. According to AVI, both types of

restaurants follow a very similar trend. Nonetheless, it seems like price-setters with branches

tend to move first than independent restaurants. As Hobijn et al. (2006) document for restau-

rants in the euro area during the currency exchange over, the bumpy price adjustment form

restaurants with branches could be explained by the synchronization of this type of restau-

rants, while the AVI for independent eateries could be a reflection of the staggered process

among them.

Figure 6: Experimental Price Indices
Overall and By Type of Restaurants

(a) Average Variation Index
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(b) Average Price Index
96

10
0

10
4

10
8

In
de

x 
(B

as
e 

Ap
r 2

02
0=

10
0)

01
ap

r2
02

0

01
ju

l2
02

0

01
oc

t2
02

0

01
ja

n2
02

1

01
ap

r2
02

1

01
ju

l2
02

1

01
oc

t2
02

1

01
ja

n2
02

2

 

Average Price Index (API) API Independent API Multi-outlet

Mexico City FAFH CPI National FAFH CPI

Table 2: Cross-Correlation of Monthly Inflation
From Experimental Price Indices and CPI

Variables (1) (2) (3) (4) (5) (6) (7) (8)
(1) Average Price Index (API) 1.000
(2) API Independent 0.984*** 1.000
(3) API Multi-outlet 0.471*** 0.330** 1.000
(4) Average Variation Index (AVI) 0.174 0.137 0.255* 1.000
(5) AVI Independent 0.151 0.120 0.193 0.969*** 1.000
(6) AVI Multi-outlet 0.110 0.076 0.305* 0.256* 0.010 1.000
(7) Mexico City FAFH CPI -0.014 -0.022 -0.106 -0.054 -0.091 0.120 1.000
(8) National FAFH CPI -0.070 -0.074 -0.052 -0.116 -0.159 0.159 0.748*** 1.000
*** p<0.01, ** p<0.05, * p<0.1

On the other hand, API has shown greater divergence between indices. Since October

2020, restaurant with branches has exhibited greater average price than its independent

14



Table 3: Cross-Correlation of Monthly Inflation in 2021
From Experimental Price Indices and CPI

Variables (1) (2) (3) (4) (5) (6) (7) (8)
(1) Average Price Index (API) 1.000
(2) API Independent 0.992*** 1.000
(3) API Multi-outlet 0.269 0.161 1.000
(4) Average Variation Index (AVI) -0.298 -0.305 -0.004 1.000
(5) AVI Independent -0.287 -0.278 -0.170 0.912*** 1.000
(6) AVI Multi-outlet -0.074 -0.115 0.408** 0.371* -0.041 1.000
(7) Mexico City FAFH CPI 0.000 0.012 -0.193 0.210 0.057 0.316 1.000
(8) National FAFH CPI -0.276 -0.278 -0.047 0.351* 0.132 0.511** 0.724*** 1.000
*** p<0.01, ** p<0.05, * p<0.1

counterparts. The temporal inclusion of pricy items could be behind this differential. See

Panel 6b. Though, the gap between types of restaurants has been closing since April 2021.

Figure 7 and Figure 8 summarize the evolution of prices according to the dish classifica-

tion proposed in Section 3. AVI in Panel 7a suggests that Soups has systematically reported

the lowest average price variation among dishes. Beverages without Alcohol and Tacos are

categories also reporting lower price increases relative to the start of the pandemic. However,

the difference of these dishes with respect to the rest is considerable smaller than for the

Soups case. In contrast, Beverages with Alcohol and Desserts have been leading the level

level since the start of the pandemic.

If one allows for a more flexible stance in terms of entry and exit of goods, as API does,

Panel 8a shows that Starters, Eggs and Salads have increased their price more relative to

other categories since the start of the pandemic. Similarly to Panel 7a, Soups and Beverages

without Alcohol are among with the lowest increases.

5 Stylized Facts from FAFH Prices in the Pandemic

This Section presents quantitative evidence of the frequency and size of price adjustments.

These price statistics have been widely study using survey data as they are informative in the

calibration of New Keynesian models. Price moments are computed following standard pro-

cedures in the literature (e.g. Bils and Klenow (2004) and Nakamura and Steinsson (2008)).

Using daily data, I fit a linear probability model of the form:

P (yi,j,t = 1|x) = β1xdishtype + θj + θt + εi,j,t (1)
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Figure 7: Average Variation Index
By Dish Type
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(b) Categories 2
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Figure 8: Average Price Index
By Dish Type
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(b) Categories 2
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where yi,j,t = 1 is a dummy variable if the price of product i at restaurant j on day t changed

with respect to day t− 1, ∆pi,j,t 6= 0, or zero otherwise. θj and θt represent restaurant and

time fixed effects, respectively. Additionally, I decompose price hikes and price drops by run-

ning the same model using yHikesi,j,t = 1 if ∆pi,j,t > 0 and zero otherwise; as well as yDropsi,j,t = 1

if ∆pi,j,t < 0 and zero otherwise.

A second equation analyzes the size of price adjustments, given a price change:

| ∆pi,j,t |= β1xdishtype + θj + θt + εi,j,t (2)
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where | ∆pi,j,t | is the absolute value of (log) price changes.24 Similarly to the linear prob-

ability model, two further models are estimated for price hikes (∆pi,j,t > 0) and price drops

(∆pi,j,t < 0).

Figure 9 summarizes the stylized facts of price setting across dish types.25 First, Panel

9a highlights that Mains, Tacos, Pizzas, BBC, Combo with Beverages and Group Combos

adjusted more frequently their prices than other categories in 2020 and 2021, mainly driven

by more frequent price hikes, while price drops remain fairly similar across categories. In

contrast, categories with less frequent price changes are Desserts, Beverages without and

with Alcohol.

Second, Panel 9b reports the average size of price adjustment, given a price change, by

type of dish. Beverages without and with Alcohol are the categories exhibiting greater prices

changes, due primary to positive price changes. Given a price change, Mains, Pizza, BBC

and Group Combo are those with smaller price changes.

Thus, Figure 9 provides insights on the price levels described in the previous Section

and shown in Figure 7. For instance, categories with the greatest AVI increase from April

2020 to December 2021, like Mains, BBC and Group Combos, exhibit more frequent price

changes (extensive margin) than other categories; but when their prices change, they do

so by a smaller margin (intensive margin) than other categories. Pizzas also show similar

price-setting dynamics- more frequent but by smaller amounts, although its price level does

not stand out from the rest. In contrast, categories with the least AVI increase in the same

period of time, like Beverages without and with Alcohol, report less frequent price changes

while their size of adjustment is greater when they do change.

All in all, the heterogeneous pricing behavior along the extensive and intensive margins

across their different type of products suggest that price-setters in the FAFH industry do not

follow a single pricing rule. Instead, they are able to juggle the margins of price adjustments

for their different products.

In the Appendix, I provide further robustness checks on the heterogeneity of price adjust-

ments. First, the above regressions control for time fixed effects that control for time-specific

24The log price change is defined as ∆pi,j,t = ln(Pi,j,t) − ln(Pi,j,t−1), where Pi,j,t is the nominal price
of product i as observed from the OOD platform. One way to avoid price hikes and price drops cancelling
out in the regression coefficient is taking the absolute value of prices changes. This is a common practice in
studies analyzing nominal rigidities, like Bils and Klenow (2004), Nakamura and Steinsson (2008), Dhyne
et al. (2009), among others.

25Regression estimates are reported in Table 10 and Table 11 in the Appendix.
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Figure 9: Stylized Facts of Price Adjustments
Representative Dishes

By Sign of Price Adjustment
(a) Frequency of Changes
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events. However, one could think that seasonal patterns might better fit this type of data

(e.g. pay-day effect around the start/end of the month and/or weekend effects). The results

suggest that using seasonal fixed effects instead of time fixed effects change very little the

coefficients under analysis.26 Second, I show that qualitatively the conclusion of heteroge-

neous price-setting holds when all products in dataset are analyzed and not only the set of

representative products (defined by the Θ set in Subsection 4.1).27

The above results can further decomposed in the context of the Covid19 pandemic. That

is, depending on the stage of the Covid19 pandemic, I estimate the following expressions:

P (yi,j,t = 1|x) = β1xdishtype × Pandemicn + θj + θt + εi,j,t

| ∆pi,j,t |= β1xdishtype × Pandemicn + θj + θt + εi,j,t

where Pandemicn is a categorical variable signaling four stages of the pandemic: 1st wave

26See Figure 20a in the Appendix. Seasonal controls are day of the week, calendar day, month and year.
27In the Appendix, Figure 21a for the comparison between estimates using observations in Θ and all

observations in the dataset. Moreover, regression estimates when using all observations while decomposing
by sign of adjustment are reported in Table 12 and Table 13 and depicted in Figure 22a.
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(1/2),28 1st wave (2/2),29 2nd wave30 and 3rd wave.31 The intuition behind this four stages

obeys Mexico City’s timeline in terms of Covid19 cases and social distancing measures: (i)

the first and toughest lockdown measures in Mexico City, including temporal closures of

on-site dining and the rapid increase of users in OOD platforms, (ii) followed by the relax-

ation of lockdown measures, including the reopening of restaurants for on-site dining with

restricted capacity, (iii) new surge of cases, decrease on the on-site dining capacity and lim-

ited vaccination rollout and (iv) relaxation of social distancing measures, vaccination rollout

and Delta wave.

Regarding the frequency of price changes, Figure 10 shows that for the frequency of price

changes, point estimates of the first half of the 1st wave are smaller than those of the second

half of the 1st wave. In the majority of cases, point estimates in the first half of the 1st wave

remain closer to zero than those of the second half, which are located to the right of zero.

For the 2nd wave, the frequency of price changes seems similar to those observed in the first

half of the 1st wave. Results from the 3rd wave, in contrast, look like those of the second

half of the 1st wave.

A similar pattern can be observed for the size of price changes. On the one hand, esti-

mates from the first half of the 1st wave resemble those of the 2nd wave. They are closer to

zero and with narrower confidence intervals. On the other hand, coefficients from the second

half of the 1st wave look similar to those of the 3rd wave. They are normally greater than

those in first half of the 1st wave or in the second wave, and have wider confidence intervals.

Thus, although the Covid19 pandemic had many direct and indirect economic effects in

the period under study, Figure 10 seems to suggest that acute periods of infections (first

half of 1st wave and 2nd wave) muted price-setting decisions in both margins. Then, the

28It includes the first and toughest lockdown measures adopted throughout the pandemic, including
temporal restaurant closures for on-site dining. This is from April 2020 (start of the dataset) until June 2020.

29This period considers from July 2020 to September 2020. During this period there was a decrease on the
number of cases after the peak of the first wave, as well as some relaxation on social distancing measures,
including the reopening of restaurants for on-site dining with limited capacity.

30It runs from October 2020 to March 2021, inclusive. This period was characterized by a great number
of cases, partially driven by the Day of the Death and Christmas Bank Holidays. Although for most of
this period vaccination was unavailable, it is worth noticing that in Mexico vaccination started in February
2021 for the 60+ years old. According to WHO statistics, by late March 2021, about 2% of Mexico City
population was fully vaccinated.

31This period encompasses April 2021 to December 2021 (end of dataset). It includes the vaccination
rollout as well as the summer “Delta Wave”. By late December 2021, about 65% of Mexico City population
was fully vaccinated according to WHO statistics. The “Omicron Wave” only started to gain momentum
by late December 2021 and therefore it is not considered as part of the analysis.
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relaxation of social distancing measures (second half of 1st wave) and the vaccination rollout

coupled with the “Delta Wave” (3rd wave) were perceived by restaurants as an opportunity

to reset their prices.

Taking a closer look at some of the categories described above, the more frequent price

changes of Mains, Tacos, Pizzas and Group Combos primarily took place in the second half

of 1st wave and 3rd wave indeed. Notably, it is in the other two pandemic stages (first half of

1st wave and 2nd wave) when prices of Beverages without and with Alcohol were particularly

more rigid than the remaining categories. With respect to the size of adjustments, it is also

in the second half of 1st wave and 3rd wave when one observes larger price changes in Mains,

Tacos, Pizzas and Group Combos, as well as in Beverages without and with Alcohol.

Hence, big data sources, coupled with machine learning techniques, allow us to shed

further light on the price-setting decisions followed by multi-product agents, such as restau-

rants. The stylized facts presented in this Section can further be used to validate menu-cost

models for multi-product firms as those proposed by Alvarez and Lippi (2014), Nakamura

and Steinsson (2008), Hobijn et al. (2006), among others.

6 Determinants of FAFH Inflation

This section evaluates the likely price determinants in the FAFH industry. To that end, I

move away from the web scraped dataset due to data restrictions, and focus instead in study-

ing the drivers of the year-on-year FAFH inflation in Mexico City as published by INEGI.

In particular, using a large set of determinants (e.g. food prices, labor costs and utility

bills), coupled with a number of machine learning frameworks, I study what explains the

current, as well as the up to one year ahead, year-on-year FAFH inflation. That is, I retrieve

the most important drivers behind the models that best fit the current, as well as future

(observed), FAFH inflation in Mexico City.

The numerous determinants, as well as the uncertainty on the weight each of them carry

in the production function of the restaurants included in the CPI survey, makes it a suitable

task for machine learning tools. The forecasting tools for this analysis are shrinkage methods

and non-linear machine learning models.

As it is explained in great detail below, estimates are drawn employing pre-Covid19 time

periods. The various demand and supply shocks stemming from the Covid19 pandemic, as
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Figure 10: Stylized Facts of Price Changes at Different Stages of the Pandemic
Representative Dishes

Price Changes Regardless Sign of Adjustment
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it was discussed in the previous Section, might have altered the weights price-setters factor

in determinants in their pricing decisions. This is particular for restaurants included in the

CPI survey, which are surveyed at their premises and mainly offer on-site dining.

Thus, I neglect observations gathered throughout the Covid19 pandemic for the bench-

mark models assessing the role of the different determinants under study. However, as a

bypass product, once models are trained using data up to 2018, they are deployed as coun-

terfactuals of the inflation rate in the FAFH industry stemming from costs pressures during

the Covid19 pandemic.

6.1 Data and Methodology

The determinants under study reflect supply pressures from three different factor markets

in Mexico City: wholesale food prices, labor-related costs and utilities.

First, I use microdata from warehouses and wholesale food markets in Mexico City and

Mexico City’s Metropolitan Area (MCMA). The data is published by the Ministry of Com-

merce and it provides average prices observed in these markets by food category.32 Examples

of these food categories are apples, tomatoes, beef, chicken, lemon, onion, etc. These series

are further disaggregated geographically: one set of series for supply centers within Mexico

City and another set of series for warehouses located in MCMA. There are 73 different series

available and included in the analysis.

Second, labor costs data comes from publicly available data published by the Mexican

Social Security Institute.33 I use a number of labor costs indicators (number of workers,

wage bill, average wage per worker), specifications (e.g. nominal and real wages) and type

of workers (temporal and permanent) associated with the FAFH industry in Mexico City.

There are 10 labor-related costs encompassed in the analysis.

Third, utilities like gas LP gas, natural gas and electricity in Mexico City are also incor-

porated in the analysis. To that end, I use Mexico City’s CPI series.

All in all, 86 series are at hand for studying the determinants in the FAFH inflation in

Mexico City.34 All series start in 2005. Furthermore, in compliance with the frequency in

32In Spanish, Secretaŕıa de Economı́a publishes wholesale food prices via its Sistema Nacional de
Información de Mercados or SNIIM.

33In Spanish, Instituto Mexicano del Seguro Social.
34See Table 14 in the Appendix for the complete list of explanatory variables and some descriptive statistics.
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which FAFH inflation is measured by INEGI, and in order to maximize the number of avail-

able observations, estimates are calculated at fortnightly frequencies (twice a month). Thus,

series from wholesale food prices and labor-related costs are linearly interpolated as they are

released on a monthly basis, while utilities are already available on a fortnightly frequency.

The recognition of inflation drivers at different time horizons is carried out as follows.

First, I train five frameworks. They are (i) Elastic Net Regression, (ii) Lasso Regression, (iii)

Ridge Regression, (iv) Random Forest Regression and (v) Support Vector Machine Regres-

sion.35 Second, I select the framework that best fit the data in terms of forecasting accuracy

from 2006 to 2018. Specifically, I test for statistical difference in forecasting performance

using Diebold-Mariano tests. Thirdly, I take a closer look at the predictors carrying greater

weight in the best performing model. These three steps are repeated for each of the five

horizons at which results are reported: current, as well as the 3-, 6-, 9- and 12-month ahead

inflation horizon.

For the estimation set-up, I follow Joseph et al. (2021) from the Bank of England. Joseph

et al. (2021) study the subindices in the CPI that are relevant for forecasting UK inflation

at different horizons. The strategy in this research is similar in terms of assessing what are

the most likely determinants of future FAFH inflation in Mexico City. The specification in

mind is of the form:

∆24yt+j = g(∆24Xt, β
0) + εt (3)

where yt+j is the fortnightly FAFH CPI in Mexico City, and thus ∆24yt+j is the (lead) an-

nual inflation rate at j = [0, 6, 12, 18, 24] fortnights ahead i.e. contemporaneous, as well as

three, six, nine and twelve months ahead. Xt is the vector of 86 determinants previously

described, which enters the model in annual growth rates as well. These determinants run

from 2006 to 2017. Note, however, as the target variable ∆24yt+j leads determinants Xt in

Equation 3, the different models may or may not use data from 2006 or 2018.36 β0 is the set

of hyper-parameters shaping the form of g(.), more on the hyper-parameter selection below.

I deviate from Joseph et al. (2021) methodology by not including lagged inflation (∆24yt−1)

as an explanatory viable. The main reason behind this decision is to leave the inflation de-

35Araujo and Gaglianone (2020), Joseph et al. (2021), and references therein, provide brief descriptions
of these models.

36 For instance, frameworks fitting the current inflation rate (j = 0) employ the contemporaneous target
variable ∆24yt and, thus, run from 2006 to 2017 while neglecting 2018 inflation dynamics. In contrast,
models fitting the 12-month ahead inflation (j = 24) use a leading target variable ∆24yt+24, therefore they
neglect the 2006 FAFH inflation rate, while considering 2007-2018 period.
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terminants speak for themselves and not relying on the persistency of the inflation rate. The

decision becomes even more relevant for the 2018-2021 counterfactual exercise, described in

great detail below, as it would reflect merely costs pressures while neglecting other type of

shocks due to the Covid19 pandemic.

With respect to the estimation and deployment of machine learning models, I follow

standard procedures. The series are transformed to year-on-year log differences and stan-

dardized. Then, the hyper-parameters for each model are selected through cross-validation

taking special care of the time series context at hand. Specifically, the time span of the

training period is divided into equidistant (time-wise) folds. I use 12 folds in this exercise,

equivalent a fold every 12 months. In the first iteration, the model is trained using the first

fold and then evaluated in the subsequent folds. In the second iteration, the training period

is extended with the second fold and evaluated in the remaining folds once again. Hence, the

estimation setting follows an expanding window approach.37 The grid of hyper-parameters

are summarized in Table 15 in the Appendix.

As a bypass product, having fitted numerous frameworks using determinants from 2006

to 2017, I provide counterfactuals for the year-on-year Mexico City’s FAFH inflation rate

throughout the 2018-2021 period. The intuition behind leaving out these last four years from

the training period is mainly due to the Covid19 pandemic: the 2018-2019 could be seen as an

out-of-sample validation period; while the predictions for 2020-2021 period could be seen as

an inflation counterfactual stemming from costs-related pressures considered in the analysis.

6.2 Results

Estimates suggest that Random Forest Regressions (RFR) exhibit the lowest Root Mean

Squared Error (RMSE) across most time horizons, as shown in Figure 11. Furthermore,

Ridge and Support Vector Machine Regressions (SVMR) are the runner ups with fairly sta-

ble RMSE around the different horizons, while Elastic Net and Lasso are generally the least

accurate models.

This is confirmed by the Diebold-Mariano tests reported in Table 4. Each entry in Table

4 indicates the model with better accuracy between the column-model and row-model in

37This approach is different to the traditional K-fold cross-validation in the machine learning literature.
K-fold cross-validation would lead to bias results in the forecasting exercise as it assumes that observations
are independent and identically distributed. See Joseph et al. (2021) and Coulombe et al. (2020) for more
on time-series cross-validation.
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Figure 11: Models’ Root Mean Squared Error
By Horizon of Predictiona
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aNote: The hyper-parameters for each model and horizon are selected through cross-validation following
an expanding window approach. As the training period considers 12 years of data, I use 12 folds. The
grid of parameters explored in the cross-validation is reported in Table 15 in the Appendix, while Table 16
summarizes the hyper-parameters that fit best the data according to the cross-valation. RMSE is computed
using the models’ predictions in the training period i.e. from 2006 to 2017. Bear in mind that, as described
in Footnote 36, the target variable leads the determinants. Thus, depending on the models’ horizon, some
frameworks may or may not fit Mexico City’s FAFH annual inflation from 2006 or 2018 in their training
period. Also in the Appendix, Table 17 reports the point estimates behind Figure 11. Also in the Appendix,
Figure 25 provides the models’ fitted values over the training period.

question if statistically significant differences in their predictions are found according to a

Diebold-Mariano test. The cell is left empty if the Diebold-Mariano test does not suggest

any statistically significant difference between the column- and row-models’ predictions.

By looking at the RFR rows and columns, it seems that its predictions are more accu-

rate than its competitors’ predictions for all but the nine-month ahead Mexico City’s FAFH

annual inflation rate. For the nine-month ahead inflation rate, Ridge outperforms all its

competitors, including RFR. Finally, Table 4 shows that SVMR is in general more accurate

than EE and Lasso, but underperforms relative to Ridge and RFR.

Moving into the determinants, I analyze the determinants of the FAFH inflation through

the lens of the RFR as it is the model that best fits the inflation rate in all but one horizon.

Figure 12 provides a heatmap of the most important variables explaining the FAFH inflation

by horizon according to the RFR framework.38

It highlights that the annual growth rate of the wage bill and mean wage, both in real

38In particular, Figure 12 plots the top 10 features by horizon. There might be more than 10 colored
boxes by horizon because a feature might be in the top 10 for a given horizon but it might not be in the
top 10 in another horizon. In the Appendix, Figure 26 reports the complete set of variables under analysis.
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Table 4: Diebold-Mariano’s Predictive Accuracy by Horizona

Horizon t
EE Lasso Ridge RFR SVMR

EE - o -
Lasso Lasso** - o -
Ridge Ridge*** Ridge*** - o -
RFR RFR*** RFR*** RFR*** - o -
SVMR SVMR*** SVMR** Ridge* RFR*** - o -

Horizon t + 3 months
EE Lasso Ridge RFR SVMR

EE - o -
Lasso Lasso*** - o -
Ridge Ridge*** Ridge*** - o -
RFR RFR*** RFR*** RFR*** - o -
SVMR SVMR*** SVMR*** RFR*** - o -

Horizon t + 6 months
EE Lasso Ridge RFR SVMR

EE - o -
Lasso - o -
Ridge Ridge*** Ridge*** - o -
RFR RFR*** RFR*** RFR* - o -
SVMR SVMR*** SVMR*** RFR** - o -

Horizon t + 9 months
EE Lasso Ridge RFR SVMR

EE - o -
Lasso EE*** - o -
Ridge Ridge** Ridge*** - o -
RFR EE*** RFR*** Ridge*** - o -
SVMR EE*** SVMR*** Ridge*** - o -

Horizon t + 12 months
EE Lasso Ridge RFR SVMR

EE - o -
Lasso - o -
Ridge Ridge*** Ridge*** - o -
RFR RFR*** RFR*** RFR*** - o -
SVMR SVMR*** SVMR*** RFR*** - o -

aNote: Each cell reports the model with better accuracy between the column-model and row-model in
question if there is a statistically significant difference between their predictions. Empty spaces in the lower
diagonal imply no statistically significant differences. Accuracy over the training period, 2006-2017. *, **,
*** represent p < 0.10, p < 0.05 and p < 0.01, respectively, in the Diebold-Mariano test.
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terms, of permanent workers, as well as the price of beef in MAMC best describe the current

FAFH inflation rate in Mexico City.39 The three month ahead inflation rate is mainly driven

by the price of beans in MAMC.40 The annual growth in the price of beans in MAMC and the

price of shrimps in Mexico City seems to best explain the six month ahead inflation rate.41

Moreover, the annual price variation of beans and rice in both MAMC and Mexico City, the

price of shrimps and avocados in Mexico City, as well as the year-on-year growth of the nomi-

nal mean wage of permanent workers are relevant features determining the nine month ahead

FAFH inflation rate. Lastly, the nominal mean wage of permanent workers also describes well

the 12-month ahead inflation rate, in addition to the annual price growth of rice in MAMC.42

By looking within each of the factor markets, few salient facts emerge. First, within the

determinants associated to utility prices, it seems that electricity is relatively more important

than LP gas and natural gas as it is relevant in four out of the five time horizons explored.

Although the three utilities are important enough to be considered in Figure 12, they are

not the most relevant features in the RFR as one might have expected. Second, regarding

the covariates related to labor costs, the mean real wage of permanent workers remains rel-

evant in most horizons; while the real wage bill and the mean nominal wage of permanent

workers are relevant in explaining the current and 12-month ahead inflation, respectively.

Despite being considered as a buffer between tight and slack conditions in labor markets,

it looks like costs-pressures stemming from temporal workers are not as relevant as those

from permanent workers. Third, prices of beans and rice, both in MAMC and Mexico City,

are among the most important determinants, not only across the wholesale food market but

among all determinants under study. Their frequent presence as a side dish in most meals in

the Mexican cuisine could be a potential explanation. In terms of meat, the price of shrimps

39Other determinants driving the contemporaneous inflation rate include the annual price variation in the
price LP gas and electricity; the wage bill in real and nominal terms of temporal workers and the number of
temporal workers; as well as the annual price growth of pineapple and dried chilli in the MAMC; the price
of chicken, dried chilli, shrimps and rice in Mexico City.

40Other relevant covariates are price variations of LP and natural gas; the real wage bill, mean real wage
and number of permanent workers; as well as the annual price growth of pineapple, pear and dried chilli in
the MAMC; the price of shrimps, carrots, fish (others), legumes and poblano chilli in Mexico.

41Other explanatory variables at this horizon are the variation in the price of electricity; number of
permanent workers and the wage bill, both in real and nominal terms, for temporal workers; as well as the
annual growth rate of rice in MAMC; price of rice and avocados in Mexico City.

42Other key determinants for the 12-month ahead inflation rate are the annual price change of electricity
and natural gas; the annual variation of the mean real wage of permanent workers and the mean wage, in
both nominal and real terms, of temporal workers; as well as the year-on-year price growth of chicken, fish
(others), shrimps and rice in Mexico City.
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in Mexico City is a robust determinant across horizons, whilst the price of beef determines

the current inflation rate only, suggesting perhaps a faster cost pass-through.

As described in the Introduction, the target variable used for this analysis comes from

the FAFH component of the CPI survey in Mexico City. Specifically, it is the index com-

puted summarizing observations from a number of restaurants, which in turn prepare many

different types of food, not to mention price collectors only gather prices of few items per

restaurant.43 Thus, frameworks that are able to deal with numerous covariates come in hand

for assessing the potential role they have in describing the aggregate index.44

Figure 12: Relevance of Features
Features on the vertical axis and horizons in the horizontal axis.a
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Finally, and as a bypass product, the shrinkage and non-linear machine learning models

trained above are able to provide a counterfactual, given the state of the determinants, on

Mexico City’s FAFH inflation during the Covid19 pandemic. Needless to say, on the one

43Price collectors gather prices from about three to five items on the menu, which can be seen as a set
menu for a single person e.g. starter, main, dessert plus beverage.

44Requesting access to CPI microdata in order to validate if, for instance, a number of observations
consider beans or seafood/shrimps is left for future work.
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hand, the state of the determinants, specially those from wholesale food markets were affected

in 2020 by excess and depress demand of household and restaurant consumption, respectively.

On the other hand, temporal but compulsory on-site consumption might have also drasti-

cally change price-setting patterns. Hence, while results should be taken with caution due to

the different shocks at the time, they remain illustrative of how pre-pandemic price-setters

might have reacted should they have faced such dynamics from the factor markets.

In order to validate the models that best predict the target variable out of the train-

ing period, I repeat the Diebold-Mariano tests based on the models’ predictions throughout

2018-2019 i.e. pre-Covid19 pandemic. As a benchmark of the out-of-sample performance of

the shrinkage and non-linear machine learning models, I also include in the Diebold-Mariano

tests a comparisons with a simple autoregressive model.45

As shown in the Appendix, RFR is no longer the model with the lowest RMSE across

horizons.46 In turn, Diebold-Mariano tests do not suggest any particular model systemati-

cally outperforming its competitors. The AR model seems to perform best when predicting

the current, as well as the three and six-month ahead inflation. However, for the nine and

twelve-month ahead horizon there is no statistically significant winner in terms of accuracy.

The liberalization of fuel prices in Mexico in 2017, reshaping in 2018 and 2019 not only

price-setting decisions of restaurants but also decisions from suppliers in the factor markets

under analysis, could be a potential explanation behind this result. Unfortunately, the short

time span between the 2017 fuel prices liberalization and the start of the pandemic leave

little room to retrain the models.

Figure 13 depicts the RFR and Ridge predictions before and during the Covid19 out-

break.47 It seems that, after the start of the Covid19 pandemic in March 2020 and based on

the state of the FAFH determinants, both models suggest there could have been an increase

of the FAFH inflation rate in Mexico City. These predictions sharply contrast with observed

45The AR model is computed following the same approach as the other frameworks in the analysis. That
is, I fit an AR(1) from 2006 to 2017, and generate out-of-sample predictions from 2018 to 2021. Results of
the Diebold-Mariano tests are also computed using data from 2018 and 2019 i.e. pre-Covid19.

46For brevity these results are left in the Appendix. Figure 27 illustrates the RMSE computed using
predictions from 2018 and 2019 by model and horizon, while Table 18 summarizes the Diebold-Mariano
tests for the same period.

47These are the models that performed better, in terms of the lowest point estimate of the RMSE,
during the training period. It seems that, before 2020, both models partially followed the annual FAFH
inflation rate in Mexico City. For instance, during the first half of 2018, RFR overpredicted the FAFH
inflation. Then, in the remaining of 2018 and first half of 2019, RFR underpredicted observed inflation,
while overpredicting again in late 2019. A similar pattern is observed for Ridge in 2018 and 2019.
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inflation. One can rationalize the deviation between predicted and observed inflation by the

temporal but compulsory restaurant closures, low demand for on-site dining, as well as the

households’ food hoarding. Nonetheless, predictions put forward the idea of an inflation rate

between 6% and 7% in annual terms for Mexico City by early 2021. In fact, the experimental

price index reported in Section 4 and depicted in Figure 6a provide a cumulative 5% inflation

rate from April to December 2020.48 The CPI only reports such inflation levels by late 2021,

period in which the models suggest the year-on-year inflation rate could be around 5%.

As the Covid19 pandemic continues to unfold (e.g. the Omicron-wave only hit Mexico

around December 2021), it remains to be seen if the frameworks trained for this study recover

their validity. Though, the results illustrate that price-setters in this industry in Mexico City

might have faced cost-related pressures, which were not immediately pass-through to prices,

highlighting once again the precence of price stickiness.

Figure 13: Models’ Predictions
By Horizon of Prediction
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7 Conclusions

The Food Away From Home (FAFH) industry has been one of the most affected by

the Covid19 pandemic. Temporal closures, restricted on-site dining capacity, as well as

suppressed demand are among the supply and demand shocks deemed by the industry. Un-

derstanding how FAFH prices evolve as the pandemic unfolds is important for the conduction

of monetary policy as it accounts for a non-negligible weight in the CPI basket.

This paper studies the FAFH inflation in Mexico City from two complementary angles.

First, using web scraped data from an online ordering and delivery platform, this paper

48I am unable to compute the y-o-y inflation rate of the experimental price index as the data collection
of the online ordering and delivery platform started in April 2020.
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examines price dynamics stemming from over 120 million prices from more than 1.7 million

dishes offered by around 30,000 restaurants in Mexico City. Second, using machine learning

algorithms, the latter part of this study analyses 86 price determinants likely considered

by price-setters in the FAFH industry and provides a counterfactual of the inflation rate

stemming from costs pressures during the Covid19 pandemic.

The results suggest that (i) independent and multi-outlet restaurants report similar price

trends; (ii) prices of soups and beverages without alcohol, potentially substituted by home-

production, exhibit low price growth rates; (iii) in contrast, prices of mains and desserts

have been on the rise; (iv) the heterogeneous growth rates across dish categories seem to be

explained by the extensive margin; and (v) episodes associated to the escalation in Covid

cases seem to increase price rigidities.

With respect to the analysis of price determinants through the lens of a Random Forest

Regression, electricity fees, the real wage bill and real average wage of permanent workers,

as well as wholesale prices of beans, rice and shrimps best describe the FAFH inflation rate

in Mexico City at different horizons. Regarding utilities, gas LP and natural gas are not the

most important inflation determinants as one might have expected. With respect to labor

costs, wage indicators from permanent workers generally outperform wage statistics form

temporal workers in predicting the FAFH inflation rate in Mexico City. Lastly, the frequent

presence of beans and rice as sides in most meals in the Mexican cuisine could be a potential

explanation on their relevance. In terms of meat, the price of shrimps in wholesale food

markets in Mexico City is a robust explanatory variable across horizons. The price of beef

only determines the current inflation rate, suggesting perhaps a faster cost pass-through.

Although web scraped data is increasingly used for analyzing inflation, to the author’s

knowledge the literature has mainly focused on goods’ prices observed at supermarkets or

departmental stores. In contrast, this research contributes to the literature by focusing on

analyzing web scraped prices in an industry at the service sector.

The rapid adoption of online ordering and delivery platforms while on-site dinning was

depressed, as well as the numerous shocks input prices suffered partially due to the change in

households’ consumption habits, leaves this industry as a prosperous area of research. From

the study of multi-product pricing models, the analysis of price dispersion as online platforms

allow greater number of alternatives and easier price comparisons, to the examination of pass-

through determinants, are among some of the venues to be explored in the FAFH industry.
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Solórzano, D. (2021): “Stylized Facts From Prices at Multi-Channel Retailers in

Mexico,” Manuscript.

33



A Appendix

A.1 Data

Figure 14: Data Collection
Hourly and Daily Observations

(a) Robot’s Collection (b) Daily Observations
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A.2 Machine Learning Dish Classification

This Appendix provides greater details on the classification of dishes (cross-section dimen-

sion of the panel) using machine learning techniques. First, it describes the construction of

the training set, under which a number of algorithms are trained. Second, text cleaning pro-

cedures are outlined. Third, it sketches how dish descriptions are taken into a matrix form.

Forth, classifiers are listed and, fifth, hyper-parametrised through k-fold cross-validation.

Sixth, some forensic statistics of trained models are discussed. Finally, the winner and

runner-up models are compared.

A.2.1 Training Set

As presented in the main text, out of the around 616,000 unique descriptions in the

dataset, I manually classify more than 13,000 random dishes based on the descriptions pro-

vided by the restaurants.Thus, the manual classification considers a little more than 2% of

the dishes in question. The dishes are classified into 19 categories, which are chosen on the

basis of (i) well-recognized headers in many restaurants’ menus, (ii) categories with direct

mapping to Mexico’s CPI categories and (iii) research question at hand.
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The categories are: (1) Starters, (2) Salads, (3) Soups, (4) Eggs, (5) Mains, (6) Pizzas,

(7) Tacos, (8) BBC, (9) Grilled and Roasted Chicken, (10) Desserts, (11) Beverages with

Alcohol, (12) Beverages without Alcohol, (13) Meals with Beverages, (14) Meals without

Beverages, (15) Group Combos, (16) Dessert Combos, (17) Extras, (18) Others (Non-Food)

and (19) Ambiguos.49

A.2.2 Text Cleaning

The descriptions in training set are then parsed by text cleaning routines in order to have

homogeneous notation in the dish descriptions. Removal of stopwords, special characters,

hashtags; standardising numbers’ and units’ abbreviations, are among some of the cleaning

procedures.

A.2.3 Word Tokenising

Once descriptions are clean and homogeneous, words in dish descriptions are ready to

be tokenized and used as explanatory variables by the different classifiers. To that end, I

convert the collection of dish descriptions into a matrix of token (words) counts. That is,

the columns in the matrix represent each and every single word appearing at least once in

the collection of descriptions, the rows of the matrix are the dishes in the dataset, and each

matrix cell counts the number of times a word (column) appears in the description (row).50

I get three different sets of explanatory variables, which will be used one at the time by

the classifiers in order to assess how sensitive the performances of the classifiers are to the

token count specification. These specifications are: (i) the universe of words found in the de-

scriptions i.e. complete set of single words (unigrams), (ii) subset of unigrams by cutting-off

infrequent terms and (iii) subset of unigrams and bigrams cutting-off infrequent terms.51

The first one uses all words in the collection of descriptions. Hence, this first specification

induces a matrix with over 68,000 words (columns).

The second specification is a subset of the first specification (matrix with lower columns

49BBC stands for Barbacoa, Birria and Carnitas, which are common taco fillings, and are considered in
the Mexican CPI as a specific product category. Meals with/without Beverages consider two or three times
meals. For instance, a Meal with Beverage could be a bundle of starter, salad, main and a soft drink.

50This type of matrix is commonly referred as a sparse matrix since each row contains a large number of
columns with zeros and only a few with non-zero values.

51A bigram is defined as the pair of consecutive words. For instance, the unigram representation of “Today
is Monday” is [“Today”, “is”, “Monday”], while the bigram representation is [“Today is”, “is Monday”].
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dimension). As words are the set of explanatory variables to be used by the algorithms,

which might lead to the curse of dimensionality and intensive computational work, this sec-

ond matrix comprehends words appearing in the collection of descriptions at least 3 times.52

Thus, around 23,000 words are considered after implementing this cut-off approach.

The third specification adds bigrams to the matrix of unigrams. This is due to concerns

arising from, for example, description1 = “chicken with salad” and description2 = “salad

with chicken”.53 The gain of using bigrams is obvious in the previous simple example but

it is less clear if, on the aggregate and in the presence of more unigrams, the potential im-

provement in accuracy outweights the greater number of explanatory variables i.e. matrix

dimension. In order to keep dimensions attainable, I also keep only bigrams showing up at

least 3 times in the corpus. The matrix of unigrams and bigrams has over 32,000 columns.

In sum, there are three different specifications of matrices of token counts: (i) complete

set of words (or unigrams), (ii) subset of unigrams and (iii) subset of unigrams and bigrams.

These matrices are used, one by one, in the classifiers, which are then compared in terms of

their accuracy on the training set.

A.2.4 Classifiers

The classifiers used for this analysis are (i) decision tree, (ii) random forest, (iii) multi-

nomial naive Bayes and (iv) logistic regression.

A.2.5 Hyper-parameters Tuning

All classifiers require some form of hyper-parameter selection prior to estimation. To

that end, I use k-fold cross validation procedures. That is, 80% of the training set is divided

52That is, I drop terms that have a frequency lower than 0.0005% of the 616,000 descriptions. The aim
of this approach is to neglect restaurant-specific terms that might not be relevant for the classification
task. For instance, suppose a fictional restaurant named XXYY offers a restaurant-specific dish with the
description (including stop words) “Burger XXYY with bacon and avocado”; the word “XXYY” might not
be representative for the broad classification task and adds an extra column to the matrix of explanatory
variables. The threshold of 3 in order to be considered in the analysis is chosen with the goal of neglecting
very rare words and interfering the less possible with the vocabulary.

53In this simple example, the unigram representation leads to the same vector representation. That is,
without loss of generality and assuming no stop words, if column 1 counts the word “chicken” and column 2
counts the word “salad”, the unigram representation would be description1 = [1, 1] and description2 = [1, 1].
By using bigrams, without loss of generality, column 1 counts “chicken”, column 2 counts “salad”, column 3
counts the bigram “chicken salad” and column 4 counts “salad chicken”, resulting in a vector representation
of description1 = [1, 1, 1, 0] and description2 = [1, 1, 0, 1].
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intro k folds, after which the model is fitted using observations in k-1 folds under a specific

set of parameters and compute the accuracy in the k-th fold. This process is repeated k

times in order to compute the accuracy in every fold. The average accuracy is used to select

the hyper-parameter configuration maximizing the performance of each classifier.

The grid of parameters used for this search is detailed in Table 5. Note there are balanced

versions of the decision tree and random forest classifiers. These versions take into account

that category sizes are highly unbalanced in the training set. This could be a problem since

the parameters and costs functions developed in these algorithms could end up focusing (over

specialising) on large categories only. Hence, I impose greater penalties on errors made in

smaller categories.54 The penalties come in the form of weighting observations, where the

weights are inversely proportional to category frequencies in the data.

Table 5: Grid of Parameters
By Classifier

Classifier Parameter Values
Decision Tree Max Depth [500, 550, 600, 625, 650, 675, 700, 750, 800, 900, 1000]

Min Samples Split [4,5,6,7,8,10]
Criterion [Gini, Entropy]

Balanced Decision Tree Same as Above (Various)
Class Weight [Balanced]

Random Forest Max Depth [600, 750, 900, 1050, 1200, 1350]
Min Samples Split [3,4,5,6,7,10]
Criterion [Gini, Entropy]
N Estimators [75, 100, 125, 150, 175, 200, 300, 500]

Balanced Random Forest Same as Above (Various)
Class Weight [Balanced]

Multinomial Naive Bayes α [0.00001,0.0001,0.001,0.01,0.1,0,1,2,3,4,5,10]
Fit Prior [True,False]

Logistic Regression C [0.00001,0.0001,0.001,0.01,0.1,1,2,3,4,5,10,20]

Note: The grid-search implements an exhaustive search over specified parameter values for each classifier.
As mentioned above, k-fold cross validation is used for hyper-parameter selection. That is, 80% of the
training set is divided intro k folds (stratified by category sizes), after which the model is fitted using
observations in k-1 folds under a specific set of parameters and compute the accuracy in the k-th fold.
This process is repeated k times in order to compute the accuracy in every fold. The average accuracy
is used to select the hyper-parameter configuration maximizing the performance of each classifier.

54Previous versions of this paper included an exercise upsampling small categories by bootstrapping with
replacement. However, there seems to be no gain in accuracy at the expense of computation time (as the
dataset grows due to the bootstrap with replacement). Results not reported but available upon request.
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A.2.6 Classifiers Forensics

As a result of the k-fold cross-validation, Table 6 reports the hyper-parameters that max-

imize the accuracy score in classifying 80% of the training set. The accuracy scores of these

models are depicted in Figure 15a.

Figure 15a shows that, for this specific task for classifying dishes, the use of different

specifications on the matrix of token counts generate little gains in terms of accuracy. How-

ever, as seen in the various panels of Table 6, the hyper-parameter configuration does change

depending the matrix specification as expected.

Moreover Figure 15a highlights that the logistic regression and balanced decision tree

(both with unigrams and bigrams) achieve the greatest and lowest accuracy scores, respec-

tively. Nonetheless, there are only minor differences across models’ performance over the

sample under which they were trained.

Table 6: Parameters Maximizing Accuracy in Testing Set
By Matrix of Token Counts and Classifiers

Classifier Parameters

A. Unigrams
Decision Tree ’max˙depth’: 625, ’min˙samples˙split’: 5
Balanced Decision Tree ’max˙depth’: 750, ’min˙samples˙split’: 4
Random Forest ’max˙depth’: 600, ’min˙samples˙split’: 3, ’n˙estimators’: 200
Balanced Random Forest ’max˙depth’: 900, ’min˙samples˙split’: 3, ’n˙estimators’: 500
Naive Bayes ’alpha’: 0.1, ’fit˙prior’: True
Logistic Regression ’C’: 1

B. Unigrams (Cut-off)

Decision Tree ’max˙depth’: 1000, ’min˙samples˙split’: 6
Balanced Decision Tree ’max˙depth’: 800, ’min˙samples˙split’: 4
Random Forest ’max˙depth’: 1200, ’min˙samples˙split’: 3, ’n˙estimators’: 200
Balanced Random Forest ’max˙depth’: 1200, ’min˙samples˙split’: 3, ’n˙estimators’: 175
Naive Bayes ’alpha’: 0.1, ’fit˙prior’: True
Logistic Regression ’C’: 2

C. Unigrams and Bigrams (Cut-off)

Decision Tree ’max˙depth’: 700, ’min˙samples˙split’: 7
Balanced Decision Tree ’max˙depth’: 500, ’min˙samples˙split’: 6
Random Forest ’max˙depth’: 900, ’min˙samples˙split’: 4, ’n˙estimators’: 125
Balanced Random Forest ’max˙depth’: 900, ’min˙samples˙split’: 4, ’n˙estimators’: 150
Naive Bayes ’alpha’: 0.1, ’fit˙prior’: True
Logistic Regression ’C’: 2

Trained algorithms are then deployed over the remaining (unseen) 20% of the manually

constructed training set. The models’ accuracy scores classifying unseen data are highlighted

in Figure 15b.

Similarly as in the sample over which models were trained, there are no stark differences
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Figure 15: Accuracy Score
By Classifier and Explanatory Variables

(a) Training Set: 80% of manually classified dishes

0.
86

8

0.
86

8

0.
86

8

0.
85

2

0.
85

3

0.
84

6 0.
89

2

0.
89

1

0.
88

8

0.
89

5

0.
89

5

0.
89

3

0.
87

8

0.
87

8

0.
87

7

0.
90

0

0.
89

9

0.
90

2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sc
or

e

Decision Tree Balanced DT Random Forest Balanced RF Naive Bayes Logistic

Unigrams (All) Unigrams (Cut-off) Unigrams and Bigrams (Cut-off)

(b) Test Set: 20% of manually classified dishes
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in terms of accuracy over the unseen sample. This is the case neither across classifiers nor

specification of tokens.

A.2.7 Model Selection

Since it is the one with greatest accuracy (average point estimate), as well with the low-

est computational time, the logistic regression using unigrams and bigrams is picked as the

winner across models. The runner up is the balanced random forest, also using unigrams and

bigrams, but with significantly more computational time.

Figure 4 in the main text depicts the confusion matrix on the prediction of dish labels

using the logistic regression fitted under the complete training set. It provides a graphical

representation on whether the prediction matches with the true value. Each cell reports the

share of each instance such that every row (true labels) adds up to one. Correct predictions

lay in the diagonal, values outside the diagonal highlight prediction errors. As shown in

Figure 4, most cells on the diagonal report values close to one.

As a bypass, Figure 16 shows the confusion matrix on the prediction of dish labels using

the balanced random forest trained under the complete training set.

Finally, Table 1 included in the main text adds on the impact of the machine learning

techniques used in this research. The first bloc of columns reports the composition of the

manually classified dataset. The second bloc of columns summarizes the outcome labels

generated through the logistic regression.
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Table 7: Dishes’ Labels
By Classification Approach

Classification
Course Manual Machine Learning
Type Count Share (%) Count Share (%)

1 Starters 640 4.76 16,625 3.06
2 Salads 996 7.41 15,049 2.77
3 Soups 64 0.48 5,604 1.03
4 Eggs 447 3.32 8,819 1.62
5 Mains 3,948 29.36 251,969 46.32
6 Desserts 1,063 7.91 55,010 10.11
7 Beverages wo/Alcohol 2,639 19.63 89,490 16.45
8 Beverages w/Alcohol 208 1.55 9,539 1.75
9 Tacos 429 3.19 23,256 4.28

10 Pizzas 1,444 10.74 20,819 3.83
11 Grilled/Roasted Chicken 15 0.11 345 0.06
12 BBQ, Birria, Carnitas 23 0.17 788 0.14
13 Combo wo/Beverage 55 0.41 355 0.07
14 Combo w/Beverage 100 0.74 7,647 1.41
15 Group Combo 124 0.92 3,171 0.58
16 Dessert Combo 25 0.19 175 0.03
17 Extras 1,041 7.74 33,846 6.22
18 Others 158 1.17 1,220 0.22
19 Ambiguous 28 0.20 193 0.05

Total 13,447 100.00 543,920 100.00
Note: Extras, Others and Ambiguous are also considered in the classification exercise
but not reported.

Figure 16: Balanced Random Forest Confusion Matrix
Predictions Over the Entire Training Set
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Figure 17: Dataset Composition by Type of Restaurant
Breaking Up Multi-Outlet Restaurants

(a) Share of Restaurants
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A.3 Experimental Price Indices

Figure 18: Experimental Price Indices

(a) API and AVI Comparison (Representtive Items)
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(b) Representative Items vs All Items
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Table 8: Cross-Correlation of Monthly Inflation Up to September 2021
From Experimental Price Indices and CPI

Variables (1) (2) (3) (4) (5) (6) (7) (8)
(1) Average Price Index (API) 1.000
(2) API Independent 0.972*** 1.000
(3) API Multi-outlet 0.515*** 0.330* 1.000
(4) Average Variation Index (AVI) 0.481*** 0.443*** 0.329* 1.000
(5) AVI Independent 0.413** 0.382** 0.252 0.970*** 1.000
(6) AVI Multi-outlet 0.307* 0.266 0.366** 0.222 -0.020 1.000
(7) Mexico City FAFH CPI -0.029 -0.034 -0.145 -0.153 -0.120 -0.128 1.000
(8) National FAFH CPI 0.057 0.068 -0.033 -0.224 -0.214 -0.024 0.684*** 1.000
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Cross-Correlation of Monthly Inflation in 2020
From Experimental Price Indices and CPI

Variables (1) (2) (3) (4) (5) (6) (7) (8)
(1) Average Price Index (API) 1.000
(2) API Independent 0.977*** 1.000
(3) API Multi-outlet 0.652*** 0.498** 1.000
(4) Average Variation Index (AVI) 0.590** 0.545** 0.416* 1.000
(5) AVI Independent 0.501** 0.457* 0.370 0.977*** 1.000
(6) AVI Multi-outlet 0.403* 0.398 0.210 0.093 -0.121 1.000
(7) Mexico City FAFH CPI -0.117 -0.154 0.006 0.168 0.179 -0.043 1.000
(8) National FAFH CPI 0.126 0.181 -0.041 0.271 0.310 -0.178 0.654*** 1.000
*** p<0.01, ** p<0.05, * p<0.1
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Figure 19: Experimental Price Indices
By Dish Type

(a) Average Price Index
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(b) Average Variation Index
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A.4 Stylized Facts

This subsection summarizes (i) using seasonal fixed effects as instead of time controls

in the benchmark regressions and (ii) a comparison of results using “representative dishes”

with respect to estimates while using the complete dataset. The regressions take form of:

P (yi,j,t = 1|x) = β1xdishtype + β2xdow + β3xday + β4xmonth + β5xyear + β6xj + εi,j,t

where yi,j,t = 1 is a dummy variable if the price of item i at restaurant j at time t changed

with respect to day t − 1, or zero otherwise. xdow, xday, xmonth, xyear represent day of the

week, calendar day, month and year fixed effects, respectively. xj represents a restaurant

fixed effects.55 Likewise, the second equation studies the (absolute value) of size of price

adjustments, given a price change:

| ∆yi,j,t |= β1xdishtype + β2xdow + β3xday + β4xmonth + β5xyear + β6xj + εi,j,t

Figure 20: Stylized Facts of Price Adjustments
Representative Dishes Using Different Set of Time FE

Price Changes Regardless Sign of Adjustment
(a) Frequency of Changes
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(b) Size of Adjustments
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55Day of the week and calendar day coefficients are not reported on basis of the informant confidentiality.
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Table 10: Stylized Facts of Pride Changes
Linear Probability Model

Representative Dishes

(1) (2) (3) (4) (5) (6)
1 ∆p it 6= 0 1 ∆p it 6= 0 1 ∆p it > 0 1 ∆p it > 0 1 ∆p it < 0 1 ∆p it < 0

Starter 0.00 0.00 0.00 0.00 0.00 0.00
(.) (.) (.) (.) (.) (.)

Salad 0.00 0.00 0.00 0.00 0.00 0.00
(0.004) (0.004) (0.004) (0.004) (0.002) (0.002)

Soup 0.00 0.00 0.00 0.00 0.00 0.00
(0.005) (0.005) (0.005) (0.005) (0.002) (0.002)

Eggs -0.01 -0.01 -0.01 -0.01 -0.00 -0.00
(0.007) (0.007) (0.007) (0.007) (0.002) (0.002)

Mains 0.01*** 0.01*** 0.01*** 0.01*** 0.00* 0.00*
(0.004) (0.004) (0.003) (0.003) (0.001) (0.001)

Dessert -0.01** -0.01** -0.02*** -0.02*** 0.00 0.00
(0.004) (0.004) (0.004) (0.004) (0.002) (0.002)

Beverage wo/A -0.05*** -0.05*** -0.04*** -0.04*** -0.00* -0.00*
(0.004) (0.004) (0.004) (0.004) (0.002) (0.002)

Beverage w/A -0.07*** -0.07*** -0.06*** -0.06*** -0.01** -0.01**
(0.009) (0.009) (0.007) (0.007) (0.004) (0.004)

Tacos 0.01** 0.01** 0.01* 0.01* 0.00* 0.00*
(0.005) (0.005) (0.004) (0.004) (0.002) (0.002)

Pizza 0.04*** 0.04*** 0.03*** 0.03*** 0.01*** 0.01***
(0.007) (0.007) (0.007) (0.007) (0.003) (0.003)

Chicken 0.02 0.02 0.02 0.02 -0.00 -0.00
(0.013) (0.013) (0.013) (0.013) (0.004) (0.004)

BBC 0.04* 0.04* 0.03 0.03 0.01 0.01
(0.018) (0.018) (0.017) (0.017) (0.005) (0.005)

Combo wo/B 0.03 0.03 0.03 0.03 0.00 0.00
(0.021) (0.021) (0.019) (0.019) (0.008) (0.008)

Combo w/B 0.02* 0.02* 0.01 0.01 0.01* 0.01*
(0.008) (0.008) (0.007) (0.007) (0.003) (0.003)

Group Combo 0.03* 0.03* 0.02* 0.02* 0.01 0.01
(0.012) (0.012) (0.010) (0.010) (0.005) (0.005)

Dessert Combo -0.00 -0.00 -0.01 -0.01 0.01 0.01
(0.051) (0.051) (0.052) (0.052) (0.016) (0.016)

Extras -0.01*** -0.01*** -0.01*** -0.01*** -0.00 -0.00
(0.004) (0.004) (0.003) (0.003) (0.002) (0.002)

Others -0.03 -0.03 -0.02 -0.02 -0.00 -0.00
(0.023) (0.023) (0.019) (0.019) (0.007) (0.007)

NA -0.04*** -0.04*** -0.03*** -0.03*** -0.00 -0.00
(0.004) (0.004) (0.004) (0.004) (0.002) (0.002)

Ambiguous -0.04 -0.04 -0.05*** -0.05*** 0.02 0.02
(0.021) (0.021) (0.014) (0.014) (0.014) (0.014)

Observations 82615078 82615078 82615078 82615078 82615078 82615078
Adjusted R2 0.005 0.004 0.004 0.004 0.003 0.003
Restaurant FE Yes Yes Yes Yes Yes Yes
Time FE Yes . Yes . Yes .
DOW FE . Yes . Yes . Yes
DOC FE . Yes . Yes . Yes
Month FE . Yes . Yes . Yes
Year FE . Yes . Yes . Yes
DOW and DOC stand for day of the week and calendar respectively.
Estimates multiplied by 100 for ilustration purposes.
Standard errors clustered at restaurant level. *** p<0.01, ** p<0.05, * p<0.1
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Table 11: Stylized Facts of Pride Changes
Size of Price Adjustments

Representative Dishes

(1) (2) (3) (4) (5) (6)
Abs Price Adj Abs Price Adj Abs Price Adj Abs Price Adj Abs Price Adj Abs Price Adj

Starter 0.00 0.00 0.00 0.00 0.00 0.00
(.) (.) (.) (.) (.) (.)

Salad -0.14 -0.14 0.05 0.07 -2.14* -2.27*
(0.287) (0.288) (0.275) (0.270) (0.894) (0.893)

Soup -0.03 -0.05 0.22 0.19 -1.80 -1.32
(0.329) (0.330) (0.339) (0.336) (1.057) (1.092)

Eggs -0.71 -0.72 -0.64 -0.70 -0.94 -0.92
(0.416) (0.464) (0.390) (0.416) (1.044) (1.253)

Mains -0.62** -0.61** -0.45* -0.47* -1.64* -1.59*
(0.211) (0.213) (0.204) (0.205) (0.707) (0.707)

Dessert 0.39 0.40 0.59* 0.56* -0.83 -0.83
(0.262) (0.267) (0.255) (0.259) (0.828) (0.852)

Beverage wo/A 1.37*** 1.45*** 1.52*** 1.57*** 0.17 -0.21
(0.268) (0.273) (0.255) (0.261) (0.880) (0.923)

Beverage w/A 1.10* 1.09* 1.39* 1.20* -1.95 -1.83
(0.538) (0.534) (0.554) (0.543) (2.170) (1.952)

Tacos -0.19 -0.16 -0.19 -0.16 -1.10 -1.05
(0.299) (0.302) (0.281) (0.283) (1.038) (1.068)

Pizza -1.61*** -1.58*** -1.31*** -1.33*** -1.34 -1.07
(0.389) (0.407) (0.357) (0.381) (1.361) (1.369)

Chicken -1.25 -1.37* -1.25 -1.42* -0.88 -0.58
(0.694) (0.680) (0.655) (0.652) (3.023) (2.922)

BBC -3.19*** -3.17*** -2.59** -2.62** -10.12 -11.44
(0.943) (0.914) (0.863) (0.813) (7.307) (7.753)

Combo wo/B -0.64 -0.13 -0.75 -0.02 1.04 2.06
(1.239) (1.171) (1.131) (1.063) (3.360) (2.998)

Combo w/B -0.13 -0.16 -0.22 -0.26 0.21 0.03
(0.455) (0.463) (0.396) (0.401) (1.715) (1.698)

Group Combo -1.30** -1.41** -1.03* -1.28** 0.62 1.48
(0.461) (0.470) (0.478) (0.463) (1.482) (1.794)

Dessert Combo -0.73 -0.06 3.27 3.44 -1.02 -1.02
(2.516) (2.326) (2.171) (1.910) (1.320) (1.284)

Extras 0.85*** 0.86*** 1.11*** 1.10*** -1.19 -1.18
(0.255) (0.258) (0.252) (0.252) (0.790) (0.805)

Others 3.08* 3.11* 3.29** 3.55** 3.53 1.27
(1.210) (1.466) (1.023) (1.198) (4.642) (5.026)

NA 0.58** 0.64** 0.74*** 0.78*** -0.83 -0.87
(0.224) (0.229) (0.214) (0.220) (0.720) (0.723)

Ambiguous -0.00 -0.13 -0.46 -0.45 -1.61 -2.01
(1.818) (1.714) (2.292) (2.246) (2.075) (1.831)

Observations 158365 158366 137139 137140 20415 20436
Adjusted R2 0.462 0.432 0.500 0.463 0.621 0.563
Restaurant FE Yes Yes Yes Yes Yes Yes
Time FE Yes . Yes . Yes .
DOW FE . Yes . Yes . Yes
DOC FE . Yes . Yes . Yes
Month FE . Yes . Yes . Yes
Year FE . Yes . Yes . Yes
DOW and DOC stand for day of the week and calendar respectively.
Estimates multiplied by 100 for ilustration purposes.
Standard errors clustered at restaurant level. *** p<0.01, ** p<0.05, * p<0.1
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Table 12: Stylized Facts of Pride Changes
Linear Probability Model

All Dishes (Representative or Not)

(1) (2) (3) (4) (5) (6)
1 ∆p it 6= 0 1 ∆p it 6= 0 1 ∆p it > 0 1 ∆p it > 0 1 ∆p it < 0 1 ∆p it < 0

Starter 0.00 0.00 0.00 0.00 0.00 0.00
(.) (.) (.) (.) (.) (.)

Salad 0.00 0.00 0.00 0.00 0.00 0.00
(0.004) (0.004) (0.004) (0.004) (0.002) (0.002)

Soup 0.00 0.00 0.01 0.01 -0.00 -0.00
(0.005) (0.005) (0.004) (0.004) (0.002) (0.002)

Eggs -0.01 -0.01 -0.00 -0.00 -0.00 -0.00
(0.007) (0.007) (0.006) (0.006) (0.003) (0.003)

Mains 0.01*** 0.01*** 0.01*** 0.01*** 0.00 0.00
(0.003) (0.003) (0.003) (0.003) (0.001) (0.001)

Dessert -0.01*** -0.01*** -0.01** -0.01** -0.00 -0.00
(0.004) (0.004) (0.004) (0.004) (0.002) (0.002)

Beverage wo/A -0.05*** -0.05*** -0.04*** -0.04*** -0.01*** -0.01***
(0.004) (0.004) (0.004) (0.004) (0.002) (0.002)

Beverage w/A -0.07*** -0.07*** -0.06*** -0.06*** -0.01*** -0.01***
(0.008) (0.008) (0.006) (0.006) (0.004) (0.004)

Tacos 0.02** 0.02** 0.01** 0.01** 0.00* 0.00*
(0.005) (0.005) (0.004) (0.004) (0.002) (0.002)

Pizza 0.05*** 0.05*** 0.04*** 0.04*** 0.01** 0.01**
(0.007) (0.007) (0.006) (0.006) (0.003) (0.003)

Chicken 0.01 0.01 0.02 0.02 -0.00 -0.00
(0.014) (0.014) (0.012) (0.012) (0.005) (0.005)

BBC 0.03 0.03 0.03 0.03* 0.00 0.00
(0.016) (0.016) (0.015) (0.015) (0.005) (0.005)

Combo wo/B 0.01 0.01 0.02 0.02 -0.01 -0.01
(0.020) (0.020) (0.017) (0.017) (0.008) (0.008)

Combo w/B 0.01 0.01 0.01 0.01 0.01* 0.01*
(0.008) (0.008) (0.007) (0.007) (0.003) (0.003)

Group Combo 0.02 0.02 0.01 0.01 0.01 0.01
(0.011) (0.011) (0.009) (0.009) (0.005) (0.005)

Dessert Combo -0.02 -0.02 -0.04 -0.04 0.02 0.02
(0.047) (0.047) (0.042) (0.042) (0.022) (0.022)

Extras -0.02*** -0.02*** -0.01*** -0.01*** -0.00 -0.00
(0.004) (0.004) (0.003) (0.003) (0.002) (0.002)

Others -0.04* -0.04* -0.03 -0.03 -0.01* -0.01*
(0.019) (0.019) (0.017) (0.017) (0.005) (0.005)

NA -0.04*** -0.04*** -0.04*** -0.04*** -0.01** -0.01***
(0.004) (0.004) (0.004) (0.004) (0.002) (0.002)

Ambiguous -0.03 -0.03 -0.05** -0.05** 0.03 0.03
(0.026) (0.025) (0.020) (0.020) (0.018) (0.018)

Observations 116756785 116756785 116756785 116756785 116756785 116756785
Adjusted R2 0.008 0.008 0.008 0.007 0.005 0.005
Restaurant FE Yes Yes Yes Yes Yes Yes
Time FE Yes . Yes . Yes .
DOW FE . Yes . Yes . Yes
DOC FE . Yes . Yes . Yes
Month FE . Yes . Yes . Yes
Year FE . Yes . Yes . Yes
DOW and DOC stand for day of the week and calendar respectively.
Estimates multiplied by 100 for ilustration purposes.
Standard errors clustered at restaurant level. *** p<0.01, ** p<0.05, * p<0.1
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Table 13: Stylized Facts of Pride Changes
Size of Price Adjustments

All Dishes (Representative or Not)

(1) (2) (3) (4) (5) (6)
Abs Price Adj Abs Price Adj Abs Price Adj Abs Price Adj Abs Price Adj Abs Price Adj

Starter 0.00 0.00 0.00 0.00 0.00 0.00
(.) (.) (.) (.) (.) (.)

Salad -0.12 -0.04 0.04 0.13 -1.60 -1.11
(0.284) (0.282) (0.270) (0.265) (0.875) (0.888)

Soup 0.06 0.04 0.32 0.26 -1.91* -1.15
(0.322) (0.320) (0.332) (0.324) (0.963) (0.976)

Eggs -0.82* -0.84* -0.72 -0.77* -1.26 -0.84
(0.392) (0.425) (0.372) (0.388) (0.978) (1.240)

Mains -0.49* -0.45* -0.37 -0.36 -1.40* -1.14
(0.206) (0.207) (0.198) (0.198) (0.620) (0.639)

Dessert 0.50 0.57* 0.61* 0.65** -0.27 -0.05
(0.258) (0.261) (0.249) (0.250) (0.748) (0.776)

Beverage wo/A 1.35*** 1.40*** 1.49*** 1.50*** 0.12 0.15
(0.256) (0.259) (0.245) (0.248) (0.780) (0.810)

Beverage w/A 0.79 0.82 0.80 0.73 -1.08 -1.59
(0.513) (0.513) (0.510) (0.502) (1.863) (1.827)

Tacos 0.18 0.25 0.13 0.20 -0.68 -0.60
(0.306) (0.307) (0.282) (0.284) (0.928) (0.949)

Pizza -1.86*** -1.92*** -1.53*** -1.69*** -0.85 -0.47
(0.433) (0.492) (0.414) (0.506) (1.146) (1.125)

Chicken -1.11 -1.13 -1.29 -1.32* -0.48 -0.48
(0.711) (0.687) (0.662) (0.655) (2.716) (2.728)

BBC -2.26* -2.05* -2.19** -2.17** -4.82 -6.47
(0.994) (0.977) (0.825) (0.801) (6.306) (6.176)

Combo wo/B -0.82 -0.23 -0.77 0.01 0.66 2.22
(1.164) (1.148) (1.096) (1.036) (3.692) (2.862)

Combo w/B 0.06 0.16 -0.32 -0.15 1.98 1.53
(0.436) (0.445) (0.395) (0.412) (1.399) (1.420)

Group Combo -0.74 -0.61 -0.33 -0.45 -0.15 0.38
(0.534) (0.565) (0.512) (0.523) (1.538) (1.728)

Dessert Combo 2.41 3.27 4.35* 4.17* 2.39 7.02**
(1.949) (2.034) (2.078) (1.964) (1.511) (2.550)

Extras 1.00*** 0.97*** 1.21*** 1.21*** -0.54 -0.61
(0.249) (0.249) (0.245) (0.243) (0.705) (0.735)

Others 3.36** 3.16* 3.44*** 3.58*** -0.02 0.40
(1.202) (1.367) (0.958) (1.085) (4.260) (4.676)

NA 0.78*** 0.92*** 0.86*** 0.98*** -0.45 -0.21
(0.219) (0.226) (0.210) (0.217) (0.638) (0.666)

Ambiguous -1.39 -1.20 -2.31 -2.41 -2.21 -2.47
(1.980) (1.795) (2.291) (2.453) (1.952) (1.752)

Observations 228072 228072 190681 190681 35859 35873
Adjusted R2 0.476 0.451 0.509 0.479 0.619 0.567
Restaurant FE Yes Yes Yes Yes Yes Yes
Time FE Yes . Yes . Yes .
DOW FE . Yes . Yes . Yes
DOC FE . Yes . Yes . Yes
Month FE . Yes . Yes . Yes
Year FE . Yes . Yes . Yes
DOW and DOC stand for day of the week and calendar respectively.
Estimates multiplied by 100 for ilustration purposes.
Standard errors clustered at restaurant level. *** p<0.01, ** p<0.05, * p<0.1
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Figure 21: Stylized Facts of Price Adjustments
Comparison By Dish Sample

Price Changes Regardless Sign of Adjustment
(a) Frequency of Changes
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(b) Size of Adjustments
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Figure 22: Stylized Facts of Price Adjustments
All Observations (Not Only Representative) Dishes

By Sign of Price Adjustment
(a) Frequency of Changes
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(b) Size of Adjustments
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Figure 23: Stylized Facts of Price Hikes at Different Stages of the Pandemic
Representative Dishes

(a) Frequency of Changes

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

Starter

Salad

Soup

Eggs

Mains

Dessert

Beverage wo/A

Beverage w/A

Tacos

Pizza

Chicken

BBC

Combo wo/B

Combo w/B

Group Combo

Dessert Combo

-.2 0 .2 .4 .6
Percent (%)

(b) Size of Adjustments

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

1st Wave (1/2)
1st Wave (2/2)

2nd Wave
3rd Wave

Starter

Salad

Soup

Eggs

Mains

Dessert

Beverage wo/A

Beverage w/A

Tacos

Pizza

Chicken

BBC

Combo wo/B

Combo w/B

Group Combo

Dessert Combo

-10 0 10 20 30
Percent (%)

50



Figure 24: Stylized Facts of Price Drops at Different Stages of the Pandemic
Representative Dishes
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A.5 In-Sample FAFH Inflation

Table 14: Descriptive Statistics
By Explanatory Variable from 2006 to 2017

Mean SD Min Max
Electricity 3.49 4.87 -6.58 14.47
LP Gas 5.22 6.32 -7.85 37.76
Natural Gas 5.28 8.58 -18.17 30.58
Perm N Workers 3.22 3.27 -5.03 8.58
Temp N Workers 5.45 22.93 -62.58 68.26
Perm Wage Bill 7.31 3.73 -2.80 13.70
Perm Mean Wage 4.09 1.40 0.61 7.27
Temp Wage Bill 7.78 27.15 -65.50 86.48
Temp Mean Wage 2.33 8.25 -15.97 21.14
Perm Real Wage Bill 3.31 4.22 -8.20 10.08
Perm Mean Real Wage 0.09 1.53 -3.46 3.39
Temp Real Wage Bill 7.78 27.15 -65.50 86.48
Temp Mean Real Wage 2.33 8.25 -15.97 21.14
(City) Avocado 8.83 28.65 -68.68 96.52
(City) Rice 6.14 15.93 -28.95 59.85
(City) Sugar 7.60 28.27 -57.66 90.70
(City) Zucchini 4.00 45.72 -158.60 166.56
(City) Shrimp 2.97 9.69 -21.47 24.93
(City) Onion 6.74 49.44 -143.35 151.00
(City) Squash 2.97 42.98 -150.63 163.90
(City) Poblano Chili 3.86 40.77 -108.43 113.07
(City) Dried Chili 2.95 18.93 -52.51 50.23
(City) Serrano Chili 4.99 56.98 -152.48 151.37
(City) Peach 3.83 33.66 -76.04 90.16
(City) Green Beans 3.09 45.86 -135.25 119.89
(City) Beans 7.33 27.21 -43.14 72.99
(City) Other Fruits 3.21 20.57 -50.86 58.63
(City) Guava 4.99 25.08 -73.91 90.63
(City) Eggs 7.25 22.23 -57.06 72.37
(City) Tomato 5.11 42.28 -123.60 129.39
(City) Lettuce 5.57 15.44 -45.03 69.90
(City) Legumes 7.25 18.40 -27.19 57.28
(City) Lemon 10.52 46.29 -136.37 148.76
(City) Corn 10.83 19.65 -15.96 61.10
(City) Apple 8.78 21.25 -46.30 57.38
(City) Fish Others 1.42 4.59 -8.83 13.23
(City) Melon 4.87 23.67 -76.62 69.24
(City) Orange 8.72 31.86 -98.89 74.40
(City) Nopales 2.97 48.92 -163.32 135.55
(City) Potatoe 2.35 30.70 -79.95 67.24
(City) Papaya 4.75 35.78 -84.28 89.72
(City) Cucumber 4.16 38.67 -125.12 116.32
(City) Pear 7.40 25.01 -72.53 106.91
(City) Fish 3.76 4.93 -10.12 22.19
(City) Pineapple 5.49 22.79 -98.02 62.25
(City) Bananas 4.25 22.96 -65.23 74.72
(City) Chicken 6.20 17.81 -40.18 56.25
(City) Watermelon 5.34 26.51 -58.96 91.30
(City) Green Tomato 0.69 66.85 -169.96 177.54
(City) Grape 8.89 22.89 -55.94 87.55
(City) Carrot 4.95 39.47 -123.70 137.96
(Met) Avocado 8.59 24.36 -69.09 86.52
(Met) Rice 6.93 15.45 -21.88 62.32
(Met) Sugar 7.50 28.39 -58.43 90.59
(Met) Zucchini 5.26 40.43 -143.49 136.48
(Met) Onion 5.00 57.02 -191.35 165.32
(Met) Pork 5.52 10.43 -16.01 34.41
(Met) Squash 4.92 33.92 -91.82 153.38
(Met) Poblano Chili 3.98 32.32 -76.22 94.82
(Met) Dried Chili 3.54 15.50 -31.85 39.83
(Met) Serrano Chili 5.25 50.10 -134.32 137.65
(Met) Peach 2.85 23.70 -50.79 67.76
(Met) Green Beans 4.66 38.37 -117.15 98.96
(Met) Beans 7.74 26.42 -44.07 71.08
(Met) Other Fruits 4.03 13.29 -40.73 44.06
(Met) Guava 2.37 18.37 -41.76 45.59
(Met) Eggs 7.28 22.53 -55.81 75.87
(Met) Tomato 4.60 48.00 -109.21 123.33
(Met) Lettuce 5.38 13.76 -48.31 47.40
(Met) Lemon 10.23 47.40 -145.52 153.60
(Met) Corn 11.03 26.84 -46.60 94.14
(Met) Apple 8.46 15.68 -31.33 55.54
(Met) Melon 4.99 20.18 -53.20 61.22
(Met) Orange 6.96 28.49 -92.74 70.26
(Met) Nopales 5.50 42.10 -143.35 120.71
(Met) Potatoe 3.55 30.43 -58.78 80.90
(Met) Papaya 3.44 30.91 -71.46 78.87
(Met) Cucumber 6.57 33.03 -82.20 99.73
(Met) Pear 5.89 17.38 -32.42 57.96
(Met) Pineapple 9.01 30.78 -109.78 91.43
(Met) Bananas 5.33 18.34 -47.69 63.39
(Met) Beef 6.21 7.50 -7.20 24.84
(Met) Watermelon 4.80 22.62 -56.68 85.37
(Met) Green Tomato 0.86 63.06 -160.67 169.66
(Met) Grape 6.15 22.05 -59.88 74.52
(Met) Carrot 5.42 32.34 -114.08 116.99
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Table 15: Grid of Hyper-parameters for Cross-Validation

Model Parameters

Elastic Net
α ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2, 5, 10, 20, 30, 40, 50}
L1 ratio ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Lasso
α ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2, 5, 10, 20, 30, 40, 50}

Ridge
α ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2, 5, 10, 20, 30, 40, 50}

Random Forest Regression
N Estimators ∈ {15, 25, 50, 100, 150, 200, 250, 300}
Max Depth ∈ {3, 5, 10, 15, 20, 30, 40}
Min Sample Split ∈ {5, 10, 20, 30, 40, 50}

Support Vector Machine Regression
Kernel ∈ {rbf, linear, sigmoid, poly}
Gamma ∈ {scale, auto}

Note: Cross-validation through expanding window approach using fortnightly observations from 2006 to 2017.
Benchmark results are computed using 24 folds.

Table 16: Hyper-parameter Selection
By Model and Horizon

Horizon (Months)
Model Parameter t t+ 3 t+ 6 t+ 9 t+ 12

Elastic Net
α 0.0005 0.001 0.005 0.001 0.05
L1 ratio 0.9 0.9 0.1 0.9 0.6

Lasso
α 0.0005 0.001 0.0005 0.001 0.05

Ridge
α 0.1 20 5 5 50

Random Forest Regression
N Estimators 200 300 50 300 100
Max Depth 5 10 3 10 20
Min Sample Split 5 5 10 5 5

Support Vector Machine Regression
Kernel rbf linear linear linear rbf
Gamma auto scale scale scale auto

Table 17: Models’ Root Mean Squared Error
By Horizon of Prediction. Training period using determinants from 2006 to 2017.

Horizon (Months)
Model t t+ 3 t+ 6 t+ 9 t+ 12
EE 0.53940 0.57309 0.72316 0.30331 0.83982
Lasso 0.44220 0.47105 0.72179 0.41822 0.77364
Ridge 0.34456 0.37075 0.33558 0.29300 0.39168
RFR 0.14271 0.13770 0.29559 0.37066 0.21291
SVMR 0.38481 0.37851 0.34564 0.34869 0.37814
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Figure 25: Models’ Fit Over Training Period
By Horizon of Prediction. Only first fortnights of every month are plotted for illustration purposes.
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(b) Lasso
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(c) Ridge
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(d) RFR
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(e) SVMR
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Figure 26: Complete Set of Features
Features on the vertical axis and horizons in the horizontal axis.a
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A.6 Out-of-Sample FAFH Inflation Goodness-of-Fit

Figure 27: Models’ Root Mean Squared Error from 2018 to 2019
By Horizon of Prediction.
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Figure 28: Models’ Predictions
By Horizon of Prediction. Only first fortnights of every month are plotted for illustration purposes.
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Note: Dashed lines indicate the first fortnight of March 2020 and March 2021.
Vertical lines highlight out of sample predictions.

(b) Lasso
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Note: Dashed lines indicate the first fortnight of March 2020 and March 2021.
Vertical lines highlight out of sample predictions.

(c) Ridge
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Note: Dashed lines indicate the first fortnight of March 2020 and March 2021.
Vertical lines highlight out of sample predictions.

(d) RFR
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Note: Dashed lines indicate the first fortnight of March 2020 and March 2021.
Vertical lines highlight out of sample predictions.

(e) SVMR
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Note: Dashed lines indicate the first fortnight of March 2020 and March 2021.
Vertical lines highlight out of sample predictions.

(f) AR
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Note: Dashed lines indicate the first fortnight of March 2020 and March 2021.
Vertical lines highlight out of sample predictions.
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Table 18: Diebold-Mariano’s Forecasting Accuracy 2018-2019a

Horizon t + 0
EE Lasso Ridge RFR SVMR AR

EE - o -
Lasso - o -
Ridge - o -
RFR RFR* - o -
SVMR - o -
AR AR*** AR*** AR* AR*** - o -

Horizon t + 3 months
EE Lasso Ridge RFR SVMR AR

EE - o -
Lasso Lasso*** - o -
Ridge Lasso** - o -
RFR - o -
SVMR - o -
AR AR* AR*** AR** - o -

Horizon t + 6 months
EE Lasso Ridge RFR SVMR AR

EE - o -
Lasso - o -
Ridge - o -
RFR RFR* - o -
SVMR - o -
AR AR*** AR*** AR*** - o -

Horizon t + 9 months
EE Lasso Ridge RFR SVMR AR

EE - o -
Lasso - o -
Ridge - o -
RFR RFR* - o -
SVMR SVMR* - o -
AR - o -

Horizon t + 12 months
EE Lasso Ridge RFR SVMR AR

EE - o -
Lasso EE** - o -
Ridge EE*** - o -
RFR - o -
SVMR - o -
AR - o -

aNote: Each cell reports the model with better accuracy between the column-model and row-model in
question if statistically significant. Empty spaces in the lower diagonal imply no statistically significant
difference in the accuracy between the column-model and the row-model. *, **, *** represent p < 0.10,
p < 0.05 and p < 0.01, respectively, in the Diebold-Mariano test.
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