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Abstract 

No matter its source, financial- or policy-related, uncertainty can feed onto itself to grow larger and 

flow into a single stream, disguising its true origin and leading to identification challenges in empirical 

applications. We add to the existing stock of analytical methods able to disentangle among various types 

of uncertainty shocks, by generalising an identification approach based on magnitude restrictions to a 

multi-country setting. Within the Euro Area, we find evidence of sizable spill-overs arising from 

country-specific uncertainty shocks, with financial realm being a more important source than the policy 

realm. By leveraging on the flexibility of our identification strategy, we can quantify the valuation 

‘mistakes’ that arise from the inability to separate uncertainty shock types within a given country; we 

then show that the implicit under/over-valuations can be related to simple cross-sectional indicators of 

financial and political stability, especially before the 2008/2009 crisis. We also find that ECB deployed 

its unconventional tools against those identified uncertainty shocks with the highest potential to spill 

over abroad, thus helping to avoid financial market segmentation within the Euro Area.  
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1. INTRODUCTION 

For a few days every year, in Davos, an exclusive alpine resort in Switzerland, global financial elite can 

mingle with political elite, central bankers and policymakers. And yet, the World Economic Forum is a 

hallmark event that exposes only in part the interesting overlaps existing between financial and policy 

realms. From an analytical perspective, these overlaps and cross-influences can cancel or amplify each 

other, especially during uncertain times. Financial stress and market uncertainties can bring changes in 

policies or political considerations, as much as uncertainty stemming from policy changes creates 

anxieties for financial markets and investors. No matter its source, financial or policy-related, 

uncertainty will feed onto itself, contaminating the real economy, and leading to identification 

challenges in empirical applications. We try to add to the existing stock of analytical methods able to 

disentangle among various sources or types of uncertainty but in a multi-country context, where spill-

overs and overlaps are expected to pose additional identification challenges.  

From this perspective, the European Union (EU), and the Euro Area (EA) in particular – with its 

rather incomplete institutional architecture –, make for an interesting case due to a high potential for 

uncertainty spill-overs and overlaps. On the one hand, domestic policy uncertainty can reverberate at 

European and global levels with serious financial consequences measured in terms of sovereign yields, 

as well as stock prices and currency moves. In June 2015 the Greek government called a snap 

referendum over its bailout terms, trigering chaos in European policy circles, but also among financial 

investors who feared a Euro Area (EA) breakdown; as market sentiment turned sour, Greek sovereign 

yields reached unprecedented levels, while the country was effectively cut off global financial markets 

and forced to impose strict capital controls. On the other hand, banking sector turmoil can echo in the 

policy domain, as risks get transferred from the private to the public sector due to bank-rescue packages 

that increase sovereign risks (see Acharya et al., 2014; Attinasi et al., 2010; Bicu and Candelon 2013; 

Stanga 2014). Ireland perfectly illustrates this latter case, when the government introduced guarantees 

to address the weakness of the domestic banking sector in September 2008, after the Lehman shock; as 

a result, banks’ credit default swaps (CDS) came down, but the Irish sovereign CDS spiked abruptly 

(Stanga 2014; Leonello 2018).  

The current paper aims at exploring the deep and complex intertwining, that is so prevalent in 

Europe, between the policy and financial realms, whose interactions might create amplification 

mechanisms for country-specific uncertainty shocks. As sovereign yields set the risk-free benchmark 

for financing costs in a given country, financial markets play a fundamental role in the transmission of 

both types of uncertainty shocks to the real economy (see Christiano et al., 2014; Gilchrist et al., 2014). 

Concentrating on the very first stage of this process, we ask whether such mechanisms work to amplify 

financial uncertainty, policy uncertainty, none, or both. What types of uncertainty arise most often in 

different EA countries and what drives the heterogeneity seen in results? Financial investors do care if 

they face a sovereign or a banking crisis because their hedging strategies would be different in each 
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case. But if they err on their initial evaluations, confusing one crisis type with the other, what helps 

them correct such ‘mistakes’? We seek therefore to contribute to a new and rapidly expanding literature 

strand that deals with various uncertainty measures, their sources, effects, and cross-border spill-overs 

(see among many others Bekaert et al., 2013; Caldara et al., 2016; Bacchiocchi 2017; Shin and Zhong 

2018; Ludvigson et al., 2019; Angelini et al., 2019).  

We are also interested in examining ECB’s reactions, given the lack of EA institutional leadership 

in dealing with various uncertainty sources, to which one can recently add geopolitical anxieties. The 

existing literature on (monetary and fiscal) policy interactions within a common currency area does not 

provide sufficient clarifications in this regard (for a recent survey, see Foresti, 2018). ECB faces 

numerous and delicate policy trade-offs in pursuing its price stability mandate, set according to the EU 

Treaties. A clearer distinction between policy and financial uncertainty shocks could improve ECB 

policy effectiveness, narrow the spread in sovereign yields to reduce asymmetries in the transmission 

of its monetary policy, and even shield it from possible legal actions.1 There have been many 

controversies surrounding ECB monetary policy conduct, especially with respect to its unconventional 

measures. In August 2011, for example, the Securities Markets Programme (SMP) made some sizeable 

bond purchases from the EA periphery, especially Italian and Spanish sovereigns, with some positive 

effects on yield spreads in unsettled market conditions. However, the program was soon suspended for 

Italian bonds as it became clear that the Berlusconi government was not delivering on its promised 

reforms; fast forward in November 2011, market confidence in the Italian government collapsed and a 

new prime minister was appointed.  

We approach all these questions from an empirical perspective that can efficiently address the 

inherent identification challenges. Dealing with multi-country models requires a different framework 

for conceptualizing the nature of shocks that one wishes to identify, particularly because of the strong 

cross-sectional dimension of these models (see Dees et al 2014; Dungey and Osborn, 2014). As a first 

contribution to the literature, we apply absolute magnitude restrictions in a global vector autoregressive 

(GVAR) model by adapting and generalising De Santis and Zimic (2018) approach such as to allow for 

the implementation of a fuzzy identification strategy. This helps us to quantify the valuation ‘mistakes’ 

that arise when financial markets and investors have imperfect knowledge about the type of the crisis 

they are facing, but know exactly the origin country. The implicit under/over-valuations in country risk 

profiles can then be related to some simple cross-sectional indicators of financial and political stability; 

while this relation was strong before the 2008/2009 crisis, it has weakened recently suggesting that 

large changes in the information set can help in correcting (at least partially) these valuation ‘mistakes’. 

Our second contribution is to reveal the sizeable spill-overs generated by the identified uncertainty 

 
1 See the decision of the Court of Justice of the European Union in favour of the ECB’s Public-Sector Purchase 

Programme (PSPP) at https://www.reuters.com/article/us-ecb-policy-court/ecb-wins-courts-backing-for-buying-

government-debt-idUSKBN1OA0Q0. This decision stands in contrast to a more recent decision of the German 

Constitutional Court, thus raising unprecedented legal challenges for the EU governance system. 

https://www.reuters.com/article/us-ecb-policy-court/ecb-wins-courts-backing-for-buying-government-debt-idUSKBN1OA0Q0
https://www.reuters.com/article/us-ecb-policy-court/ecb-wins-courts-backing-for-buying-government-debt-idUSKBN1OA0Q0
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shocks, mainly within the EA, with financial realm being a more important and systemic source than 

the policy realm. In a back-testing exercise, our identified shocks match the dates of some important 

events that left a mark on the European project. We also find that ECB has deployed its unconventional 

tools to counteract particularly those uncertainty shocks with more significant effects abroad, helping 

perhaps to avoid financial market segmentation within the EA.   

There are few other distinct but comparable approaches in a rapidly expanding empirical literature 

aiming at identifying (different types of) uncertainty shocks (e.g. Bacchiocchi 2017; Shin and Zhong 

2018; Ludvigson et al., 2019; Angelini et al., 2019); as each methodological approach has its own 

merits, we regard them as largely complementary to ours. Inspired by event studies, the identification 

based on magnitude restrictions was proposed by De Santis and Zimic (2018) to expose spill-overs 

between U.S. and European sovereign bond yields. However, it is quite flexible and general to allow 

for the identification of shocks from within any strongly correlated set of variables.  

To capture financial uncertainty, we use the Composite Indicator for Systemic Stress (CISS), a 

highly relevant policy indicator for ECB, which also makes this indicator available on a weekly 

frequency, and for all EU Member States (see Hollo et al., 2012). Compared to other financial 

uncertainty measures that are probably more readily available (e.g. CDS, volatility, cross-sectional 

variation), composite indicators summarize a higher dimensional space and are more efficient in 

reflecting financial stress across several market segments.2 Broader (or Knightian) uncertainty, instead, 

encompassing changes in the political landscape, in rhetoric, opinions and policies is harder to measure 

(see discussion in Bekaert et al., 2013; Jurado et al., 2015; Baker et al., 2016; Ludvigson et al., 2019). 

The literature is booming with different measures for this type of uncertainty, spanning different 

methodologies and data sources. In a highly influential paper, Baker et al., (2016) propose an economic 

policy uncertainty (EPU) measure based on the frequency of some relevant keywords in major 

newspapers; they further show their indicator is orthogonal to other common measures of risk and 

uncertainty, such as forecasts dispersion or financial volatility etc. Because of its wide availability for 

different EU and EA countries, and its robustness in empirical applications, we rely on EPU as a 

measure of (economic) policy uncertainty.3 In spite of a high correlation seen during specific periods 

of time, CISS and EPU draw on different data sources and construction methodologies.4  

 
2 Various studies, such as Fratzscher et al., (2016), Burriel and Galesi (2018), Boeckx et al., (2017) use the CISS 

index proposed in Hollo et al., (2012) to uncover transmission channels and consequences of financial stress 

across European markets. 
3 Ludvigson et al., (2019) employ EPU, along with other measures of uncertainty, to identify the consequences of 

uncertainty shocks on output; Ioannidis and Ka (2021) use EPU to explain term premia; Stock and Watson (2012), 

Benati (2014), Caldara et al., (2016), Choi and Furceri (2019) use EPU for robustness checks.   
4 A related literature strand employs sovereign and banking risk measures derived directly from market dynamics 

and prices, like CDSs for example (see Bicu and Candelon 2013; Stanga 2014; Acharya et al., 2014; Greenwood-

Nimmo et al., 2019). One can easily substitute our uncertainty proxies with CDSs, for example, with no material 

consequences on the feasibility of our empirical approach and identification method. However, the number of 

confounding factors and common components that need to be removed before identifying country-specific shocks 
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The remaining of the paper is organised as follows. Section 2 discusses the theoretical background 

we consider relevant for our empirical analysis. Section 3 presents the data and the modelling approach. 

Section 4 provides a detailed overview of the main results and their policy implications. Finally, section 

5 concludes. More detailed results from our analysis are presented in the Appendixes. 

 

2. THEORETICAL BACKGROUND  

This section briefly summarises the literature strands that most closely relate to our empirical model. 

An important thread refers to the sovereign-bank nexus, which can capture the most relevant 

interactions between financial and policy realms, although from a single-country perspective. What we 

are most interested in understanding here is the very first stage of the interaction process, where policy 

and financial uncertainty usually combine and amplify each other, leading to identification challenges 

in empirical works. Once uncertainty arises, it propagates to inflict the real sector, affecting investment 

dynamics, asset prices, firms’ balance sheets, etc., amplified mainly by financial frictions (see among 

many others, Arellano et al., 2010; Christiano et al., 2014; Bloom 2014; Gilchrist et al., 2014; Bloom 

et al., 2018).5 To keep our model’s estimation tractable, we choose to strip these mechanisms to the 

bare bone by reducing the set of financial variables used and letting sovereign yields, which set the risk-

free benchmark for financing costs in any country, play the key role in the model’s dynamics.  

The theoretical mechanism underpinning the main feedback loops that arise between banks and 

sovereigns are best described in Farhi and Tirole (2017), Faia (2017), Leonello (2018), Allen et al., 

(2018), Cooper and Nikolov (2018).6 For brevity, we only summarize the two key ingredients featuring 

in these models. On the one hand, since banks hold sovereign bonds in their books for liquidity and 

regulatory reasons, sovereign distress can contaminate the banking sector. On the other hand, the 

(implicit or explicit) guarantees provided by the government allow banking sector distress to inflict the 

public sector. Empirical evidence on these theoretical transmission mechanisms is provided, among 

many others, in Bicu and Candelon (2013) and Stanga (2014). While the evidence is clear, there are 

some nuances one needs to consider. A government’s commitment to bailing out the banking sector 

depends on its fiscal capacity and debt dynamics, but even these constraints can fail. Moral suasion for 

example explains why EA periphery banks had higher levels of domestic sovereign bonds in their books 

(Acharya et al., 2014; Koijen et al., 2017; Greenwood-Nimmo et al., 2019). Besides the fiscal costs of 

 
would increase, given the stronger statistical overlaps; also, the high level of integration across EA banking sector 

would make it difficult to pick up bank-specific CDSs to be paired with a particular country’s CDS. 
5 For empirical evidence on these transmission mechanisms see Stock and Watson (2012); Caldara et al., (2016).  
6 There is a substantial literature strand discussing other compelling mechanisms that can amplify the feedback 

loops between financial and policy realms; however, these alternative explanations usually involve political 

factors, as for example in Funke et al., (2016), exposing thus slower transmission mechanisms that focus on voters’ 

choices and behaviours.      
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a bailout, the central bank can be involved along with the government, in which case there will be 

inflation and devaluation costs (Farhi and Tirole, 2017). 

Yet, without a fully operational Banking Union and a complete political integration within Europe, 

the theoretical mechanisms describing these sovereign-bank feedback loops do not directly apply at the 

EA level. Therefore, focusing on domestic bond holdings and government guarantees is no longer 

sufficient; instead, the focus must fall on the mechanisms that explain the rebalancing of international 

portfolios across financially integrated markets. The literature distinguishes between two main potential 

mechanisms that rely either on (i) cross-border information frictions as in Freixas and Holthausen, 

(2004) or on (ii) information acquisition choices made by investors facing complex information cost 

structures as in Van Nieuwerburgh and Veldkamp, (2010), Garleanu et al., (2015). In general, risk in 

these models is seen as an aggregation of a common component and an idiosyncratic one, whose 

interactions with the available information depend on learning opportunities and costs.  

European cross-border banking has dramatically increased financial integration as a direct result of 

the two banking directives adopted in 1977 and 1989 that aimed at eliminating restrictions, harmonizing 

regulation, and achieving better coordination in prudential supervision. Freixas and Holthausen (2004) 

show that integration of the EA interbank market can magnify the asymmetry of information in cross-

border banking, creating a contagion channel and financial fragility. Depending on the amount of 

information frictions, their model allows for multiple equilibria. In particular, the model differentiates 

between financial segmentation and integration, where the former relates to a case where all interbank 

transactions occur within the national borders, liquidity distribution is inefficient and interest rates are 

higher, while the latter refers to the opposite case. Their main theoretical insights are that a segmented 

market equilibrium is always possible, but an integrated market equilibrium is not necessarily feasible 

at all times.7 Asymmetries leading to market segmentation in their model arise when information 

remains locally bounded for reasons unrelated to investors’ choices, like in the case of substantial 

differences in cultures and accounting practices (e.g. policy decisions to restrict risk modelling options 

for banks), or in local policy preferences with respect to prudential supervision (e.g. commitment to 

bail out a bank in distress). These few examples seem to be pointing at uncertainty sources that originate 

in the policy realm.  

In more recent models, financial outcomes and information acquisition choices are all inter-related. 

In Van Nieuwerburgh and Veldkamp (2010) investors might not want to hold a fully diversified 

portfolio (e.g. home bias) if they can systematically collect information, preferring thus to deepen rather 

than broaden their knowledge. Garleanu et al., (2015) present a theoretical model where access to 

(foreign and domestic) financial markets is subject to information costs that lead to limited market 

 
7 Freixas and Holthausen (2004) find that the integrated market equilibrium is not welfare improving due to 

increased financial fragility. More recently, Passari and Rey (2015) conclude that large welfare gains from 

financial integration, in general, are rather hard to find (in contrast to earlier findings from Allen et al., 2011). 
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integration in equilibrium. Because portfolio diversification (i.e. participation in distant markets) and 

leverage are complements in their model, a symmetric equilibrium might fail to exist, just as in Freixas 

and Holthausen (2004). In reality, the potential for diversification benefits within the EA depends on a 

delicate balance between common and idiosyncratic factors, as well as on the information acquisition 

choices made by investors. Holding EA-periphery versus EA-core sovereign bonds has brought 

substantial profits for European banks – an investment strategy that Acharya and Steffen (2015) have 

labelled as “the ‘greatest’ carry trade ever”. These examples referring to home bias and diversification 

point instead to the financial realm as a main source of uncertainty.  

 

3. DATA AND METHODOLOGY  

3.1 The GVAR model 

The global vector autoregressive model, or GVAR, was designed to model both cross-sectional 

dependence and time-series behaviour in macroeconomic data. This very flexible empirical framework 

was originally proposed by Pesaran et al. (2004) and extended by Dees et al. (2007). In essence, the 

GVAR is a collection of country-specific vector autoregressive models (or VARs), conveniently linked 

via a weighting matrix that makes the estimation feasible by reducing the parameter space.  

The GVAR model generally embeds three channels of cross-country interactions through: (i) 

foreign-specific (denoted by an *) variables, (ii) common factors, proxied here mainly by ECB 

monetary policy proxies, and (iii) contemporaneous dependence of shocks. As long as the pairwise 

cross-country correlations left in the model residuals are low, most GVARs in the literature capture the 

cross-country interactions only through the first two channels, restricting8 the variance-covariance 

matrix to be block-diagonal (e.g. Cesa-Bianchi, 2013; Eickmeier and Ng, 2015; Feldkircher and Huber, 

2016). However, since our focus is specifically on uncertainty spill-overs, we want to capture the 

second-order moments in data as well, and therefore leave the variance-covariance matrix unrestricted.  

In the basic GVAR specification, each country 𝑖 is represented by a country-specific VAR model 

denoted as VARX (𝑝𝑖, 𝑞𝑖), with 𝑝𝑖 and 𝑞𝑖 lags, and 𝑌𝑖,𝑡 a vector of endogenous variables. Each country-

specific model is specified as: 

𝑌𝑖,𝑡 = 𝑎𝑖 + ∑ 𝐵𝑖,𝑗𝑌𝑖,𝑡−𝑗 + ∑ 𝐶𝑖,𝑗𝑌𝑖,𝑡−𝑗
∗ + 𝑣𝑖,𝑡

𝑞𝑖

𝑗=0

𝑝𝑖

𝑗=1

                                           (1) 

where 𝑎𝑖 is a vector of intercepts; 𝐵𝑖,𝑗 and 𝐶𝑖,𝑗 are coefficient matrixes; and 𝑣𝑖,𝑡 is a vector of 

idiosyncratic shocks, serially uncorrelated and with full variance-covariance matrix. The vector of 

 
8 In technical terms, this restriction would amount to a lack of contemporaneous volatility spill-overs between the 

countries included in the sample, though it would still allow for indirect volatility spill-overs that work through 

the complex lag structure of the model. 
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endogenous variables 𝑌𝑖,𝑡 includes domestic variables that are specific to country 𝑖, while foreign 

variables are denoted by 𝑌𝑖,𝑡
∗ = ∑ 𝑤𝑖,ℎ𝑌ℎ,𝑡𝑖≠ℎ , which are constructed as weighted averages of country-

specific endogenous variables using a matrix of weights, 𝑊, where for each 𝑖 we have  ∑ 𝑤𝑖,ℎ𝑖≠ℎ = 1.  

In order to solve the GVAR, we can exploit the fact that foreign variables are linear combinations 

of the complete set of domestic variables 𝑌𝑡 , , i.e. 𝑌𝑖,𝑡
∗ = 𝑊𝑖𝑌𝑡, being 𝑊𝑖 the appropriate country-specific 

link matrix based in our case on IMF CPIS data. Starting from eq. (1), if we define 𝐺𝑖,0 = [𝐼 , −𝐶𝑖,0] and 

𝐺𝑖,𝑗 = [𝐵𝑖,𝑗 , 𝐶𝑖,𝑗 ], for 𝑗 = 1, … , 𝑝 = 𝑚𝑎𝑥(𝑝𝑖 , 𝑞𝑖), for each country 𝑖 we can obtain the alternative 

notation of the country-specific model:  

𝐺𝑖,0𝑊𝑖𝑌𝑡 = 𝑎𝑖 + ∑ 𝐺𝑖,𝑗𝑊𝑖𝑌𝑡−𝑗
𝑝
𝑗=1 + 𝑣𝑖,𝑡. 

By staking all countries together, and denoting by 𝑝 = max
𝑖

(max(𝑝𝑖, 𝑞𝑖)) we obtain: 

𝐺0𝑌𝑡 = 𝑔0 + ∑ 𝐺𝑗𝑌𝑡−𝑗

𝑝

𝑗=1

+ 𝑣𝑡                                       (2)   

where 𝐺0 = (

𝐺1,0𝑊1

⋮
𝐺𝑁,0𝑊𝑁

) ,  𝐺𝑗 = (

𝐺1,𝑗𝑊1

⋮
𝐺𝑁,𝑗𝑊𝑁

), 𝑔0 = (

𝑎1

⋮
𝑎𝑁

) and 𝑣𝑡 = (

𝑣1,𝑡

⋮
𝑣𝑁,𝑡

), with 𝑁 representing the 

number of countries. Provided that 𝐺0 is invertible, we can write the GVAR in its reduced form as: 

𝑌𝑡 = ℎ0 + ∑ 𝐻𝑗𝑌𝑡−𝑗

𝑗=1

+ 𝑢𝑡                                          (3) 

where ℎ0 = 𝐺0
−1𝑔0, 𝐻𝑗 = 𝐺0

−1𝐺𝑗 are coefficients, and 𝑢𝑡 = 𝐺0
−1𝑣𝑡 are reduced form residuals with 

unrestricted covariance matrix given by Ω𝑢. This specification of the model allows us to understand the 

dynamic properties of the data, as well as the response of each variable in each country to a particular 

shock. The next step, discussed in Section 3.3, is the strategy used for the identification of the structural 

shocks, starting from the obtained residuals 𝑢𝑡, and, specifically, from the information contained in the 

covariance matrix Ω𝑢. 

 

3.2 Data and specification of the model  

Our dataset focuses on the European region that is represented here by 24 individual countries and one 

aggregate, to which we also add U.S., as summarised in Table 1. Given the limitations of our dataset, 

the EA region comprises 14 individual Member States and one aggregate, i.e. the Baltics.9 Similarly, 

 
9 Slovenia and Slovakia joined EA in 2007 and 2009 respectively, therefore, very early in the sample and before 

the European sovereign debt crisis. The Baltics joined the EA between 2011 and 2015, but we consider them part 

of the EA given their small relative size, highly open economies, and their participation in the European Exchange 
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the EU includes 20 individual countries, and the Baltics group.10 Outside EU, we consider Russia, 

Turkey, Norway and Switzerland due to their strategic importance (e.g. for economic, financial, 

geopolitical reasons). Finally, we add U.S. as a key global financial centre and an important source of 

macroeconomic fluctuations relevant for Europe, and for EA in particular. 

 

Table 1: Countries included in the empirical analysis 

Euro Area, EA 

Austria, AT 

Belgium, BE 

Finland, FI 

France, FR 

Germany, DE 

Greece, EL 

Ireland, IE 

Italy, IT 

Luxemburg, LU 

the Netherlands, NL 

Portugal, PT 

Slovakia, SK 

Slovenia, SI 

Spain, ES 

Baltics, BA 

Other Europe 

Czech Republic, CZ 

Denmark, DK 

Hungary, HU 

Norway, NO 

Poland, PL 

Russia, RU  

Sweden, SE 

Switzerland, CH 

Turkey, TR 

United Kingdom, UK 

 

Others 

United States, US 

 

Note: Due to data limitations for specific indicators, we aggregate Latvia, Lithuania and Estonia into a single 

group, denoted as “Baltics”; all indicators pertaining to Baltics are simple averages of the available indicators.  

 

 Our dataset consists in monthly time-series running from January 2003 to December 2018 (all data 

description and definitions are provided in Appendix A). The endogenous vector includes, besides the 

two uncertainty proxies, the 10-year sovereign yields11 such that: 𝑌𝑡 = [𝑦𝑖𝑒𝑙𝑑𝑠𝑡 , 𝐸𝑃𝑈𝑡 , 𝐶𝐼𝑆𝑆𝑡]′. In this 

way, the model captures the inherent risk–return trade-off that is relevant for financial market investors; 

sovereign yields represent the risk-free benchmark for financing costs in any give country, 

encompassing the first stage of the transmission mechanism of uncertainty to the real economy. 

Concerning our uncertainty proxies, CISS is available with a weekly frequency from the ECB data 

warehouse, but EPU indicators are available only with a monthly frequency. We believe that such a 

frequency is sufficient to uncover the most relevant spill-overs and cross-influences between the 

financial and policy uncertainty, due to the latter concept and measurement methodology. All country-

specific EPU indexes have been calculated based on the same approach, detailed in Baker et al., (2016), 

 
Rate Mechanism (ERM II) since mid-2000s – underlining the importance of ECB monetary policy for their 

economies. 
10 Romania, Bulgaria, Croatia, Malta and Cyprus suffer from limitations on data availability; aggregating these 

countries is not feasible either due to their larger heterogeneity than in the case of Baltics. 
11 As a robustness check, we use 10-year yield spreads against Germany or against U.S.; see section 4.5.   
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who perform text search on major media outlets in order to gauge the frequency of some relevant 

keywords pertaining to the economic, policy and uncertainty domains. Obviously, rumours and 

speculations about (un-announced) policy changes, intentions or political declarations can be read 

almost daily in economic and business publications, but time is of essence in order to observe sufficient 

political tensions that eventually feature prominently in the news (and get captured in the EPU). 

Considering our sample, EPU time-series12 are available for the following 13 countries: BE, DK, FR, 

DE, NL, ES, IT, EL, IE, SE, UK, RU and US. More importantly, both EPU and CISS are available in 

some countries that have taken the centre stage in various EU policy debates over the last two decades 

(e.g. BE, EL, IT, ES, FR, IE), allowing us to focus our identification strategy in the next section.  

The rich GVAR specification allows us to clean our data from aggregate dynamics that dominates 

most of the EA datasets. This ‘cleaning’ occurs through the inclusion of foreign variables 𝑌𝑖,𝑡
∗  and 

common global factors, such as the VIX index – which is a proxy for global risk appetite in the literature 

on global financial cycles (see Rey, 2015; Bruno and Shin, 2014; Miranda-Agrippino and Rey, 2015) 

as well as in the literature on global financial spill-overs (Chudik and Fratzscher, 2011).  

The original idea behind the GVAR specification is the complex re-weighting of country-specific 

VARs that reduces the parameters space and makes its estimation feasible (see Pesaran et al., 2004; 

Dees et al., 2007). To this end, we use a weighting scheme derived from data on bilateral portfolio 

exposures taken from the IMF’s Coordinated Portfolio Investment Survey (CPIS), which describes 

cross-border investments in bonds and equities.13 Due to data limitations and in order to streamline the 

interpretation of results, we use a fixed rather than a time-varying weighting matrix,14 although the latter 

would probably only amplify the effects we uncover, particularly because higher capital outflows are 

associated with spikes in contagion risk (and uncertainty spill-overs).  

Capital flows, in general, echo the risk-return trade-offs arising across limitedly integrated markets 

(see discussion in Garleanu et al., 2015; Rey, 2015; Bruno and Shin, 2014). Our modelling approach 

also reflects the link between international capital flows and changes in sovereign yields through the 

international portfolios rebalancing channel. According to this literature strand (see Rey, 2015; Bruno 

and Shin, 2014; Cerutti et al., 2017; Choi and Furceri, 2019), global capital flows co-move with global 

risk factors and monetary policy changes in centre countries like U.S. and EA. By amplifying the effects 

 
12 We download all EPU time-series from www.policyuncertainty.com.     
13 Data source is http://data.imf.org/cpis (see Appendix A). A similar weighting scheme based on CPIS data is 

employed, for example, in Hebous and Zimmermann (2013) and Greenwood-Nimmo et al. (2019). Most GVARs 

instead use weighting schemes based on bilateral trade flows. Eickmeier and Ng (2015) investigate several 

weighting schemes (e.g. based on bilateral trade, portfolio investment, foreign direct investment, banking 

exposures) and find that a combination between trade and financial weights works best to expose credit supply 

shocks in a GVAR model including real and financial variables. See also Feldkircher and Huber (2016) for an 

analysis of different weighting schemes in GVARs. 
14 Large part of the GVAR literature simply employs fixed rather than time-varying weighting matrixes focusing 

more on the interactions of the model variables, rather than on weights.  

http://www.policyuncertainty.com/
http://data.imf.org/cpis
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of foreign shocks on the domestic economy, capital flows can limit the policy options available to 

governments (Dragomirescu-Gaina and Philippas, 2015) and/or financial supervisory authorities (Allen 

et al., 2011), further increasing policy uncertainty. The main ingredients of these mechanisms are 

mirrored in our empirical specification, which includes aggregate uncertainty (i.e. weighted averages 

of EPU and CISS), global risk proxies (i.e. VIX), sovereign yields, (weights based on) capital flows, 

and ECB policy proxies.  

To account for ECB monetary policies, we can extend the specification given in equation (1) such 

that ECB can be considered as a synthetic country in the GVAR. To highlight the ECB role in the 

model, we can re-specify the GVAR equation (1) as:   

𝑌𝑖,𝑡 = 𝑎𝑖 + ∑ 𝐵𝑖,𝑗𝑌𝑖,𝑡−𝑗 + ∑ 𝐶𝑖,𝑗𝑌∗
𝑖,𝑡−𝑗 + ∑ 𝐷𝑖,𝑗𝑋𝑡−𝑗

𝑞𝑖

𝑗=0

+𝑣𝑖,𝑡

𝑞𝑖

𝑗=0

𝑝𝑖

𝑗=1

                            (4) 

where 𝑌𝑖,𝑡 and 𝑌∗
𝑖,𝑡 are country-specific endogenous variables as before, but 𝑋𝑡 denotes the common 

variables summarising the ECB policy proxies (and policy objectives), while 𝐷𝑖,𝑗 are the associated 

coefficient matrices. Accordingly, the VARX associated with ECB will specify 𝑋𝑡 as an autoregressive 

process with lag orders given by (𝑝𝑥, 𝑞𝑥) as: 

𝑋𝑡 = 𝑚𝑥 + ∑ 𝑁𝑗𝑋𝑡−𝑗

𝑝𝑥

𝑗=1

+ ∑ 𝑃𝑗𝑌̃𝑡−𝑗

𝑞𝑥

𝑗=0

+ 𝑣𝑥,𝑡                                                            (5) 

where 𝑚𝑥, 𝑁𝑗 and 𝑀𝑗 are (matrix) coefficients, 𝑣𝑥,𝑡 is a noise term, and 𝑌̃𝑡 is a vector of feedbacks from 

the GVAR main endogenous variables, as in Burriel and Galesi (2018). Equation (5) balances 

persistence with feedback effects, and thus can be seen as a reaction function where ECB responds to 

developments in the EA region with respect to aggregate inflation, economic activity, sovereign yields, 

as well as uncertainty dynamics.15  

We follow Boeckx et al. (2017) and Burriel and Galesi (2018) and define 𝑋𝑡 above such as to capture 

the main aspects of the ECB policy toolbox. More specifically, we include: (i) a proxy for conventional 

monetary policy, denoted as 𝐶𝑀𝑃, (ii) a liquidity proxy, denoted as 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦, and (iii) an 

unconventional monetary policy proxy, denoted as 𝑈𝑀𝑃 (see data description in Appendix A). In 

particular, we proxy CMP using the Main Refinancing Operations (MRO) interest rate, which is the 

ECB main policy rate. As a liquidity proxy we use the spread between EONIA (i.e. the Euro Overnight 

Index Average) and the MRO rate. As UMP proxy we use the annual change in the (log of) ECB balance 

sheet, which has become the standard indicator in the literature on unconventional monetary policy. In 

 
15 Goldstein et al., (2011) highlight the key role of uncertainty in driving policy responses of a central bank that 

has imperfect information about the economic fundamentals but can learn from market data. In our setting, even 

if ECB has significantly extended its regulatory and prudential oversight, the heterogeneous dynamics and 

fragmentation of the EA financial system implies substantial information gains if uncertainty is reduced. 
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addition, 𝑋𝑡 includes the EA aggregate CPI inflation and (annual change in) industrial production, 

inheriting therefore all the needed ingredients of an extended monetary policy reaction function.  

Regarding the specification of the country-specific VARs, only those variables for which data is 

available are included. As an example, for Italy the endogenous vector includes all the three variables 

mentioned above, but for Portugal only 𝑦𝑖𝑒𝑙𝑑𝑠 and CISS are included because EPU is missing; for US, 

the vector of endogenous variables includes 𝑦𝑖𝑒𝑙𝑑𝑠, EPU and VIX instead, which (in the absence of 

CISS) also serves as a global proxy for financial risk.  

The foreign vector 𝑌𝑖,𝑡
∗  includes the foreign counterparts of the domestic variables, but also VIX and 

ECB proxies, which feature only in EA countries’ models. Moreover, for all EU countries, we capture 

the common European policy-making framework through the inclusion of 𝐸𝑃𝑈∗, and the common 

financial regulatory framework through the inclusions of 𝐶𝐼𝑆𝑆∗. Given its dominant global financial 

position, there is no 𝑌𝑖,𝑡
∗  specified for the US model.  

Following Pesaran et al. (2004) and Dees et al. (2007), we estimate the parameters of the reduced-

form GVAR, with ECB treated as a synthetic country, and use the information contained in the 

covariance matrix Ω𝑢 to identify the structural shocks as described in the following section. 

 

3.3 Identification through absolute magnitude restrictions 

As noted in Dees et al (2014) and in Dungey and Osborn (2014), dealing with multi-country models is 

challenging because it requires a different framework for conceptualizing the nature of shocks that one 

wishes to identify, particularly due to the strong cross-sectional dimension of these models. Here lies 

one of the main contributions we bring to the uncertainty-related empirical literature, which deals 

largely with shock identification in single country models (noteworthy exceptions are Bicu and 

Candelon, 2013; Stanga, 2014; Acharya, et al., 2014; Bacchiocchi, 2017; Greenwood-Nimmo, et al., 

2019). Our GVAR specification can elegantly solve such challenges by effectively removing the 

common (or aggregate) component, which then reduces the cross-sectional correlation of residuals. To 

wit: the largest cross-sectional correlation in our GVAR residuals is 0.083, and the corresponding 

median correlation across all model equations is 0.0001.16  

In terms of identification, we extend De Santis and Zimic (2018) and implement a structural 

identification through absolute magnitude restrictions in a multi-country modelling framework. To 

better reveal the value of identifying two types of uncertainty shocks, besides the main identification 

we also propose a fuzzy identification. The main identification strategy pins down both the origin 

 
16 Such small correlations, however, cannot be completely neglected, particularly in a study dealing with 

uncertainty spill-overs for which second moments are most relevant; therefore, we do not restrict the variance-

covariance matrix of the reduced-form model. Not including the country-specific foreign vector 𝑌𝑖.𝑡
∗  would rise 

all these cross-sectional correlations to within the 0.2 – 0.4 range. 
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country and type of the (uncertainty) shock, while the fuzzy identification only pins down the origin 

country, allowing for significant overlaps (i.e. measured in terms of covariance) between the two 

uncertainty shocks; more technical details are provided in Appendix C. Unless otherwise stated, the 

results and the discussion refer to the main identification strategy.  

Any structural identification requires a mapping from reduced-form residuals, 𝑢𝑡, into structural 

ones, 𝜀𝑡, say in the form: 𝑢𝑡 = 𝑆𝜀𝑡, where 𝑆 is a matrix that is the focus of any identification strategy. 

If we normalize the structural shocks to have unit variance 𝐸(𝜀𝑡𝜀𝑡
′) = 𝐼, then we have that Ω𝑢 = 𝑆𝑆′. A 

candidate for 𝑆 can be obtained by orthogonalizing the reduced form residuals through a rotation of the 

Cholesky factor of Ω𝑢 as in Uhlig (2005) or Bacchiocchi and Kitagawa (2020), where 𝑆 = Ω𝑡𝑟𝑄, for 

an orthogonal matrix 𝑄. Focusing on this latter, unfortunately the rotation matrix 𝑄 is not unique, unless 

further (e.g. zero or sign) restrictions are imposed.  

Our identifying constraints are in the form of absolute magnitude restrictions as in De Santis and 

Zimic (2018). These restrictions work by conveniently constraining the space where specific columns 

of 𝑆 must lie. The required inequalities are such that the relative size of the contemporaneous response 

of variable 𝑖 to a shock 𝑗, with 𝑖 ≠ 𝑗, must be smaller (in absolute terms)17 than the contemporaneous 

response of variable 𝑗 to the shock 𝑗. In other words, when both variables 𝑖, 𝑗 are scaled by their standard 

deviations, the indirect effect of a structural shock 𝜀𝑗 on variable 𝑖, 𝑖 ≠ 𝑗, is lower than the direct effect 

of 𝜀𝑗 on variable 𝑗. The intuition behind applying absolute magnitude restrictions to our case is that any 

of our two uncertainty measures should be better than the other one in capturing structural shocks that 

stems from its own data/policy domain – a plausible assumption, given the obvious methodological 

differences between the two measures. Indeed, CISS is a composite indicator designed, and empirically 

tested (see Hollo et al., 2012), to quantify financial market stress rather than Knightian uncertainty; 

similarly, EPU is a news-based proxy designed to quantify policy uncertainty reflected in the media and 

related to government’s initiatives, public proposals, or changes in rhetoric and public opinions rather 

than to measure financial stress.  

For each shock and for each country in our GVAR, the object of restrictions concerns an entire 

column of 𝑆. We apply these restrictions in two different ways, to maximize the insights we can derive 

and take advantage of the flexibility of this identification approach. When performing the main 

identification, the restrictions are applied separately on the two columns of 𝑆 that correspond to the two 

country-specific uncertainty variables; this is very similar to the original approach in De Santis and 

Zimic (2018). In the case of a fuzzy identification, instead, the restrictions are applied jointly on the 

same two columns of 𝑆 but this time only the origin country is pinned down. In other words, under the 

 
17 This means that the two uncertainty variables are allowed to move contemporaneously in any direction in 

response to a structural shock, as along as the relative (measured in terms of standard deviations) impact fulfils 

the respective inequality. 
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fuzzy identification, the on-impact reactions seen in EPU and CISS are likely to be contaminated such 

that it gets observationally difficult to disentangle the origin of the shock.  

Denote the absolute value of the (𝑖, 𝑗) element of 𝑆 by 𝑆𝑎(𝑖,𝑗) and let EPU and CISS be ordered in 

the system as the first and the second variable respectively. Since we are checking restrictions by 

column, under the main identification strategy we must have that 𝑆𝑎(1,1) > 𝑆𝑎(1,𝑗) for all 𝑗 ≠ 1 and 

𝑆𝑎(2,2) > 𝑆𝑎(2,𝑗) for all 𝑗 ≠ 2. Under the fuzzy identification, instead, it is sufficient that 

𝑚𝑎𝑥(𝑆𝑎(1,1), 𝑆𝑎(1,2), 𝑆𝑎(2,1), 𝑆𝑎(2,2)) > 𝑚𝑎𝑥(𝑆𝑎(1,𝑗), 𝑆𝑎(2,𝑗)) for all 𝑗 > 2; these latter restrictions 

practically allow for any uncertainty shock to spread fast enough such as to contaminate (within one 

observational period) both EPU and CISS, thus hampering a precise separation (on a monthly basis) 

between the two shocks within a given country. Shocks that do not create quick ripple effects across 

realms would be picked up by both identifications above, but noisy and/or fast shocks would be only 

picked up by the fuzzy identification in the special case that 𝑚𝑎𝑥(𝑆𝑎(1,2), 𝑆𝑎(2,1)) is larger than 

𝑚𝑎𝑥(𝑆𝑎(1,1), 𝑆𝑎(2,2)). The feasible set of rotation matrixes is also larger under the fuzzy identification 

compared to the main identification strategy. Note also that the time aggregation bias is not an issue in 

our case, since our two identification strategies automatically deal with differences in transmission 

speed for shocks. We return to the importance of using two identification strategies in the next section.  

At this point, it is important to discuss some of the advantages of our approach in relation to other 

structural identification methods available in the broader (G)VAR literature. Firstly, our identification 

through magnitude restrictions does not impose any time precedence on the two uncertainty variables, 

like would be the case when applying a standard Cholesky identification (which is just a special case 

of the identification based on magnitude restrictions as it imposes a zero contemporaneous response of 

some variables to some shocks).18 In our case, imposing a time precedence between two uncertainty 

proxies would be a too strong assumption, given the complex, dynamic, double causality influences 

between policy and financial uncertainty. For example, in the cases of Greece and Ireland, the 

precedence of the shocks is obviously different (see Farhi and Tirole, 2017); however, for most other 

situations that are relevant for empirical analyses, it is not that clear which of the two uncertainty shocks 

would come first.  

Secondly, an alternative identification method based on sign restrictions would require strong 

theoretical predictions about the transmission mechanisms underlying the two types of uncertainty 

shocks. This might be hard to achieve when conceptual overlaps are present, particularly in the case of 

 
18 Bekaert et al. (2013) estimate a VAR specified in business cycle, monetary policy, risk aversion and expected 

market volatility, using a Cholesky decomposition (with variables ordered as listed), and a combination of 

contemporaneous with long-run restrictions. They find that risk aversion decreases more strongly than volatility 

to a lax monetary shock, with both expected volatility and risk aversion extracted from VIX. Others, like Baker 

et al. (2016) and Jurado et al. (2015), also employ Choleski decompositions, but use a single uncertainty proxy, 

not two different ones. 
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uncertainty where a perfect match between the theoretical notion and its empirical counterpart remains 

challenging (see discussion in Jurado et al., 2015). Moreover, as noted in Caldara et al., (2016), different 

uncertainty shocks, despite differences in measurement, can have similar effects on other 

macroeconomic variables, complicating identification.19 Thirdly, Bacchiocchi (2017) and Angelini et 

al., (2019) build on the original “identification through heteroskedasticity” idea proposed in Rigobon 

(2003) to identify uncertainty shocks in a VAR model. While their method is successful in dealing with 

endogeneity challenges that arise between uncertainty and real or financial variables, it requires that (at 

least some) structural parameters remain constant over time and across volatility regimes – a restriction 

we find difficult to satisfy in period of major policy innovations (e.g. Q.E.) by major central banks. 

Fourthly, Caldara et al., (2016) identify the effects of economic uncertainty and financial shocks by 

employing a penalty function approach, which shares some similarities with our identification approach. 

In their case, the structural shock should maximize the impulse response of its respective target variable 

over a pre-defined period. However, although they can identify the two structural shocks, they still use 

a sequential identification due to reverse causality fears. Fifthly, Piffer and Podstawski (2018) use 

external instruments (e.g. the price of gold) to identify uncertainty shocks. While effective in other 

applications, applying their approach to our setting would face big challenges because it requires finding 

not just one, but two distinct instruments, i.e. one for each uncertainty proxy, and in each country.  

 

4. RESULTS 

4.1. Preliminary analysis 

As a preliminary data analysis, we look at the substantial empirical overlaps between the two (policy 

and financial) uncertainty proxies. Tables A1 and A2 from Appendix A display the correlations between 

country-specific EPU and CISS indexes, in log terms, computed over the entire sample 2003 – 2018 

(for countries where EPU is available), at a monthly frequency. The main challenge to our identification 

of country-specific shocks rests specifically on these substantial correlations, measured both across as 

well as within countries. Most of the within-country correlations between EPU and CISS in Table A1 

are positive and statistically significant. In Table A2, we see that the cross-border contemporaneous 

correlations among similar types are even higher than the pair-wise correlations displayed in Table A1. 

This observation highlights the challenge we face in identifying country-specific uncertainty shocks 

within the EU (or the EA), where the common components might contribute more to driving observed 

uncertainty dynamics than the country-specific components. This is a challenge we directly address 

through the estimation of a multi-country GVAR model, which is best suited to tackle the dynamics of 

the common components.  

 
19 As the required inequality restrictions must be fulfilled only in absolute terms in our case, EPU and CISS are 

free to either co-move or move in opposite directions, and they might have similar effects on bond yields. 
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We caution readers not to make any causality inference from these pair-wise correlations, which 

lack sufficient robustness and sometimes change with the sample size and period. This lack of 

robustness, instead, should be interpreted as an illustration of the dynamic nature of the existing 

interactions between policy (EPU) and financial (CISS) uncertainties, which might amplify or cancel 

each other, depending on the period, or the nature of the triggering event (or crisis) in a particular 

country. Once we identify the shocks from the reduced-form residuals, we can investigate the 

overlapping of the structural shocks’ time-series with some well-known episodes that marked the recent 

history of some of the countries under consideration.   

 

4.2. Estimation of the GVAR model under the main identification strategy 

With most model variables expressed in log terms, we estimate the model directly in levels, allowing 

an easy interpretation of its impulse responses, which provide us with the main insights.20 Sims et al., 

(1990) recommend against differencing even in the presence of unit roots, arguing that the goal of the 

analysis should be to determine the interactions between variables. They show that the VAR specified 

in levels delivers consistent estimates, even in the presence of stochastic trends and cointegration. Elliot 

(1998) further shows theoretically that imposing cointegration for near unit root variables can lead to 

large distortions. We do not estimate cointegrating relations, nor include time trends and error correction 

terms, also because our short sample and small set of variables would preclude a robust identification 

of these long-term relationships.21   

Our sample includes 16 years of monthly observations, spanning a period over which EA has been 

shaken by many different crises. The main trade-off we are facing in the estimation of our GVAR is 

between model parsimony and its statistical properties (e.g. stability, residual tests). Kapetanios et al. 

(2007) notice that the quality of a VAR approximation to the true model depends on both the number 

of variables and the lag order; as the GVAR includes more variables than a normal VAR (i.e. both 

domestic and foreign variables in each country-specific model), small lag orders are regularly 

employed. To eliminate residual autocorrelation (or serial dependence) and preserve a parsimonious 

specification, we set 𝑝𝑖 = 1 for all EA countries and 𝑝𝑖 = 2 for all others. To maintain model stability 

and parsimony we let 𝑞𝑖 = 1 for all countries. In most cases, the inclusion of country-specific foreign 

variables is supported by F-tests, where the null restricts the 𝐶𝑖,𝑗 coefficients in equation (1) to zero.22 

Model’s parsimony and statistical properties justify our choice for the specification of Eq. (5), where 

we increase the lag length of the endogenous vector, setting 𝑝𝑥 = 3 and 𝑞𝑥 = 1. As a first evidence to 

support our identification, we compute the within-country correlations between the identified shock 

 
20 ECB balance sheet, EA inflation and EA industrial production enter the ECB model in (log) annual changes. 
21 Both theory and empirical studies (e.g. De Santis, 2020) provide evidence that European sovereign yields (and 

spreads therefore) are cointegrated with fundamentals (e.g. fiscal proxies, economic and financial proxies), which 

are omitted from our estimated GVAR because we focus on the identification problem.  
22 Results of the F-tests are available upon request from the authors. 
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time-series and find these are small and statistically insignificant. Some specification checks for our 

GVAR are presented in Appendix B. 

To derive our main insights, we rely on the models’ impulse response functions (IRFs) to the two 

uncertainty shocks identified through absolute magnitude restrictions. In a first step we discuss the main 

identification strategy and its results; in a second step, in order to stress the importance of distinguishing 

between the two kinds of uncertainty shocks, we will apply the less restrictive fuzzy identification 

strategy. To gauge statistical significance of IRFs, we use bootstrapped 68% confidence intervals23 

based on 500 replications, allowing for a maximum of 100 draws of the orthogonal matrix 𝑄 at each 

replication; the success rate is around 40%. Table 2 conveniently summarises the model results under 

the main identification strategy for uncertainty shocks originating in IT, ES, EL, IE, and FR – a relevant 

group of countries that allows us to draw interesting insights. The first four countries in this list were 

seen (at specific moments) as the most vulnerable EA members, while France makes for an interesting 

case as it had to weather a series of recent uncertainty shocks, mostly originating in the policy realm. 

More detailed plots for these five countries are given in Appendix D. 

 

  

 
23 68% confidence intervals are common in GVAR specifications, which are known to deliver wider confidence 

bands due to over-parameterization (e.g., see Burriel and Galesi 2018). 
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Table 2: Summary of IRFs to uncertainty shocks under the main identification strategy 

Shock 

origin 

Observed 

responses 

CISS responses 

to a CISS shock 

EPU responses to 

a CISS shock 

CISS responses 

to a EPU shock 

EPU responses to 

a EPU shock 

Italy domestic Significant up to 

24 months 

Significant 

starting with the 

6th month 

Insignificant Significant up to 

12 months  

cross-

border  

Significant up to 

9-24 months  

Significant up to 

12-36 months  

Mostly 

insignificant 

Significant up to 3 

months for some 

EA countries 

Spain domestic Significant up to 

18 months 

Significant 

starting with the 

3rd month 

Insignificant Significant up to 6 

months 

cross-

border  

Significant up to 

12-24 months  

Significant up to 

12-36 months  

Mostly 

insignificant 

Significant up to 

3-36 months  

Greece domestic Significant, up to 

18 months 

Significant up to 9 

months 

Insignificant Significant up to 

36 months 

cross-

border 

Significant up to 

3-18 months  

Significant up to 

3-18 months 

Significant up to 

12 months in 

some EA 

countries 

Significant up to 

36 months  

Ireland domestic Significant up to 

12 months 

Significant up to 

18 months 

Insignificant Significant only 

on impact 

cross-

border  

Significant up to 

9-24 months  

Significant up to 

6-36 months 

Insignificant Insignificant, 

except on impact 

in UK 

France domestic Significant up to 

16 months 

Significant 

between 3rd - 36th 

month 

Significant 

between 3rd -12th 

month 

Significant up to 

36 months 

cross-

border  

Significant up to 

12-24 months  

Significant up to 

6-24 months  

Significant in few 

EA countries  

Significant up to 

9-36 months 

Note: The table displays a summary description of the IRFs to the two identified uncertainty shocks. Statistical 

significance is assessed based on the bootstrapped 68% confidence intervals derived from 200 replications, with 

a maximum of 100 maximum draws of the orthogonal matrix 𝑄̃ at each bootstrap replication. 

 

Two main findings emerge from Table 2. Firstly, there are substantial and persistent cross-border 

effects generated by domestic EPU and CISS shocks. In general, domestic CISS shocks are more 

important than EPU shocks in generating significant and persistent spill-overs (i.e. cross-border effects). 

Spanish CISS shocks, for example, generate more persistent CISS responses in Portugal and Greece 

rather than in Spain; similarly, French CISS shocks generate more persistent foreign responses in the 

Italian, Portuguese and Greek financial systems compared to France. Greek and Spanish EPU shocks 
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also have substantial consequences abroad, but these are not more persistent than at home. The potential 

for domestic EPU shocks to spill over and generate more persistent responses abroad appears to be 

rather limited, suggesting that shocks spawning from the domestic policy/political arena carry a more 

significant idiosyncratic component.  

Secondly, there are important overlaps between policy and financial realms as revealed by the 

substantial but asymmetric interactions observed between the two uncertainty proxies. From Table 2 

we see it is more likely that EPU responds to CISS shocks (both within as well as across countries) but 

less likely that CISS reacts to EPU shocks. This asymmetry in responses is remarkable given the 

symmetric treatment of the two uncertainty proxies in the 5 countries above. This asymmetry is also 

reflected in the YIELD responses, as any move in risk has a counterpart in returns; as changes in 

sovereign yields are propagated through financial markets, this asymmetry can lead to larger real 

effects. Yet it reveals the importance of financial frictions for real (macro)economic dynamics, and 

therefore for policy stability; see Allen et al., (2011). In fact, there are negative adjustments in the 

responses of EA inflation and industrial production to a majority of country-specific uncertainty shocks, 

to a large extent mirroring the ECB policy reactions that we discuss next.  

We see these asymmetries and overlaps across uncertainty responses as being in line with the inner 

mechanisms underpinning the functioning of the EA, which features a deeply integrated financial 

market, but lags in terms of institutional and political integration. Accordingly, moves in EA sovereign 

yields would reflect the asymmetric country-specific risks that arise due to investors’ heterogeneity in 

preferred portfolio allocations. Home bias, moral suasion by domestic governments and other similar 

elements can play important roles in this case. As discussed in section 2, some risk components are 

common, while others are country-specific; investors who hedge these idiosyncratic risks might ignore 

them, but others who want to profit would like to learn more about them. The complex interactions 

between information acquisition choices and uncertainty shocks then determines the heterogeneity 

observed in these spill-over effects. Since our results suggest that CISS is more likely to reflect common 

dynamics, while EPU is more likely to reflect idiosyncratic dynamics, we believe our results align with 

these theoretical predictions as well as with the associated empirical literature (e.g. Acharya and Steffen, 

2015). These insights are reinforced in the next subsection, where we show how valuation ‘mistakes’ 

have been corrected after learning the lessons of the 2008 global financial crisis and the subsequent 

European sovereign debt crisis.  

 

4.3. Separating uncertainty shock types 

The IRFs discussed so far provide a summary of the estimated effects of the two uncertainty shocks, 

but do not reveal the importance of separating between shock types. Yet, whether investors face a 

sovereign or a financial crisis is an important question worth answering; international portfolio 
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reallocations and hedging strategies would have to be updated in different ways, because different 

countries have different vulnerabilities and risks that can escalate, and even lead to contagion abroad. 

To answer, we decompose the on-impact responses into two components: (i) responses derived from 

applying the fuzzy identification (i.e. only the origin country is identified, but not the exact type of the 

shock), and (ii) revaluations that are calculated as the difference between the fuzzy and the main 

identification strategy. All figures from Appendix D include in their panels (d) a decomposition of the 

median IRFs, computed on impact. What can be easily revealed in these plots is the heterogenous 

contribution of revaluations in determining the (domestic and foreign) responses to uncertainty shocks. 

Since these revaluations are our model’s approximations of valuation ‘mistakes’, we concentrate on 

understanding what drives the cross-country heterogeneity seen in these revaluations.  

French CISS shocks, for example, determine positive revaluations in CISSs everywhere, but mostly 

negative revaluations in EPUs, and mixed revaluations in YIELDs. In other words, once we recognize 

the type of the uncertainty shock hitting France, this helps reduce policy uncertainty but instead 

increases financial risk everywhere (and hence contagion risk). We can presume that French financial 

vulnerability should have been high enough such as to raise contagion risk within the EA after a French 

shock. Indeed, several available data, rankings and anecdotal evidence (e.g. French banks’ capital ratios 

that lay below EA average; Dexia’s financial troubles and the coordinated bailout that followed) point 

to this being the case. News, announcements and even rumours trigger changes in investors’ risk 

valuation profiles all the time; Attinasi et al., (2010) for example find that the simple announcement of 

bank rescue packages led to a re-assessment of risks by investors during the global financial crisis.   

Can we find some general patterns to explain the heterogeneity seen in revaluations after a country-

specific uncertainty shock? To answer, we draw on two simple indicators that can be easily connected 

with our two uncertainty sources. In the case of CISS we use available data for TIER 1 bank capital 

ratios – a proxy for financial stability, while for EPU we use country-specific rankings for Political 

Stability and Absence of Violence/Terrorism (data source World Bank) – more details are in Appendix 

A. Because the global financial crisis and the subsequent European sovereign debt crisis have 

significantly changed the information set of global financial markets and investors, for a clearer 

separation we use data for both pre-2008 and post-2009 periods.24 Table 4 provides an interesting 

summary of some simple cross-sectional correlations with on-impact revaluations. Firstly, notice that 

correlations are generally negative because more financially or politically vulnerable countries (i.e. low 

TIER1 or low Political Stability rankings) would see more significant upward revaluations in 

uncertainty once the type of the shock is known. Secondly, uncertainty revaluations are more strongly 

correlated with the relevant indicator before rather than after25, suggesting that crises generally bring 

 
24 In principle, one can set the cut-off date differently for each country, depending on when and what is 

considered as the most relevant crisis event altering the information set.  
25 The only exceptions are Greece for EPU shocks (because 2008/2009 does not represent a relevant cut-off date 

in this case) and Ireland for EPU shocks (because Ireland suffered from financial woes after bailing out its banks 
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new useful pieces of information that can help in reducing valuation ‘mistakes’; this underscores the 

key role of information revelation and learning in the real-time identification of uncertainty shocks.  

 

Table 4: Revaluations explained by cross-sectional indicators of financial and political stability 

Cross-sectional 

correlations 

between 

indicators and 

revaluations: 

 

Indicator: TIER 

1 capital ratios 

(year 2008) 

Indicator: TIER 

1 capital ratios 

(year 2018) 

Indicator: Political 

Stability rankings 

(pre-2008) 

Indicator: Political 

Stability rankings 

(post-2009) 

Revaluations in 

CISS after a 

CISS shock  

Revaluations in 

CISS after a 

CISS shock  

Revaluations in EPU 

after a EPU shock  

Revaluations in EPU 

after a EPU shock  

Origin country of the shock 

Italy -0.516 -0.369 -0.327 -0.176 

Spain -0.595 -0.142 -0.729 -0.580 

Greece -0.568 -0.135 -0.511 -0.730 

Ireland -0.494 -0.053 0.456 0.323 

France -0.339 -0.122 -0.471 -0.363 

Note: Cross-sectional correlations between country-specific indicators and on-impact revaluations (calculated 

based on the difference between the fuzzy IRFs and the IRFs of the main identification strategy). For TIER 1 

ratios, ECB data before 2008 is incomplete, for which reason we use 2008 and 2018 as the two refence points. 

Pre-2008 refers to the average ranking for 2003-2008, while post-2009 denote the average ranking for 2009-2018. 

 

4.4. ECB policy reactions to uncertainty shocks 

One of the questions we raised in the introduction relates to the ECB role in filling the leadership gap 

within the EU institutional and governance structure. From an empirical perspective, as long as the ECB 

proxies are included in EA country models, their relevance can be easily validated statistically. Simple 

F-tests show that ECB had varying degrees of influence (from a statistical perspective) on EA countries; 

for Belgium, Italy, Spain and Greece the impact falls mostly on EPU, while for Austria, Finland, 

Netherlands, Spain and Baltics this impact falls on sovereign yields (see Table E1 in Appendix E). 

An analysis of the IRFs associated with ECB policy responses to uncertainty shocks provides a 

complementary perspective; detailed plots are to be found in Figure E1 from Appendix E. Concentrating 

on the same subset of 5 countries as in the previous section, we see that ECB would adjust its CMP in 

line with expectations, by reducing its MRO in response to (at least one) uncertainty shock. Except for 

Greece, ECB always reduces its MRO swiftly in response to CISS shocks; its responses to EPU shocks 

are similar, except for Italy and Ireland. ECB is also quick in increasing its liquidity provision in 

response to CISS shocks from all vulnerable countries; meanwhile, its liquidity responses to EPU 

 
but had no particular political crisis); if our cut-off date is not relevant, investors are not expected to ‘learn’ 

anything new after the event passes. 
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shocks are more sluggish, and in the case of Italy and Ireland even statistically insignificant. Regarding 

its UMP reactions, the IRFs show that the ECB balance sheet increases in a statistically significant way 

in response to all uncertainty shocks stemming from the five countries considered, except again to EPU 

shocks from Italy and Ireland.  

More interesting observations emerge when contrasting these findings with the ones from Table 2. 

Looking back at our previous discussion, we see that ECB has reacted to precisely those shocks that 

have more significant effects abroad, i.e. shocks that are most likely to spill over beyond the origin 

country; within our five countries sample, these are: Italian and Irish CISS shocks, Greek EPU shocks, 

French EPU and CISS shocks, Spanish EPU and CISS shocks. De Grauwe and Ji (2013) advocate for 

a more active ECB role in counteracting self-fulfilling crises driven by investors’ fears rather than 

fundamentals, claiming that EA fragility (as perceived by investors) stems from the lack of a “lender of 

last resort” for both banks and sovereigns. In a similar vein, we posit here that ECB has tried to dampen 

those uncertainty shocks with the highest potential to spill over beyond the domestic country. In other 

words, ECB has done “whatever it takes” to prevent segmentation within the EA financial market.  

 

4.5. Back-testing 

De Santis and Zimic (2018) admit that their magnitude restrictions are inspired by event study 

techniques, which require a good understanding of the historical patterns present in the time-series being 

modelled. As already mentioned, magnitude restrictions can provide a mathematical approach to 

identification in a VAR including some highly correlated time-series. While this approach guarantees 

that, on a particular time moment, the identified shock has the largest magnitude among all the other 

shocks, there is no guarantee that the shock has any real, meaningful interpretation. This section 

addresses this issue and provides evidence on the suitability of using magnitude restrictions in our case.  

We draw on multiple media sources to categorise a set of unique country-specific events that stand 

as outliers in the time-series of the identified uncertainty shocks (Appendix F provides an overview on 

the complete distribution of these shocks in different countries). Figure 1 below illustrates some major 

events that shaped the recent history of some European countries. To facilitate interpretation, for each 

event we plot the two uncertainty shocks (in the leftmost panel for each event), as well as a comparison 

of the time profile for the same-type uncertainty shocks in all remaining countries for which we perform 

the identification (see the remaining two panels associated with each event).  
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Figure 1: Overlap of identified uncertainty shocks and historical major (country-specific) events 

Brexit 

 

Apr. 2005: Consolidation of the Italian 

banking sector 

Mar. 29, Spanish BBVA launches bid to 

become majority owner of Italian BNL. 

Mar. 30, ABN AMRO launched a bid for 

Antonveneta. 

(https://en.wikipedia.org/wiki/Bancopoli) 

Apr. 29, Banca Popolare di Lodi proposed 

a merger with Antonveneta, thus 

challenging ABN AMRO bid. 

(https://en.wikipedia.org/wiki/Bancopoli) 

 

Oct. 2011: Greece avoids default 

Oct. 19, In Greece new austerity measures 

won initial parliamentary approval (SFC, 

10/20/11) 

Oct. 21, Finance ministers from 17 

eurozone countries agreed to pay Greece 

$11 billion in its next batch of bailout 

loans (SFC, 10/22/11) 

Oct. 26, Europe sealed a last-ditch deal to 

fix its festering debt crisis. Greece was 
provided with a second bailout package 

worth €130 billion to stave off bankruptcy. 

(AFP, 10/27/11; AP, 10/28/11) 

 

Apr. 2017: French presidential elections 

Apr 23, First round of a highly 

unpredictable presidential election seen 

vital for the future of the European Union. 
Centrist Emmanuel Macron won 23.7 

percent of votes while far-right leader 

Marine Le Pen won 21.5. (AFP, 4/23/17; 

Reuters, 4/24/17) 

 

Oct. 2017: Catalonia’s independence 

referendum 

Oct 11, Spanish PM Mariano Rajoy 

threatened to impose direct rule on 

Catalonia following its disputed 

independence referendum. (AFP, 

10/11/17; AP, 10/11/17) 

Oct 17, Spain's top court officially ruled 

that Catalonia's disputed independence 

referendum was illegal. (AP, 10/17/17; 

Reuters, 10/17/17) 

 

Note: The date of the main historical event indicated in text on the right side is also highlighted with a vertical 

dash line in the associated graphs. Uncertainty shocks are identified in the following countries: BE, DE, DK, IT, 

ES, FR, EL, SE, IE, NL, and UK. News and headlines are borrowed from the following online repositories: 

www.timelines.ws, https://en.wikipedia.org and https://en.wikipedia.org/wiki/Portal:Current_events, although 

the original source might be different, as indicated in the text.     

 

http://www.timelines.ws/
https://en.wikipedia.org/
https://en.wikipedia.org/wiki/Portal:Current_events
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4.6. Robustness checks 

Different robustness checks are performed in order to validate our findings. Since our main results 

remain qualitatively unchanged, here we only provide a short discussion for each robustness check.   

As a first robustness check, we replace sovereign yields with the spreads computed against both 

Germany (which is the European benchmark) and U.S. (which is the global benchmark). Spreads are a 

more standard measure of risk and have been used in various empirical applications (see among many 

others Bacchiocchi 2017; De Santis and Zimic, 2018). 

Secondly, we add a measure of global liquidity risk, i.e. the TED spread, which is the spread between 

the 3-Month LIBOR based on US dollars and the 3-Month Treasury Bills (see Brunnermeier, 2009). 

Although our GVAR already includes a liquidity proxy relevant for EA markets (i.e. the spread between 

EONIA and the main ECB policy rate), the US dollar-denominated funding costs of European banks 

play a key role within the literature on global financial cycles26 (see Rey, 2015; Bruno and Shin, 2014). 

When uncertainty raises, banks charge themselves higher interest rates for uncollateralised loans (i.e. 

LIBOR rate is the reference rate for interbank lending) compared to the yield of risk-free US Treasuries, 

and therefore the TED spread is actually a global liquidity proxy. The cost of US dollar funding has 

been a central element of the policy reactions during the peaks of the financial crisis of 2007/2008. All 

major central banks, including ECB, set up direct currency swap lines with the US Federal Reserve 

System, precisely to alleviate pressures from the US dollar funding.27 By adding the TED spread as an 

endogenous variable to the US model, we account for changes in global liquidity and US dollar funding, 

providing a consistency check to our main findings from the previous sections.  

In a third robustness check, we re-estimate the GVAR with a different weighting matrix derived 

based on BIS Locational Banking Statistics (LBS) data; see Appendix A for more details. Weights 

based on BIS LBS data are also employed in Bicu and Candelon, (2013), Feldkircher and Huber (2016), 

Eickmeier and Ng (2015). Yet, capital flows driving bank cross-border exposures are generally more 

volatile than flows driving portfolio exposures according to balance of payments statistics. Despite 

some differences in weighting between IMF CPIS data and BIS LBS data28, estimating the GVAR with 

weights based on the latter dataset delivers qualitatively similar findings. 

Fourth, to account for ECB focus on yield divergences within the EA, we append the ECB model 

given in Eq. (5) with a dispersion proxy. This proxy is computed as the cross-sectional absolute 

 
26 This is because the US dollar is the world’s main reserve currency. Similar to the global financial cycle 

literature, the international bank lending channel, exposed in Schmidt, Caccavaio, Carpinelli and Marinelli (2018), 

highlights the importance of US dollar funding costs on lending in Europe. 
27 See https://www.federalreserve.gov/monetarypolicy/bst_liquidityswaps.htm.  
28 The IMF CPIS data show that most countries in our sample have over-weighted exposures towards US, UK and 

LU. Instead, according to BIS LBS data, most countries have over-weighted exposures towards UK and LU. 

https://www.federalreserve.gov/monetarypolicy/bst_liquidityswaps.htm
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dispersion (CSAD) of all EA sovereign yields (according to out sample shown in Table 1). The 

additional insight we get from this exercise is that dispersion raises only in reaction to CISS shocks, 

while its reactions to EPU shocks are rather vague ad mostly insignificant; this result further highlights 

the systemic importance of CISS shocks over EPU shocks in terms of their impact on the efficiency of 

ECB monetary policy transmission. 

Fifth, we compare our results with those derived from using the most common identification strategy 

in GVARs models, that is the generalised IFRs or GIRFs (see Pesaran et al. 2004). Compared to our 

IRFs, the GIRFs generate substantial (on-impact) underestimations precisely for those uncertainty 

(CISS or EPU) shocks that have the highest potential to spread across borders and raise contagion risk 

(see Appendix G for more details). 

 

5. CONCLUSIONS 

Given the deep and complex intertwining between policy and financial realms in Europe, and in Euro 

Area in particular, separating between these two overlapping sources of uncertainty can be empirically 

challenging. For financial investors, instead, being able to separate various types of uncertainty is very 

important because their hedging strategies need to be adjusted accordingly. Large strands of the 

literature portray the sovereign-bank nexus as a key mechanism blurring a clearer identification, but in 

a multi-country setting this could be of limited use due to the incomplete nature of the European 

integration and institutional governance. We draw on theoretical models featuring information 

acquisition costs and frictions to interpret the dynamics and the spill-over effects of the identified 

country-specific uncertainty shocks. Our estimated GVAR model can efficiently summarise the cross-

sectional and time-series properties of a large multi-country dataset, for which reason we believe its 

results can provide novel relevant insights. We complement our identification with a back-testing 

exercise in which we find that the identified shocks can match the dates of some remarkable events that 

marked the recent history of the European project. 

The identification of country-specific financial and policy uncertainty shocks here is obtained by 

generalizing the absolute magnitude restrictions, originally proposed by De Santis and Zimic (2018), to 

a multi-country framework. This generalization allows us to adapt and implement the magnitude 

restrictions approach more flexibly, in order to perform a fuzzy identification from which we quantify 

the under/over-valuations arising when the origin country is known, but not the type of the uncertainty 

shock; in other words, we reveal the strength of the existing overlaps between policy and financial 

realms that would preclude identification. This helps us see why, in the aftermath of crises triggering 

large changes in the information set, investors become better at disentangling among uncertainty types.  

Within the Euro Area, our impulse responses reveal statistically significant and persistent spill-overs 

from financial- but also policy-driven uncertainty shocks. Depending on the origin country, one type of 
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uncertainty shock might generate more substantial effects and spill-overs than the other, the difference 

being relevant mainly in terms of policy responses. Our results suggest that ECB adopted a pro-active 

stance by deploying unconventional tools particularly with respect to those uncertainty shocks that had 

the highest potential to spill over abroad. As the European financial markets gyrated towards either 

more integration or more fragmentation with each passing crisis, the ECB managed to fill a leadership 

vacuum when reacting to country-specific uncertainty shocks, no matter the type and the realm they 

originated from.  
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ONLINE APPENDIXES 

 

Appendix A: Data description and sources  

CISS – Composite Indicator for Systemic Risk. Frequency: monthly averages. Transformation: natural logarithm. 

Adjustment: seasonally adjusted using X-12 procedure. Source: ECB warehouse 

(https://sdw.ecb.europa.eu/browse.do?node=9689686). See Hollo et al. (2012) for the construction methodology. 

For Baltics, we compute the average of CISS indexes for all three countries. 

EPU – economic policy uncertainty index, computed based on the methodology proposed by Baker et al. (2016). 

Transformation: natural logarithm. Adjustment: seasonally adjusted using X-12 procedure. Source: data and 

methodology available from www.policyuncertainty.com.  

EONIA – is the Euro Overnight Index average or the Euro Interbank Offered Rate defined as the weighted rate 

for the overnight maturity, calculated by collecting data on unsecured overnight lending in the EA provided by 

banks belonging to the EONIA panel.29 Frequency: monthly averages. Transformation: 𝑦𝑖𝑒𝑙𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
1

12
∗

ln (1 +
𝑦𝑖𝑒𝑙𝑑

100
). Source: ECB warehouse. The liquidity proxy used in the GVAR is the difference between EONIA 

and the Main Refinancing Operations rate. 

ECB assets – defined as central bank assets for Euro Area (11-19 countries). Frequency: monthly, end of month. 

Transformation: natural logarithm. Source: Federal Reserve Bank of St. Louis database. The UMP proxy used in 

the GVAR is the annual growth rate of the natural logarithm of ECB assets. 

Main Refinancing Operations (MRO) rate – is the short-term interest rate at which ECB provides the bulk of 

liquidity to the banking system of the Euro Area.30 Source: ECB warehouse.   

Political Stability and Absence of Violence/Terrorism – an aggregate indicator that belongs to the Worldwide 

Governance Indicators, compiled by the World Bank. Frequency: annual. Source: 

http://info.worldbank.org/governance/wgi/   

TIER 1 capital ratio – defined as the average ratio of banks’ core capital to total risk-weighted assets. Frequency: 

annual. Transformation: none. Source: ECB warehouse. 

TED spreads – defined as the spread between the 3-Month LIBOR based on US dollars and the 3-Month US 

Treasury Bills. Frequency: monthly averages. Transformation: none. Source: Federal Reserve Bank of St. Louis 

database. 

YIELDS – the 10-year sovereign bond yields for each country, adjusted according to formula below; data is not 

available for Turkey, for which we use its 5-year sovereign bond yields instead; for the Baltics, only data for 

Lithuania and Latvia are available, so the average is used in the model. Transformation: 𝑦𝑖𝑒𝑙𝑑𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
1

12
∗

ln (1 +
𝑦𝑖𝑒𝑙𝑑

100
)  to smooth spikes in the time-series. Source: Eurostat and ECB warehouse.  

 
29 See also the conclusions of the public consultation on euro risk-free rates at 

https://www.ecb.europa.eu/paym/pdf/cons/euro_risk-free_rates/ecb.consultation_details_201905.en.pdf. 
30 See https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html  

https://sdw.ecb.europa.eu/browse.do?node=9689686
http://www.policyuncertainty.com/
http://info.worldbank.org/governance/wgi/
https://www.ecb.europa.eu/paym/pdf/cons/euro_risk-free_rates/ecb.consultation_details_201905.en.pdf
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html
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VIX – the Chicago Board Options Exchange (CBOE) Volatility Index. Frequency: monthly averages.  

Transformation: natural logarithm. Source: Federal Reserve Bank of St. Louis database. 

 

 

Table A1: Within-country pair-wise correlations between EPU and CISS indexes  

Country EPU(T) x 

CISS(T-2) 

  EPU(T) x 

CISS(T-1) 

EPU(T) x 

CISS(T) 

EPU(T-1) x 

CISS(T) 

EPU(T-2) x 

CISS(T) 

BE 0.608*** 

(10.496) 

0.630*** 

(11.145) 

0.658 *** 

(12.041) 

0.626 *** 

(11.046) 

0.599 *** 

(10.248) 

FR 0.088 

(1.214) 

0.140* 

(1.940) 

0.190*** 

(2.668) 

0.186*** 

(2.602) 

0.141* 

(1.952) 

DE 0.117 

(1.615) 

0.172** 

(2.399) 

0.245*** 

(3.476) 

0.217*** 

(3.053) 

0.162** 

(2.252) 

DK 0.182** 

(2.533) 

0.192*** 

(2.688) 

0.244*** 

(3.671) 

0.253*** 

(3.595) 

0.215 *** 

(3.026) 

EL 0.328*** 

(4.753) 

0.317*** 

(4.589) 

0.311*** 

(4.504) 

0.309*** 

(4.461) 

0.283*** 

(4.041) 

IT 0.462*** 

(7.138) 

0.426*** 

(6.482) 

0.454*** 

(7.031) 

0.399*** 

(5.985) 

0.357*** 

(5.239) 

IE 0.120* 

(1.663) 

0.109 

(1.504) 

0.131* 

(1.818) 

0.148** 

(2.053) 

0.143** 

(1.983) 

NL 0.238*** 

(3.363) 

0.234*** 

(3.312) 

0.284*** 

(4.079) 

0.260*** 

(3.704) 

0.261*** 

(3.711) 

ES 0.263*** 

(3.733) 

0.311*** 

(4.504) 

0.397*** 

(5.960) 

0.367*** 

(5.432) 

0.317*** 

(4.581) 

SE -0.255*** 

(-3.621) 

-0.216*** 

(-3.048) 

-0.170** 

(-2.374) 

-0.169** 

(-2.362) 

-0.168** 

(-2.331) 

UK 0.040 

(0.543) 

0.039 

(0.536) 

0.029 

(0.397) 

-0.015 

(-0.212) 

-0.041 

(-0.569) 

Note: The effective sample is: 2003:M01 – 2018:M12. The first rows display the lag/lead structure of the two 

time-series for which we compute the correlations, with T-1, T-2 and T+1, T+2 denoting 1 and 2 period lags, and 

leads respectively. Both EPU and CISS time series are in log terms. The t-statistics are provided in parentheses. 

The *, ** and *** denote statistical significance at 10%, 5% and 1% respectively.   
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Table A2: Cross-country contemporaneous correlations for EPU and CISS indexes 

Country BE FR DE DK EL IT IE NL ES SE PT 

 CISS(T) x CISS(T) 

FR 0.75**           

DE 0.64** 0.73**          

DK 0.58** 0.69** 0.59**         

EL 0.55** 0.48** 0.42** 0.48**        

IT 0.66** 0.66** 0.51** 0.58** 0.77**       

IE 0.78** 0.72** 0.56** 0.67** 0.42** 0.60**      

NL 0.69** 0.73** 0.73** 0.62** 0.40** 0.49** 0.74**     

ES 0.77** 0.76** 0.58** 0.62** 0.70** 0.81** 0.70** 0.60**    

SE 0.65** 0.61** 0.67** 0.54** 0.25** 0.40** 0.69** 0.62** 0.50**   

PT 0.62** 0.67** 0.41** 0.63** 0.71** 0.85** 0.62** 0.47** 0.85** 0.33**  

UK 0.63** 0.58** 0.58** 0.72** 0.39** 0.52** 0.71** 0.58** 0.54** 0.68** 0.48** 

Country BE FR DE DK EL IT IE NL ES SE  

 EPU(T) x EPU(T) 

FR 0.41**           

DE 0.43** 0.78**          

DK 0.48** 0.68** 0.69**         

EL 0.23** 0.66** 0.61** 0.42**        

IT 0.50** 0.54** 0.48** 0.42** 0.45**       

IE 0.41** 0.57** 0.52** 0.49** 0.39** 0.40**      

NL 0.51** 0.25** 0.27** 0.17** 0.19** 0.48** 0.15*     

ES 0.34** 0.63** 0.67** 0.64** 0.64** 0.56** 0.48** 0.32**    

SE 0.39** 0.69** 0.68** 0.63** 0.56** 0.48** 0.46** 0.26** 0.58**   

UK 0.37** 0.83** 0.76** 0.64** 0.64** 0.44** 0.65** 0.16* 0.64** 0.69**  

Note: The effective sample is: 2003:M01 – 2018:M12. Both EPU and CISS time series are in log terms. The * 

and ** denote statistical significance at 5% and 1% respectively. The T in parentheses denotes that we are taking 

contemporaneous correlations.  
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Figure A1 below displays the GVAR weighting matrix, 𝑊, computed based on IMF CPIS data for the 

2000-2015 period; some countries like the Baltics have much shorter samples. Weights reflect portfolio 

allocations from countries mentioned on rows towards countries mentioned on columns (country labels 

are according to Table 1 in the main text). The colour of each cell indicates the share of country’s 

portfolio allocation towards other countries, based on the scale displayed on the right of the figure. Each 

row sums to 1, as countries on the column represent the entire investable universe for the country 

specified at the start of each row.   

 

Figure A1: IMF CPIS weights 

 

 

Figure A2 below displays the weighting matrix used as a robustness check in section 4.5, based on data 

from BIS Locational Banking Statistics, tables A6.2.31 These tables contain data on cross-border 

positions in mil. USD, by counterparty’s country of residency, and by location of the reporting bank. 

Since not all 28 countries (i.e. 25 individual countries and the 3 Baltics) are reporting to BIS, cross-

border positions for banks located in other countries are only indirectly available as the reverse balance 

sheet positions of banks located in BIS reporting countries; for example, outward claims of banks 

located in Poland can be inferred as inward liabilities of banks located in BIS reporting countries with 

Polish resident banks as their counterparties. Moreover, for banks located in BIS reporting countries, 

there might be some differences between what banks from country X reports as outward claims in 

country Y, and what banks from country Y reports as inward liabilities from country X. To mitigate the 

 
31 See https://stats.bis.org/statx/toc/LBS.html. 

https://stats.bis.org/statx/toc/LBS.html
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impact of such inconsistencies, we average between (outward) claims and (inward) liabilities for all 

country pairs and use bank-to-all sectors rather than just bank-to-bank positions. Further to reduce the 

impact of time-variation, we average the end of year (4th quarter) exposures over a 7-year period from 

2010 to 2016. The colour of each cell indicates the share of country’s outward exposures (i.e. claims) 

towards other countries, based on the scale displayed on the right of the figure. Each row sums to 1, as 

countries on the column represent the entire investable universe for the country specified at the start of 

each row.   

Figure A2: BIS LBS weights 
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Appendix B: GVAR specification and identification checks 

Figure B1 depicts the estimated residual autocorrelation and the eigenvalues of the estimated GVAR. 

Residual autocorrelations lie very close to, or within, the confidence bands set at ±2 standard 

deviations; given the large number of variables and the inherent over-parameterization of the GVAR, a 

small number of larger autocorrelations are to be expected. Despite some inherent persistency, all model 

eigenvalues are strictly less than one, the maximum eigenvalue being 0.97.  

 

Figure B1: GVAR specification checks  

Panel (a): Residual autocorrelation 

 

Panel (b): Eigenvalues of GVAR 

 

Note: Panel (a) plots the residual autocorrelations for all GVAR variables and all country-specific models, as 

a function of the serial lag. Panel (b) plots the GVAR eigenvalues. 

 

 

To demonstrate the power of our identification strategy, we compute the correlation between the 

time-series of our identified CISS and EPU shocks with a given country. The highest correlation is 

below 0.025 in absolute terms. Table B1 below gives a short preview of these correlations.  

 

Table B1: Within country correlations between the identified CISS and EPU shocks 

 BE FR DE DK EL IT IE NL ES SE UK 

Correlation 

(t-statistic) 

0.02 

(0.32) 

-0.00 

(-0.05) 

-0.01 

(-0.11) 

0.01 

(0.09) 

-0.00 

(-0.03) 

-0.00 

(-0.06) 

-0.00 

(-0.05) 

-0.00 

(-0.06) 

-0.00 

(-0.02) 

0.02 

(0.30) 

-0.01 

(-0.09) 

Note: Given that 3 is the maximum lag length of the GVAR, the sample is Apr. 2003 – Dec. 2018.  
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Appendix C: The algorithm used for structural identification 

In the empirical analysis presented in the main text we have used the De Santis and Zimic’s algorithm. 

The algorithm is implemented after the estimation of the reduced-form model given in equation (3). To 

facilitate notation, each country for which we perform the identification is ordered first (i.e. model 

solution matrixes are reshuffled accordingly). The algorithm consists in the following steps: 

 

1. Bootstrap the reduced-form GVAR model given in equation (3) to obtain the variance-

covariance matrix of reduced-form errors, 𝛺𝑢
(𝑏)

, where the superscript (𝑏) is the bootstrap index 

that runs from 1 to 500. The Choleski decomposition of 𝛺𝑢
(𝑏)

 is denoted as 𝛺𝑡𝑟
(𝑏)

= 𝑐ℎ𝑜𝑙( 𝛺𝑢
(𝑏)

). 

2. Aim at obtaining a candidate matrix 𝑆(𝑏,𝑖) whose first 2 columns satisfy the magnitude 

restrictions. The superscript (𝑖) would index the draw that runs from 1 to 100. 

(2a) Draw a 2x2 matrix from a standard normal distribution and obtain its QR 

decomposition, where the orthogonal matrix in the decomposition is denoted as Q(𝑏,𝑖), 

i.e. Q(𝑏,𝑖)Q(𝑏,𝑖)′
= I.  

(2b) Construct the block diagonal matrix 𝑄𝑑𝑖𝑎𝑔
(𝑏,𝑖)

= 𝑑𝑖𝑎𝑔(Q(𝑏,𝑖), 𝐼), with a size that 

corresponds to the size of 𝛺𝑢
(𝑏)

. 

(2c) Check whether the matrix 𝑆(𝑏,𝑖) = Ω𝑡𝑟
(𝑏)𝑄𝑑𝑖𝑎𝑔

(𝑏,𝑖)
  satisfies the magnitude 

restrictions (see section 3.3. for the exact definition of these restrictions). If it does, we 

keep this (𝑖) draw for 𝑆(𝑏,𝑖). If not, we go back to step (2a). We repeat this process for 

100 times to obtain a sufficient number of successful draws. 

4. Repeat step 1 and 2 for 500 times; compute the 68% confidence bands of the IFRs after 

considering all successful candidate matrices 𝑆(𝑏,𝑖) from step 2c). 

 

Given the reduced number of variables in each single VAR, De Santis and Zimic’s algorithm works 

well for the results that we discussed in this paper. However, we have cross-checked these results using 

an extension of their algorithm, as we are proposing here, an extension that works well even for larger 

systems. The challenging point, in fact, is that the whole set of imposed magnitude restrictions 

enormously reduces the number of admissible 𝑄 matrices among those randomly generated in standard 

algorithms used in the literature. Our proposal here is based on block-diagonal 𝑄 matrices with 

perturbations. We solve the identification issue within each country by generating N admissible 

orthogonal matrixes 𝑄1, … , 𝑄𝑁, one for each of the N countries, and form the admissible block-diagonal 

orthogonal matrix 𝑄 = 𝑑𝑖𝑎𝑔(𝑄1, … , 𝑄𝑁). We rotate 𝑄 by a small rotation matrix (𝐼 − 𝐻)(𝐼 + 𝐻)−1, 
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with 𝐻 hemisymmetric, i.e. 𝑄̃ = 𝑄(𝐼 − 𝐻)(𝐼 + 𝐻)−1, and then check for the magnitude restrictions on 

the columns of interest of the obtained matrix 𝑆 = Ω𝑡𝑟𝑄̃. This strategy allows to increase the success 

rate in large systems. In practical terms, for our case it implies adding a new step into the original 

algorithm above, between steps (2b) and (2c), denoted by say (2b′), a step that reads as follows: 

 

(2b′) After having obtained the orthogonal matrix 𝑄𝑑𝑖𝑎𝑔
(𝑏,𝑖)

 in step (2b), rotate this it by a small 

rotation matrix constructed as (𝐼 − 𝐻(𝑏,𝑖))(𝐼 + 𝐻(𝑏,𝑖))−1, where 𝐻(𝑏,𝑖) is hemisymmetric, i.e. 

𝐻(𝑏,𝑖) = −𝐻(𝑏,𝑖)′, and its elements are drawn from a random normal distribution. The new 

matrix 𝑄𝑑𝑖𝑎𝑔
(𝑏,𝑖)

(𝐼 − 𝐻(𝑏,𝑖))(𝐼 + 𝐻(𝑏,𝑖))−1 will be orthogonal as well and can be used to construct 

𝑆(𝑏,𝑖) in the next step (2c). 
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Appendix D: IRFs to uncertainty shocks identified through magnitude restrictions 

Figure D1: IRFs to Italian uncertainty shocks  

 

Panel (a) 

 
 

Panel (b) 
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Panel (c) 

 
 

Panel (d) 

 
Note: Panels (a), (b) and (c) plot the IRFs to both EPU and CISS positive uncertainty shocks (of 1 standard 

deviation). The median and the 68% confidence bands are constructed from 500 bootstrapped replications of the 

GVAR, each with 100 maximum draws for the orthogonal matrix. Panel (d) displays the contribution from initial 

responses and revaluations evaluated at impact. Revaluations are calculated as the difference between the IRFS 

of the fuzzy and straight identifications. 
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Figure D2: IRFs to Spanish uncertainty shocks  

 

Panel (a) 

 
 

Panel (b) 
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Panel (c) 

 
 

Panel (d) 

 
Note: Panels (a), (b) and (c) plot the IRFs to both EPU and CISS positive uncertainty shocks (of 1 standard 

deviation). The median and the 68% confidence bands are constructed from 500 bootstrapped replications of the 

GVAR, each with 100 maximum draws for the orthogonal matrix. Panel (d) displays the contribution from initial 

responses and revaluations evaluated at impact. Revaluations are calculated as the difference between the IRFS 

of the fuzzy and straight identifications. 
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Figure D.3: IRFs to Greek uncertainty shocks  

 

Panel (a) 

 
 

Panel (b) 
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Panel (c) 

 
 

Panel (d) 

 
Note: Panels (a), (b) and (c) plot the IRFs to both EPU and CISS positive uncertainty shocks (of 1 standard 

deviation). The median and the 68% confidence bands are constructed from 500 bootstrapped replications of the 

GVAR, each with 100 maximum draws for the orthogonal matrix. Panel (d) displays the contribution from initial 

responses and revaluations evaluated at impact. Revaluations are calculated as the difference between the IRFS 

of the fuzzy and straight identifications. 
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Figure D.4: IRFs to Irish uncertainty shocks  

 

Panel (a) 

 
 

Panel (b) 
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Panel (c) 

 
 

Panel (d) 

 
Note: Panels (a), (b) and (c) plot the IRFs to both EPU and CISS positive uncertainty shocks (of 1 standard 

deviation). The median and the 68% confidence bands are constructed from 500 bootstrapped replications of the 

GVAR, each with 100 maximum draws for the orthogonal matrix. Panel (d) displays the contribution from initial 

responses and revaluations evaluated at impact. Revaluations are calculated as the difference between the IRFS 

of the fuzzy and straight identifications. 
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Figure D.5: IRFs to French uncertainty shocks  

 

Panel (a) 

 
 

Panel (b) 
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Panel (c) 

 
 

Panel (d) 

 
Note: Panels (a), (b) and (c) plot the IRFs to both EPU and CISS positive uncertainty shocks (of 1 standard 

deviation). The median and the 68% confidence bands are constructed from 500 bootstrapped replications of the 

GVAR, each with 100 maximum draws for the orthogonal matrix. Panel (d) displays the contribution from initial 

responses and revaluations evaluated at impact. Revaluations are calculated as the difference between the IRFS 

of the fuzzy and straight identifications. 
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Appendix E. ECB influence and reactions 

 

Table E1 below presents, by country 𝑖 and by equation (or variable), the F-statistics of the null 

hypothesis that in equation (4) we have 𝐷𝑖,𝑗 = 0, jointly for all 𝑗 = [0,1] in country 𝑖. 

 

Table E1: F-tests of the joint null that ECB policies had no influence on each EA country/equation 

Country: Equation: Yields Equation: CISS Equation: EPU 

Austria 3.16* 1.25  

Belgium 0.91 1.05 3.32* 

Finland 2.29* 0.37  

France 1.89 1.01 1.20 

Germany 0.56 1.91 0.73 

Italy 0.93 1.54 2.30* 

Netherlands 3.40* 0.41 1.29 

Spain 2.32* 1.01 2.76* 

Greece 1.22 0.81 3.31* 

Ireland 1.02 0.66 0.96 

Portugal 1.69 1.57  

Luxemburg 1.48 0.54  

Slovakia 1.41 1.63  

Slovenia 1.21 2.07  

Baltics 3.47* 1.05  

Note: The table displays the F-statistics computed by restricting the coefficients of the three ECB policy proxies 

to be exactly zero in the country/equation indicated on the first column/row of the table. The * denotes cases 

where the F-statistics is higher than the critical value of 2.15, and therefore the null can be rejected at a 5% 

significance level. 
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Figure E1: IFRs for ECB monetary policy proxies to uncertainty shocks 

Panel (a) 

 

Panel (b) 

 

Panel (c) 

 

Note: The title of the plots in each panel displays the origin country of the uncertainty shock. The legend displays 

the corresponding uncertainty shock that is being simulated. The 68% confidence bands are constructed from 500 

bootstrapped replications of the GVAR, each with 100 maximum draws for the orthogonal matrix (see algorithm 

in Appendix C). 
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Appendix F 

Figure F1: Histograms of the uncertainty shocks in countries where identification is performed 

 

Note: Median values (for each time period) of the identified shocks are used to generate the histograms above. 
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Appendix G. Generalised Impulse Responses (GIRFs) 

 

Figure G1 below compares on-impact GIRFs with on-impact IRFs derived from our magnitude 

restrictions, for the case of Italy. As revealed in the first row of the figure below, there is a substantial 

underestimation in the case of GIRFs for the impact of Italian CISS shocks, which are exactly those 

with the highest potential to spill over abroad according to our discussion in the main text. For Italian 

EPU shocks, whose responses are displayed on the second row of the figure G1, the differences are 

smaller. Moreover, according to these GIRFs’ confidence bands, there are fewer and much shorter (2 

months on average) statistically significant foreign responses to Italian CISS shocks, compared to those 

derived from magnitude restrictions (see Appendix D). These results are in opposition with the ones we 

uncover from our magnitude restrictions.  

 

Figure G1. Comparison between magnitude restrictions IRFs and GIRFs 

 

   

   
Note: On-impact responses for GIRFs are computed based on 5000 bootstraps, while for magnitude restrictions, 

on-impact responses are computed based on 500 bootstraps replications of the GVAR, each replication with 100 

maximum draws for the orthogonal matrix; success rate are around 40%. 

 


