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Abstract

I introduce payment chains into a business cycle model. Consump-

tion decisions are linked to each other in a chain of payments. Whereas

some payments can be made immediately, other payments are post-

poned until other payments are executed. Delays in payments delay

production. An unexpected contraction in some agents ability to ob-

tain credit leads to a payments crisis. At an initial phase, a contrac-

tion in credit sends a mass of workers to a liquidity-constrained status.

This delays their payment, but also slows down the payment of others,

causing a cascade in delays in a chain of payments. The real effects

of these delays is isomorphic to a drop in TFP. The effects of an initial

credit contraction persist even after the credit limits are normalized. I

characterize these transitional dynamics and revisit some classic policy

experiments.

*email: sbigio@nyu.edu. I would like to thank Luigi Bocola, Ezra Oberfeldt and Pierre-
Olivier Weill for early discussions.
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1. Introduction

Those of us who lived through a credit crunch can relate to the idea of a

payments-chain collapse.1 During credit crunches, it seems that firms take

longer to liquidate inventories, borrowers constantly call creditors to post-

pone payments, and even workers may have to wait to receive their pay-

checks from cash-stripped employers. All in all, there’s a sensation that the

chain of payments has lengthened and the speed of economic transactions

slowed down. In ways that are yet to be understood, this disruptions seem

to carry effects on economic performance. Most strikingly, the slow down

in transactions seems to persist even several periods after credit conditions

have eased. What at initial dates seems to be a driven by a credit crunch,

eventually evolves into a crisis of payments.

This paper rationalizes the idea of disruptions in the payments chains in

a business cycle model. The theory has three distinguishing features: First,

the speed of economic transactions is a function of the length of the pay-

ments chain. Second, the length of the payments chain is a function of credit

market conditions. Third, a credit crunch slows down the speed of transac-

tions, but their speed may remain low even after credit conditions are eased.

These features are embedded into a business cycle model where I study how

the consumption-savings decisions of agents endogenously determines the

length of the payments chain in a give period. The theory showcases how

payments chain disruptions manifest as a pecuniary externality and opens

the door for some novel policy implications.

Payment Chains. The staring point of the theory is a sub-model where

expenditure decisions and production decisions are linked through a pay-

1In my case, at an early age of 16, I lived through the credit crunch provoked in Peru by
the1998 Russian financial crisis. I was working part time in a retail company whose credit
lines were suddenly withdrawn.
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ments chain. This sub-model builds on a very natural observation: pay-

ments chains link the transactions of households. The expenditures of one

household is the income of a second household. In turn, the expenditures

of a second household are the income of a third household, and so on. If

some households cannot spend before they receive income and, moreover,

have to wait between the time they receive income and spend it, they will

transact with other households with some delay. Greater delays reduce the

capacity to produce output efficiently, because production cannot start until

some payments are made.

Of course, credit enables borrower households to spend before earning

income. Hence, the provision of credit is a determinant of the speed of trans-

actions. When credit conditions are so strong that any household can spend

before earning income and there are no delays in production. But when

some when credit conditions are tight, transactions are postponed and out-

put is lost.

To capture this idea, the starting point of the sub-model is a distribu-

tion of desired transactions. Some of these transactions are predetermined

to be executed on the spot and others through chained payments. Unlike

a Walrasian environment, but very much like in the spirit of money-search

economy, transactions are not simultaneous (not centralized). On the con-

trary, nature randomly links different households through a network of pay-

ments and production: a household can only buy with another household.

Transactions that are executed through the payments chain are transactions

where income must proceed expenditures. By contrast, the spot transac-

tions can be executed immediately. The model produces a distribution of

linked transactions where the length of payments chain is distributed geo-

metrically with an endogenous probability that depends on the fraction of

spot transactions. The greater the amount of spot transactions, the smaller

the average payments chain and the faster the speed of production. I derive
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a formula that links output and TFP to the fraction of spot transactions.

This sub-model showcases that the distribution of means of payments

determines the speed of transactions and average productivity. The pres-

ence of linked payments leads to externalities. The nature of the externality

is that when an individual agent is able to transact earlier, because he makes

spot payments, a second agent will earn income earlier. By earning income

earlier, the second agent will transact at an earlier date, thereby speeding up

the whole network of transactions. This increases real income, and a greater

and reinforcing demand for credit. A theme in the second part of the paper

is that the distribution of spot and chained transactions is endogenous to

household overall consumption and savings decisions. However, consump-

tion and savings decisions do not internalize the effects of their externalities.

Payment Chains in a cycle. I embed the payments chain into a dynamic

but tractable business-cycle model. In the business cycle model, some house-

holds are borrowers and some are lenders. To consume a desired amount,

the household must place an amount of spot and chained transactions or-

ders. If the household has too much debt, it will be constrained by the amount

of spot transactions it can place because it will lack credit. Consumption ob-

tained through chained transaction orders is more expensive, given the de-

lays. The decision to borrow or lend is endogenous and depends on the real

interest rate and the distribution of spot and chained transactions of other

households.

I demonstrate that in a steady state, households will not accumulate debt

beyond the point where their spot transactions are constrained by their credit

limits. Hence, the economy is dynamically efficient. However, this is not true

during a credit crunch. A credit-crunch as a situation where agents suddenly

lose access to credit lines that allow them to consume via spot transactions

despite their debt holdings. During a credit crunch, borrowers must con-



4

sume only via chained transactions before they can spend. This delay, in

turn, slows down the cash-flow of other agents and, thus, average produc-

tivity falls, leading to a payments-chain crisis.

A payments crisis has two phases: the initial credit crunch phase and an

aftermath phase. During the initial phase, borrowers not only delay their

transactions, but they roll-over their debts. When the credit-crunch is over,

their debt remains high so they continue to consume with chained transac-

tions. Thus, even-though credit conditions remain deteriorated, the payments-

chain continues to be inefficient. The failure to internalize effects on the

payments chain will explain why the speed of transactions is inefficiently

slow, many periods after the initial financial disruptions were dissipated.

Policy Implications. I then study a Ramsey planner problem and artic-

ulate how a planner that respects the technology and takes interest-rates

as given, would design its expenditure path during a crunch. The planner

cuts back the consumption of borrowers, something that prompts a lower

real interest than otherwise. This provokes a higher consumption path by

savers, but since savers consume spot transactions, this reduces the overall

length of the payments chains and improves outcomes. The planner trades-

off consumption smoothing with the reduction in TFP.

In a final theme, I revisit some classic discussion on fiscal-monetary pol-

icy: I first study the benefits of a savings tax. I then highlight the beneficial

effects of monetary transfers to borrowers, but show that these are more po-

tent if they are used to spend rather than to repay debt. I finally study how

government expenditures are beneficial if they are executed via spot trans-

actions, but detrimental if the government does not pay instantaneously.

Organization. The paper proceeds as follows.

Literature Review
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The paper falls in the cross-road of several branches areas of study in

macro-economics. First, it is connected to the literature that studies the rel-

evance of payements frictions. Second, it connects to the literature on aggre-

gate demand externalities. Finally, it connects to the literature on networks.

Payments Literature.

• Freeman (1996, 1999), (Lagos et al., 2011; Lagos and Rocheteau, 2009;

Li et al., 2012; Nosal and Rocheteau, 2011; Rocheteau et al., 2018; Ro-

cheteau and Rodriguez-Lopez, 2013; Rocheteau, 2011; Rocheteau et al.,

2016)

• Shares the spirit of new-Monetarist literature, in that the core prob-

lem is the lack of credit or liquidity. Yet, it doesn’t really on Lagos and

Wright because the distribution of wealth is critical., (Green and Zhou,

2002)(Green and Zhou, 2002; Green, 1999; Green and Zhou, 1998), (Stiglitz

and Greenwald, 2003)

• Can be thought of as the typical Lagos-Wright model, but where the

DM meats at random times. All payments are electronic —occur si-

multaneously.

Chains.

• Guerrieri and Lorenzoni (2009), Kiyotaki and Moore (1997), , La’O Jams,

Guerrieri, Lorenzoni, Straub and Werning...

Demand Externalities. In the model, there is a demand externality. The

unconstrained agents don’t internalize that by spending more, they will speed

up the “the payments-chain”. Thereby accelerate the use of products. In that

sense, it is similar to models that have a demand externality, most notably
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the new-Keynesian model, or version of real models where the zero-lower

bound causes a reduction in output.

• Lorenzoni (2009), Diamond (1982)

• (Guerrieri and Lorenzoni, 2017), (Korinek and Simsek, 2016), (Eggerts-

son and Krugman, 2012), (DÃ¡vila and Korinek, 2018)

• The closest paper to this one is Woodford (2020).

Network papers.

• Alvarez-Barlevy, Golub-Jackson,

Japanese crisis.

• Cho?

Russian closure of payments system.

2. Payment-Chains and Productivity

This section presents a simple environment meant to capture the main idea

in this paper, delays in the payments chain and its connection to production.

I then adapt the environment in this section and introduce it as a block of the

dynamic business cycle model that appears below.

Environment. I study a collection of consumption and production orders

linked through a payments chain. Time τ runs continuously over a unit in-

terval [0, 1]. All transactions in this chain occur within that interval. The

economy is populated by an equal number, N , of workers and shoppers.

Workers and shoppers are assigned an identity i ∈ N = {1, 2, . . . , N}. I
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describe the environment for a finite N to fix ideas, but derive results for

N →∞.

I will define shopper-worker relations that, when put together into a pay-

ment chain, will shape the production in the economy. The production re-

lation P is a one-to-one assignment between shoppers and workers. In this

relation the worker’s output can only be consumed by its shopper and the

shopper can only buy goods from its worker. For reasons that will become

apparent later a pair of related shopper and worker cannot have the same

identity.2

The income relation is the union of two other relations. One is the cou-

ple relationX where the shopper and worker in these couples have the same

identity. The shopper in this couple does not have funds at τ = 0 and once

the worker gets paid, at some τ > 0, she can transfer the funds to the shop-

per.

In contrast to the production relation, in the income relation there are

workers and shoppers, not coupled, called singles.3 A single shopper shows

up to the payments chain with a means of payment at τ = 0. This implies

that they can place a shopping order immediately at time τ = 0. Thus the

singles relation S is the identity relation over the set of singles.4 The income

relation then is the union of both relations I = X ∪ S and is simply the

identity relation.

For now, we take their relative populations as given. We assume that a

fraction µ of theN same identity worker-shopper pairs is coupled. In the dy-

namic model below, this fraction is endogenous and is derived from house-

hold decisions.
2Formally this is a bijection P : N → N such that if P (i) = j then shopper i buys from

worker j and i 6= j.
3Formally, letA ⊂ N be the set of couples, the couple relation is the identity bijection on

A, X : A→ A
4The singles relation is the identity bijection over Ac, S : Ac → Ac.
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Payment Chains. Notice that, whereas identity defines the couple rela-

tion, we let nature choose among the possible production relations P with

equal probability. These two underlying relations produce a network of pay-

ment chains, which is my ultimate object of study. Consider a single shop-

per i related with worker j (i.e. P (i) = j), this creates a payments link be-

cause shopper i will pay worker j for producing goods. If worker j is single,

any funds it receives will remain with her and there are no more payments

link. Thus, this chain of payments would have length zero. However, if j

is coupled she will transfer the funds to its shopper. This creates a link be-

tween shopper i and shopper j. In turn, shopper j is related to worker k (i.e.

P (j) = k), thus, the funds received from shopper i that were transferred to

shopper j will be transferred to worker k. If k happens to be single, then

there are no more chained payments. As a result, this chain of payments

would have had length one. However, if k happens to be coupled, she will

transfer funds to her shopper, and the chain will continue. Notice that the

length of the payments chain is the number of links between consecutive

shoppers. Below we will see that this is equal to the number of couples in a

payment chain.

Characterization. A payment chains network is a sequence of payment

relations where a shopper buys from a worker and the worker, possibly, funds

its couple’s consumption which will generate a payment to a second worker

and so on and so forth until a coupled shopper pays to a single worker and

the payment chain will end and restart from the single shopper.

Armed with the relations, we formally define a payment chains network

by induction.

Definition 1. A payment chains network is a sequence of identity pairs such

that the succesor of any (i, i) is the identity pair (j, j) corresponding to the
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worker that sells to shopper i (i.e. P (i) = j). Further, for any pair (i, i) we can

say whether it is coupled or single.

Intuitively, the network advances because shoppers pay to workers that

are immediately to their right and the payment chain continues if the worker

is coupled.

Since the pairs are identity pairs we could characterize the network through

a sequence representation by a sequence of identities R = {in}n≥0 where

in+1 = P (in). For example,

R = {. . . , i, j, k, l,m, n, o, p, . . .} .

Namely, j is the worker of shopper i in the production relation, k is the

worker of shopper j and so on. We can further characterize the network

R as through a binary representation by a sequence of singles and couples

B = {bn}n≥0 where bn = s if the n-th pair is single and bn = x if the n-th pair

is a couple. For example,

B = {. . . , s, s, x, s, x, x, x, s, x, . . .}

where i and j are singles, k is coupled and so on. Notice that whenever a sin-

gle succeeds a couple (. . . , x, s, . . .), that meeting in the network represents

the end of one payment chain because the couple transfers funds to a single

worker who will not further transfer funds. When a single succeeds a single

(. . . , s, s, . . .), it means that a chain of payments has length zero, because no

two shoppers are linked. In turn if a couple succeeds a single (. . . , s, x, . . .)

there is a payment chain of lenght one because the single shopper will pay

the coupled worker whom, in turn, will transfer funds to its shopper creat-

ing a link between the single and coupled shopper. An induction argument

shows that the lenght of a payment chain {. . . , s, x, . . . , x, . . .}with n consec-
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utive couples is n.

We can further represent a network by rewritting its binary representa-

tion B as a collection of payment chains. Under this representation it only

makes sense to consider networks that start with a single.5 A payment chain

is a finite6 subsequence of the sequence representation of the network that

starts with a single and finishes before the next single. The network in our

example reduces to an ordered collection of payment chains

C = {. . . , Cn, Cn+1, Cn+2 . . .}

where Cn = {s} , Cn+1 = {s, x} , Cn+2 = {s, x, x, x}.

Examples. I present the following figures to illustrate the concept of a payments-

chain. In this case we have N = 8, the production relation is characterized

by the sequence R = {1, 5, 7, 4, 6, 2, 3, 8} and the income relation is charac-

terized by B = {s, x, s, x, x, x, s, x} as explained above (e.g. shopper 1 buys

from worker 5 and 1 is a single and 5 is a couple). In figure 1 we can see the

income relation, in green we have the shopper-worker pairs that are coupled

and the arrow from worker to shopper depicts the flow of income in this di-

rection. In contrast, we have in blue, pairs that are single and do not exhibit

a flow of income between worker and shopper.

In figure 2 I add the production relation which creates (jointly with the

income relation) payment-chains. To interpret the graph, notice that the

chain starts with the (single) shopper 1 who pays for production of worker 5

which is coupled and will transfer funds to shopper 5 who in turn pays for

production of worker 7. However, worker 7 is single so the (blue) payment

chain will end at this point. This first payment chain has length one because

5Because if one starts with a couple the first shopper has no means of payment and its
worker couple will not produce (and will not get paid) because nobody is buying from her.

6I assume that a next single will always appear.
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Figure 1: Income relation

it created one link between two shoppers (1 and 5), the length of the chain

is also equal to the number of couples in the chain. With shopper 7 a new

(orange) payment chain will start. This chain links shoppers 7, 4, 6 and 2 be-

cause 4, 6 and 2 are couples. Naturally, the length of this chain is 3. Now, the

last shopper, s2, of the second (orange) payment chain pays for production

of worker 3 who stops the chain since it is single. This starts the last chain

which links shopper 3 and 8.

I emphasize that in this finite case I chose to “close” the payment chain

by requiring that shopper 8 buys from worker 1, this implies that the same

chains will happen again and again. I will rule out this type of “cyclying”

behavior in the infinite case. Namely, I will require that the payment chain

advances (to new shopper-workers) and does not create a loop among the

same shopper-workers.7

Figure 3 summarizes the information in figure 2 using the fact that the

7This is necessary to have randomness in chain length. Formally, this requires
that nature chooses the worker $i {n+1}$ for shopper $r {n}$ among $\mathbb{N}-
\left\{r {1},\ldots,r {n}\right\}$. Since this is still an infinite set, this drawing remains
independent.
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Figure 2: Payments-chain network

income relation is the identity. Again, the first (blue) chain starts with 1 and

will continue up to 7 since 5 is coupled. The second chain (orange) starts at 7

and will continue up to 3 since 4, 6, 2 are coupled. The last chain starts with 3

and continuous up to 1 because 8 is coupled. This figure emphasizes the key

object of study: length of chains. Abstracting from the underlying structure

of the network we clearly see the number of links between shoppers for each

chain.

Finally, figure 4 shows the shoppers in the left and workers in the right,

the production-related payments are depicted by arrows directed to the right

and the income-related payments are depicted by arrows directed to the left.

For single pairs there is no flow of income (to the left) and this gives rise to

new chains. In this case it is also very easy and intuitive to pick up the chain

length: it is the number of colored arrow tips (for each chain) since they re-

flect the number of linked shoppers within a chain. We easily see that the

first chain has length 1, the second length 3 and the third one length 1.

Let’s now derive the distribution of payment chain lengths for N → ∞.

Recall that nature assigns production relations randomly. Thus, the distri-
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Figure 3: Summary of a payments-chain network

bution of length (n) of the payments chains follows some probability mass

function depending on the proportion of couples (µ) as a parameter, namely

some G (n;µ). In particular, allowing N → ∞ and standing in any node of

the network the probability of the next identity to be coupled or single is µ

and 1−µ respectively. Namely, the next type distribution is independent and

identically distributed as a Bernoulli trial with probability µ. Now, a chain of

payment is of length zero if the starting single (which is given) is followed

by a single, this happens with probability 1 − µ. Likewise, the chain is of

length 1 if the first draw after the first single is a couple, which happens with

probability µ, and the second draw is a single, which happens with proba-

bility 1 − µ. The chain is of length two if there are two consecutive draws

of couples followed by a single, and this occurs with probability µ2 (1− µ).

Proceeding by induction, we arrive at the following result:

Proposition 1. Let n ∈ {0, 1, 2, . . .} be the lenght of a payment chain, then

n distributes geometrically with parameter µ, i.e., G (n;µ) = (1− µ)µn is the

probability mass function of n.

We use this distribution to solve for TFP and output once we consider
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Figure 4: Payments-chain network

how payments induce delays in the production chain. In the model, what

really matters is the distribution of lengths of the payment chains starting

from from a single shopper up to the first single worker.

Orders, Payments, Transfers, and Production Protocols. So far we have

remained silent about how and how much do shoppers pay workers and

what and how much is produced. Next, I answer these questions. Shoppers

uses tokens worth one unit of labor as a means of payment. As in Kiyotaki

and Wright (1989), tokens are indivisible. Thus, tokens can only be used to

purchase one unit of labor. At the time the shopper worker relationships are

realized, shoppers agree to transfer the funds to the worker in exchange for

his production, whatever its production is. All workers will carry out some

amount of production. Thus, notice that there’s one unit of labor employed

for every shopper and since the production relation is a one-to-one map, the
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labor market will clear.

What is special about the environment is that the time where production

takes place matters for the total production generated each period. Hence,

the times at which transactions takes place will impact TFP. There are two

key assumption. First, production cannot begin unless the shopper transfers

tokens to the worker. Second, recall that coupled workers need to transfer

funds to their coupled shopper partners. The second assumption is that the

worker can transfer the tokens only after the fraction 1− δ of his production

is done.

Let’s now discuss how production takes place. The worker has one unit of

labor endowment per instant of time in the interval [0, 1]. Since production

cannot begin until she is paid, she starts production at some endogenous

random time τ . Thus, she has σ ≡ 1 − τ time available to begin produce.

Then, her output will be given by: Yσ = σ .

Let’s see what this means for the time at which production can begin to

take place for different workers in different chains. If the chain is of length

0, production can begin immediately, so the time to build is 1, so her pro-

duction is 1. Next, consider a chain of lenght 1 {s, x}; the shopper pays the

coupled worker and starts production immediately but she only transfer the

token funds to its couple shopper at time 1 − δ when the time to build is δ.

Next consider a chain, {s, x, x} in which the second worker starts with δ time

left to build so it produces δ and accomplishes 1 − δ of its production at a

time that leaves δ2 time to build for the following worker.

We see a pattern for the finishing time of transfer-required production

for a chain of length n. The required production seems to end at time 1− δn

leaving δn time for the following worker. We see that this holds for n = 1

and if the n-length chain finishes required production at time 1− δn the next
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worker will finish its required production at time

1− δn + (1− δ) δn = 1− δn+1

leaving δn+1 time for the following worker. This proves that the time to build

in a chain of lenght n are

{
1, δ, δ2, . . . , δn

}
where the k-th element in this sequence represents the time to build avail-

able to the k − th worker in the sequence.8 We can generalize production

along many directions, but it is convenient to keep things simple this way to

convey the main idea.

Statistical Properties. Our next goal is to compute the expected output for

single and coupled workers given µ and the distribution of lengths I derived

in Proposition 1. In turn, this allows us to compute total output as a function

of µ and δ. The following Proposition provides the results.

Proposition 2. Given µ and N → ∞, the expected output of a worker in a

production relation with single shoppers is 1. The expected output of a worker

in a production relation with coupled shoppers is

A (µ; δ) =
(1− µ)

µ

δ

1− δ
ln

(
1− δµ
1− µ

)
< 1. (1)

Furthermore,Aµ (µ; δ) < 0 and satisfies the following limits:

lim
µ→0
A (µ; δ) = δ and lim

µ→1
A (µ; δ) = 0 and lim

δ→0
A (µ; δ) = 0 and lim

δ→1
A (µ; δ) = 1.

8Though bare in mind that in a n-length chain the n-th worker will be a single worker and
it does not appear in the binary representation since it always ends with the last couple.
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In turn, average output per hour is:

Y (µ) = (1− µ) + µA (µ) < 1.

Furthermore, Yµ (µ) < 0 and satisfies the following limits:

lim
µ→0
Y (µ; δ) = 1 and lim

µ→1
Y (µ; δ) = 0 and lim

δ→0
Y (µ; δ) = 0 and lim

δ→1
Y (µ; δ) = 1.

This theorem is the key theorem in the paper. Total factor productivity,

is a decreasing function of the amount of consumption that is not financed

with funds directly.

• mention raw intuition: how it is constructed. Is there congestion? Not

really...Ideally planner would like to distribute singles. But it cannot.

Nature connects payments.

• mention structure and intuition. mention randomness in payments.

• mention limits and intuition.

• mention that A is also the average inverse cost of coupled consump-

tion.

• sources of inefficiency: wages? prices? not really?

Clearly, as µ → 1, average output converges to the average output when

only one firm is constrained. As µ → 0, output converges to 0, the output of

two constrained firms.

Comparative Statics. Figure xxx plots different...

Discussion: Complexity. In this section, I adopt the simplest assignment

protocol. I admit it is fully arbitrary, but it illustrates the potential problems
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that may arise with chains of payments. In general, depending on an assign-

ment rule, there will arise a complicated combinatorial problem to be solved

but not in this example.

• Discuss issues of size of transactions. Orders, etc.

• Feynman diagram footnote.

Discussion: Financial Micro-Foundations.

• Commitment before the assignment of pairs take place.

• Justify the delay δ.

3. Payment Chains in a Business-Cycle Model

We now incorporate our study of payment chains into a business cycle model.

The goal of the section is to layout the environment being silent about the

payment chains for now.

3.1 Environment

Timing. The timing of this model is special: Time is continuous and the

horizon infinity. Financial, consumption, and labor supply decisions take

place at integer dates—at t = {0, 1, 2, ...}. In turn, transactions and produc-

tion take place at the time intervals between the integer dates. Those inter-

vals correspond to the time interval studied above. The economy features is

of perfect foresight, but I will study an unanticipated shock.

Demographics. The economy is populated by two classes of big-family

households. One class are working-class households (workers) that are rich
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in human wealth, but have negative financial wealth. The other class are

financially wealthy households (savers). Both households are identical ex-

cept that savers do not supply labor. As in, (xxxLucas, Lucas Prescott or Shi),

each household is composed of a continuum of members. Both households

discount utility over time at rate β.

Transactions and Prices. To capture transactions, I organize households

into a groups of single shoppers and single workers or worker-shopper cou-

ples, exactly as we did in the previous section. In particular, savers decide

over an amount of consumption cst which is split into a large number of spot

transactions. In particular: . In turn, workers separate their h and c into ...

• explain how here consumption decision over reals is broken into con-

stituents of smaller size (transaction size) a bit like quanta.

The unit of account is a unit of labor effort.

Saver Household. Wealthy households start each date with an amount of

real deposits, Dt. Households consume and save in deposits that earn a de-

terministic real return Rt. The period utility is log (·) over a sequence of con-

sumption {cst}. The saver’s problem is given by:

Problem 1. (Saver’s Problem): Given D0 and the path or real interest rates

{Rt+1}t≥0, wealthy households chose a sequence of savings {Dt+1}t≥0 to max-

imize,

max
{Dt+1}t≥0

∑
t≥0

βt log (Cs
t ) ,

subject to the following budget constraint:

Dt+1

Rt+1

+ Cs
t = Dt, ∀t ≥0.
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The solution to this problem gives us the savers consumption path, cst .

Since wealthy household’s must maintain positive wealthDt to sustain posi-

tive consumption, they will always maintain positive savings. Working house-

hold’s must therefore be the borrowers in this economy. Since the economy

is closed, clearing on the financial markets requires:

Dt = Bt, (2)

whereBt are the borrowing of workers. Thus, I proceed to the worker’s prob-

lem treating Bt as worker debt. Since the saver does not supply labor, all of

his consumption must be obtained from spot transactions.

Working-Class Household. Workers start each date with an amount of debt,

Bt. Workers supply labor ht = h inelastically. The period utility of workers

is also log (·). Consumption ct is the sum of goods obtained through spot

expenditures, st, and chained expenditures, xt:

Cw
t = Swt +Xw

t . (3)

This distinction is important because whereas st has a unit price, the chained

consumption xt has an implicit price qt that depends on the distribution of

spot and chained payments.

Borrowings Bt is limited by the natural debt limit, B̄, in order to prevent

Ponzi schemes. This debt limit will never bind because it would mean in-

finite negative utility to the worker. To execute spot transactions, st, the

worker must borrow within the period (at not interest) if it wants to execute

spot transactions. I assume intra-period debt carries no interest. However,

intra-period debt is limited. Namely, in addition to natural debt limit that

applies to inter-period debt, I introduce a different constraint, a borrowing
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limit, B̃. The borrowing limit B̃ caps the amount of intra-period borrowing.

Namely, spot transactions are capped as follows:

Swt ≤ max
{
B̃ −Bt, 0

}
. (4)

Of course, the worker can execute chained transactions in which case he

does not have to borrow intra-period. However, chained consumption is

costly because qt ≥ 1.

• add further motivation here.

• accounting goes here.

Problem 2. (Workers’s Problem): Given B0 and the path or real interest rates

{Rt+1}t≥0, the worker chooses a sequence spot expenditures St and chained

expenditures Xt to maximize:

max
{st,xt}t≥0

∑
t≥0

βt log (Ct) ,

subject to the flow budget constraint:

Bt + Swt + qtX
w
t =

Bt+1

Rt+1

+ 1, ∀t ≥0,

the definition of total consumption (3), the constraint on spot transactions

(4), and the natural debt limit, Bt ≤ B̄.

Equilibrium. Given the expenditure choices of both households, {Xw
t , s

w
t , C

s
t },

the ratio of chained expenditures at t is:

µt =
Xw
t

Sst + Swt +Xw
t

.
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This ratio define total production, TFP, and the effective cost of consumption

obtained with chained expenditures:

Yt = Y (µt) , At = A (µt) , and qt = A (µt)
−1 . (5)

In the economy, the goods market clearing condition is thus:

Cs
t + Swt +Xw

t = Y (µt) · h, (6)

and furthermore, from here we derive the following expenditure identity:

Cs
t + Swt + qtX

w
t = h.

I define an equilibrium as follows.

Definition 2. An equilibrium is a sequence of asset positions and expenditures

{Bt, Dt, C
s
t , S

w
t , X

w
t } together with a sequence of real rates and implicit prices

{Rt, qt}t≥0 such that:

1. Given {Rt, qt}t≥0, {Bt, S
w
t , X

w
t } solves the worker’s problem and {Dt, C

s
t }

solves the saver households problem.

2. The asset market and goods market clears: (2) and (6).

3. The price qt is consistent with the ratio of chained-transactions (5).

3.2 Characterization

Solution to household problems. The wealthy household’s problem is stan-

dard and its solution is recognized immediately. I summarize it in the follow-

ing proposition:
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Proposition 3. LetD0 be given. The solution to the wealthy household’s prob-

lem, {Dt+1}t≥0, is given by:

Dt+1

Rt+1

= βDt,andCs
t = (1− β)Dt ∀t ≥0. (7)

We know that the worker can never consume above his labor income—

combine cs > 0 with the goods clearing condition.

The worker’s problem is more complicated because consumption de-

pend the fraction of spot transactions. Since spot transactions are always

cheaper than chained transactions, we know that for any level of cwt induces

the following spot and chained expenditures:

St = min
{

max
{
B̃ −Bt, 0

}
, Cw

t

}
and Xt = Cw

t −min
{

max
{
B̃ −Bt, 0

}
, Cw

t

}
.

(8)

These optimal expenditures follow immediately from expenditure minimiza-

tion given cwt . With these rules, we write the worker’s problem directly in

terms of its consumption choice through the following recursive represen-

tation:

Problem 3. (Modified Workers’s Problem): Given B and the path or real in-

terest rates {Rt+1}t≥0, the worker chooses consumption to maximize:

Wt (Bt) = max
{cwt }t≥0

log (Cw
t ) + ...

βWt

(
Rt+1

(
Bt + qtC

w
t + (q − 1) ·min

{
max

{
B̃ −Bt, 0

}
, Cw

t

}))
︸ ︷︷ ︸

Bt+1

.

The representation is obtained by replacing the optimal expenditure rules,

(8) into the law of motion for debt that follows the budget constraint (xxx).

This representation allows us to obtain the following generalized Euler equa-
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tion.

Proposition 4. (Workers’s First-Order Condition): Consider a convergent {Rt, qt}
sequence. The solution to the worker’s problem, {Bt+1}t≥0 satisfies the follow-

ing first order condition:

Cw
t+1

Cw
t

≡
1 + (qt − 1) I[Xt>0]

1 + (qt+1 − 1) I[St+1=0]︸ ︷︷ ︸
marginal appreciation

βRt+1. (9)

The proof is not immediate from the Envelope Theorem because the bud-

get constraint features a kink. To proof this result, I use a relaxation method:

I assume cwt is chosen with some noise, ε, and take the noise to zero. Let’s

provide the intuition behind the Euler equation.

• Intuition goes here. Partition into three regions...explain that st+1 = 0

is relevant during a credit crunch.

• Intuition: save 1 unit of chained expenditures to reduce borrowing

limit and allow one unit of spot expenditures.

Steady states. Next, I characterize the set of possible steady states. In a

steady state, the price q and the real rate R are fixed. I drop time subscripts

and use ss to denote a steady state value. In principle, a steady state could

feature chained expenditures, if Xw
ss > 0 and qss < 1. However, this turns out

to be impossible, as the following Proposition demonstrates.

Proposition 5. If intra-period borrowing is feasible B̃ss > 0. Then, a steady

state can only feature spot expenditures, Cw
ss = Swss and qss = 1. Moreover, the

economy is in steady state at t if and only if the current debt level Bt satisfies:

Bt ≤ B? =
1

β

(
B − 1

)
. (10)
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The proposition showcases as long as some intra-period debt borrowing

is allowed, all steady-states are non-disrupted. For that to occur, condition

(10) must hold. Let’s provide some intuition on why this is the case. At steady

state, from the saver’s solution described in Proposition 3, we know that the

economy can be in steady state only if βRb = 1. Coupled with the worker’s

solution, 4 the worker’s consumption can be in steady state if either X > 0

and S = 0 or X = 0 and s > 0. The former case can only occur if B̃ss = 0.

In turn, the latter case can only occur if the debt level of the worker is not

high enough that it violated his borrowing debt limit, and this occurs when

Bt ≤ B?.

Now consider where the economy is at steady state, but a single individ-

ual worker has debt above B?. That worker will delever at a rate consistent

with (4). As he delvers, his consumption increases up to the point where

Bt ≥ B?. If all workers are above this level, the economy transition to steady

state, and this has effects on the real interest and the implicit price q.

An implication of this result, is that if there are any disruptions in the

economy, these have to do with temporary low exogenous borrowing limits

or temporarily high endogenous debt levels.

4. Credit-Crunch Dynamics

The previous section described that all steady states are non-disrupted. How-

ever, in this section, we describe the transitions toward a steady state and

argue that they are inefficient. This the reason is that because cash-stripped

households do not internalize that by shopping without cash, they lengthen

the payments chains. They don’t internalize that by saving a little, the follow-

ing period they could all gain a marginal benefit. To do that, we first solve

for the model’s dynamics.
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Credit crunch. We now consider a sudden unexpected decline in the bor-

rowing limit B̃t. We let the limit fall to xxx and then revert back to steady

state after xxx periods. The reversion speed can be geometric, or modeled

as a one time jump. To simplify the algebra, we assume it stays at 0 for T

periods and then jumps back to steady state.

• [we can also do it with Poisson probability...]

Equilibrium rates and expenditures: analytic solution.

• if all workers coordinate to save, or one does...all agents abandon the

condition.

We now consider a situation where the economy starts with a given level of

debt, B0, and there’s s deterministic path of B̃.

Proposition 6. (Equilibrium Rates and Expenditures):

• The fixed point operators go here...R equation and µ equation.

Transitions toward steady state. [Here I describe the situation of a crunch

starting from a spot steady state which terminates at a spot steady state.]

Proposition 7. (Equilibrium Rates and Expenditures):

Consider a credit crunch. If the crunch lasts for at least T xxx. The economy

remains inefficient for T xxx additional periods.

Discussion: Borrowing vs Debt Limit. The distinction between borrowing

and debt limits has technical and economic motivation: The technical mo-

tivation is that the borrowing limit allows us to study an unexpected credit

crunch. Although an unexpected jump in the debt limit is not well-defined
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mathematically, an unexpected jump in the borrowing limit is.9 In turn, the

economic motivation is that if a bank wants to cut back on credit, it may

be convenient to tighten the borrowing limit, but not necessarily to force

households to repay debt principal immediately.10

5. Policy Discussion

Inefficiency.

• In section xxx we discussed the nature of inefficiency. As chains include

more chained transaction, chains get longer. But that’s a mechanical

explanation. More interesting to think of debt decisions

• Desire to consume too much by poor. Debt increases, inequality in-

creases. Hurts them. Deleveraging is too slow. Rate is too low.

• In turn, desire to consume too little by rich, currently. All in all this

means the rate is too high. You want to reduce rates to discourage rich

from savings. But also, inefficiency from the side of wealthy: they con-

sume too little, attracted by high rates.

• Seems that a tax on savings is a good idea...crazy, but a good idea.

• Issue with workers is that it is too draconian. you want them to smooth

consumption by less.
9With an unexpected change in the debt limit, there would be a positive mass of house-

holds violating their debt limits. This does not apply to the borrowing limit s̃t. An alternative
approach is to study a gradual shock to debt limits as in ?.

10When a bank extends a loan, it increases its liabilities. This is not true about a loan
rollover. During crises, banks may want to roll over debt, although they are unwilling to
extend loans because the latter consumes regulatory capital. In addition, if loan repayment
is suddenly forced, it can trigger default which may lead to costly underwritings.
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A Ramsey Problem.

• If we endow the Ramsey planner with transfers, then it is obvious it can

circumvent any credit constraints.

• If we endow the planner with only a credit tax and a transfer to workers,

then consumption rule of savers is undistorted, and the interest rate

absorbs the effect. Interest rate changes are akin to a transfer to savers.

• Therefore, the cleanest exercise is to introduce a time-varying uniform

credit tax together with consumption taxes.

• Let Bss be a steady-state level of debt and θ a Pareto weight associated

with that level of debt.

• We consider a sequence of credit taxes
{
τ kt
}

and consumption taxes

{τ ct } such that the Planner maximizes:

Problem 4. (Ramsey Problem):Taking B0 = Bss as given and a sequence of

borrowing limits
{
B̃t

}
, the Ramsey Planner maximizes:

max
{τkt ,τct }t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the saver’s budget constraint and optimality conditions:

Dt+1(
1− τ kt

)
Rt+1

+ (1 + τ ct )Cs
t = Dt, ∀t ≥0

Cs
t+1

Cs
t

= β

[
1 + τ ct

1 + τ ct+1

] (
1− τ kt

)
Rt+1, ∀t ≥0

and the workers’s constraints and optimality conditions:

Bt + Swt + qtX
w
t =

Bt+1

Rt+1

+ 1, ∀t ≥0
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Cw
t+1

Cw
t

≡ β

[
1 + τ ct

1 + τ ct+1

] [
1 + (qt − 1) I[Xt>0]

1 + (qt+1 − 1) I[St+1=0]

]
Rt+1, ∀t ≥0

Cw
t = Swt +Xw

t

St = min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
and Xt = Cw

t −min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
, ∀t ≥0

and clearing in the asset market:

Bt+1 = Dt+1, ∀t ≥0

and respecting the payments constraints:

µt =
Xw
t

Cs
t + Swt +Xw

t

.

and the implicit cost of chained consumption qt = A (µt)
−1and the budget

balance constraint:

τ kt Rt+1Bt+1 + τ ct = 0, ∀t ≥0.

The Ramsey planner distorts the economy with credit and consumption

taxes, in order to avoid the externality. The planner takes into account the

optimality conditions of the agent behavior, their constraints and their mar-

ket clearing conditions. It chooses taxes subject to a budget balance con-

dition. Naturally, there’s no role for expenditures. We now turn to a primal

planner problem, one where the planner can chose directly consumption

of agents and choses an accounting variable, Bt, that determines dynamic

constraints.

Now the problem that respects the condition.

Problem 5. (Primal Unconstrained Ramsey Problem):

Taking B0 = Bss and the time zero borrowing limit
{
B̃t

}
t≥

as given, the
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primal Ramsey Planner maximizes:

max
{Cs

t ,X
w
t ,Bt}t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the resource constraint:

1 = Cs
t + St +A (µt)

−1Xt, ∀t ≥0

µt =
Xw
t

Cs
t + Swt +Xw

t

, ∀t ≥0

St = min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
and Xt = Cw

t −min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
, t = 0.

Cs
t ≤ Bt

Notice that the constraint set in the Primal Ramsey problem includes the

constraints of the original problem. This is immediate since market clearing

in the asset market and the budget balance, implies, by Walras’s law that the

resource constraint holds, and naturally, only the time zero credit limit is

imposed.

• There are two types of constraints. Static constraints and dynamic con-

straints. Dynamics regards the choice of Bt.

• Static constraints regard the mix between Cs
t and Xt, given the level of

St possible for our given construction.

The following lemma demonstrates that the solution to the primal problem

coincides with the solution to original problem.

Lemma 1. (Implementability Conditions):

The solution to the Primal problem is the solution the the Ramsey problem

with credit taxes and consumption taxes. The sequence of taxes that imple-

ments the solution is:



31

• The proof is obtained by noticing that there exists a path of
{
τ kt , τ

c
t

}
that

produces a path of consumption and Bt, consistent with the solution

in the primal problem.

A special case of this problem occurs when it is possible to construct a path

for Bt such that there’s spot consumption only at t = 0. This special case is

interesting, because it tells us the nature of the correction in consumption,

in isolation of the path of Bt.

Problem 6. (Primal Unconstrained Ramsey Problem):

Taking B0 = Bss as given and the time zero borrowing limit B̃0 as given,

the primal Ramsey Planner maximizes:

max
{Cs

t ,X
w
t }t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the resource constraint:

1 = Cs
t + St +A (µt)

−1Xt, ∀t ≥0

µt =
Xw
t

Cs
t + Swt +Xw

t

, ∀t ≥0

S0 = min
{

max
{
B̃0 −B0, 0

}
, Cw

0

}
and X0 = Cw

0 −min
{

max
{
B̃0 −B0, 0

}
, Cw

0

}
, t = 0.

We have the following Lemma which shows that the solution to the orig-

inal Ramsey problem coincides with the primal problem.

Proposition 8. (Solution to the Primal Problem.):

The credit crunch in the primal problem lasts one period and the economy

returns to steady-state immediately. Moreover, the planner distorts consump-

tion at time zero where:

S0 = min
{

max
{
B̃0 −B0, 0

}}
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and {X0, C
s
0 , µ0} solves:

Cs
0

S0 +X0

=
(1− θ)
θ

(
q (µ0)− q′ (µ0)µ2

0 + q′ (µ0)µ0

1− q′ (µ0)µ2
0

)

1 = Cs
0 + S0 +A (µ0)−1X0

where:

µ0 =
X0

Cs
0 + S0 +X0

.

The proposition tells us that consumption is only biased in the first pe-

riod of the crunch. After that, consumption can be carried out exclusively

in a spot fashion. The intuition is that the credit tax has an influence on the

rate of return on bonds, thus, it can distort wealth toward workers.

Clearly, the solution involves:

Cs
0 > Cs

ss and Cs
0 < Cw

ss.

A more interesting question is whether the first-state consumption requires

a distortion, even if the credit crunch episode vanishes after one period. If

consumption at t = 0 is not distorted by consumption taxes, then, we want

to evaluate whether there’s insufficient consumption by thw savers. If their

consumption is undistorted in a market solution, we obtain:

Cs
0 = (1− β)B0

and

Cw
0 =

(
1− 1

q (µ)

)
min

{
max

{
B̃0 −B0, 0

}}
+

(1− (1− β)B0)

q (µ)

1 = q (µ)X + min
{

max
{
B̃0 −B0, 0

}}
+ (1− β)B0
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Proposition 9. (Insufficient consumption.): Relative to the market solution,

the solution to the Ramsey problem features more spot consumption.

Credit Spreads: tilting the evolution of debt.

• [Do spreads work?] Akin to credit tax + transfer to worker only. Do we

need to distort consumption.

Proposition 10. (....): Relative to the market solution, the solution to the Ram-

sey problem features more spot consumption.

Transfers: uses matters.

• discuss that transfer is not as useful unless used for spending. If used

to pay debt, its not that good. Connect with Richard Koo’s discussion.

[Here I explain that it matters if the transfer is used for transactions or to pay

debt.]

Government Spending: Pay for stuff vs. Spending. We now consider the

optimality of government expenditures in this environment. We consider

to possibilities: the case where government expenditures are financed with

current tax receipts or future tax receipts. We begin with the latter problem.

Problem 7. (Spot Government Expenditures): Taking B0 = Bss as given and

a sequence of borrowing limits
{
B̃t

}
, the Ramsey Planner maximizes:

max
{τkt ,Gt}

t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the saver’s budget constraint and optimality conditions:

Bt+1(
1− τ kt

)
Rt+1

+ Cs
t = Bt, ∀t ≥0
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Cs
t+1

Cs
t

= β
(
1− τ kt

)
Rt+1, ∀t ≥0

and the workers’s constraints and optimality conditions:

Bt + Swt + qtX
w
t =

Bt+1

Rt+1

+ 1, ∀t ≥0

Cw
t+1

Cw
t

≡ β

[
1 + (qt − 1) I[Xt>0]

1 + (qt+1 − 1) I[St+1=0]

]
Rt+1, ∀t ≥0

Cw
t = Swt +Xw

t

St = min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
and Xt = Cw

t −min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
, ∀t ≥0

and respecting the payments constraints:

µt =
Xw
t

Cs
t + Swt +Gt +Xw

t

.

and the implicit cost of chained consumption qt = A (µt)
−1and the budget

balance constraint:

τ kt Rt+1 = Gt, ∀t ≥0.

We now study the case whereGt is consumed by the government in chained

consumption. This requires expenditures to occur before tax collections.

Problem 8. (Spot Government Expenditures): Taking B0 = Bss as given and

a sequence of borrowing limits
{
B̃t

}
, the Ramsey Planner maximizes:

max
{τkt ,Gt}

t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the saver’s budget constraint and optimality conditions:

Bt+1(
1− τ kt

)
Rt+1

+ Cs
t = Bt, ∀t ≥0
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Cs
t+1

Cs
t

= β
(
1− τ kt

)
Rt+1, ∀t ≥0

and the workers’s constraints and optimality conditions:

Bt + Swt + qtX
w
t =

Bt+1

Rt+1

+ 1, ∀t ≥0

Cw
t+1

Cw
t

≡ β

[
1 + (qt − 1) I[Xt>0]

1 + (qt+1 − 1) I[St+1=0]

]
Rt+1, ∀t ≥0

Cw
t = Swt +Xw

t

St = min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
and Xt = Cw

t −min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
, ∀t ≥0

and respecting the payments constraints:

µt =
Xw
t +Gt+

Cs
t + Swt +Gt +Xw

t

.

and the implicit cost of chained consumption qt = A (µt)
−1and the budget

balance constraint:

τ kt Rt+1 = Gt, ∀t ≥0.

We have the following result:

Proposition 11. (Expenditure multipliers): Consider the economy where gov-

ernment expenditures are spot. Then, the expenditures increase the value of

the Ramsey problem:

θ

Sw +Xw︸ ︷︷ ︸
marginal utility

q (µ) + q′ (µ)µ (1− µ)

q′ (µ)µ2 − 1︸ ︷︷ ︸
net goverment multiplier

In turn, when government expenditures are chained,

θ

Sw +Xw︸ ︷︷ ︸
marginal utility

q (µ) + q′ (µ)µ (1− µ)

q′ (µ) (1− µ)µ− 1︸ ︷︷ ︸
net goverment multiplier

.
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For µ→ 1, we have that the spot expenditure multiplier is:

q (1)

q′ (1)− 1
...

and the chained expenditure multiplier:

q (1)

−1
< 0

6. Retrospection: Japan’s lost decade

7. Conclusion

There are many views about the nature of business-cycle fluctuations. Some

view credit crunch episodes as the catalyst event of a subsequent economic

depression. Views differ once it comes to explaining the aftermath of a credit

crunch. Among these, the new-Keynesian has been particularly appealing:

somehow societies can become disorganized and waste resources. What

makes this idea particularly attractive is that, despite the financial nature of

financial crises, there is a generalized sense that aftermath of a credit crunch

have had the scent of coordination failures, or demand externalities.11

For monetarists, or any of us who believes that there is something inher-

ently special about credit—payments and money in general—this descrip-

tion feels incomplete. Although there’s a sense in which policy should fix the

11Furthermore, economic theory has made progress providing theoretical alternatives
that don’t conflict with rational expectations. There are many models now that present a for-
mal interpretation of the coordination failures that underlie classic Keynesian economics—
models based imperfect information, sunspots, or sentiments. Keynesian views are ready
to claim success in being able to explain the sequel of a financial crises.
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coordination failures, demand-driven theories are not explicit about pay-

ments in them; there’s nothing financial! Yet, if one thinks about it, the

deepest and longest recessions of the past century have all been triggered by

problems within the financial system. The Great Depression, the Japanese

lost decades, the Great Recession that has affected the US and Europe for al-

most a decade now, all had some financial catalyst. If coordination failures

don’t have monetary nature, they put all stories in the same bucket, in the

same order of importance. Anything, a war, an disaster, any change in taxa-

tion, or fluctuation in the terms of trade can trigger a similar crisis. It’s just a

matter of how large these shocks were and the observation that the deepest

recessions are financial, is just a coincidence.

The main contribution in this paper is to propose a payments interpre-

tation financial crises and the failures that follow. The claim is that the core

economic problem in the aftermath of a crises is not expectations, but an

inefficient distribution of liquidity. This causes a delay in payments and is a

form of coordination failures. It goes without saying that policy recommen-

dations differ.
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B. Proofs

B.1 Proof of Proposition 2

I first derive the expected output received by couples. We aim to find the ex-

pected output of a worker in a production relation with coupled shoppers.

This will be equal to the expected value of the per-worker production in a

n-length chain, taking expectation across n’s. Notice that in the following

augmented n-length chain (augmented by the single worker in the n+ 2 po-

sition) {
s, x︸︷︷︸

1

, x︸︷︷︸
δ

, . . . , x︸︷︷︸
δn−1

, s︸︷︷︸
δn

}

the production generated by workers in a production relation with n coupled

shoppers is
∑n

m=1 δ
m because we do not consider the first worker for being

related to a single shopper. So the per-worker production in a n-length chain

is

ȳxn =
1

n

n∑
m=1

δm =
δ

n

(
1− δn

1− δ

)
.

Proof. Now, recall that a couple will necesarilly fall in a chain with length

n ≥ 1 so the distribution of lengths for couples is G (n;µ) conditional on

n ≥ 1 and since the first draw is a couple with probability µ. I have

Gx (n;µ) =
(1− µ)µn

µ
.

where Gx denotes the distribution of lengths for chains with couples. We

aim to find the expected output of a worker in a production relation with
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coupled shoppers and it is given by

E [ȳx] =
∞∑
n=1

ȳxnG
x (n;µ) ,

=
∞∑
n=1

(1− µ)µn

µ
· δ
n

(
1− δn

1− δ

)
,

=
(1− µ)

µ
· δ

(1− δ)
·
∞∑
n=1

(
µn

n
− (δµ)n

n

)
,

=
(1− µ)

µ
· δ

(1− δ)
· ln
(

1− δµ
1− µ

)
,

Where the last equality comes from the fact that

∞∑
n=1

an−1 =
1

1− a
↔

∞∑
n=1

an

n
= ln

(
1

1− a

)

for |a| < 1 because of the linearity of the derivative operator.

We call Yx (µ) = E [ȳx] .

Next, we derive expected output. The fraction of singles is (1− µ) and

they produce on average 1 unit of output. The fraction of workers in couples

is µ, and they produce on average Yx (µ). Thus, total output is:

Y (µ) = (1− µ) + µYx (µ)

= (1− µ) + µ
(1− µ)

µ

δ

1− δ
ln

(
1− δµ
1− µ

)
= (1− µ)

(
1 +

δ

1− δ
ln

(
1− δµ
1− µ

))
.

Next, we obtain the derivative and limits of Y (µ).
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Limits and Derivatives. Proof ends here.

This note has the proof of the worker’s Euler equation

B.2 Proof of Proposition 5

A steady state with both spot and chained consumption at any period is not

possible since βR = 1 in any steady state. As a result, it is enough to proof

that an all chained consumption steady state is not possible. Let’s suppose

that cwss = X > 0 for all periods is a steady state solution of the workers’

problem. At steady state I assume that Rt = R for all t ≥ 0 so we have

max
{Xt,St,Bt+1}t≥0

∑
t≥0

βt log (ct)

Bt + qX + S︸︷︷︸
=0

=
Bt+1

R
+ 1

First, let’s calculate a debt level that sustains the path of consumtion {(X, 0)}t≥0.

This is will make manipulations of the difference equation easy,

Bss + qX =
Bss

R
+ 1

Bss =
R (1− qX)

(R− 1)

This expression says that I can have a (positive) debt path (a constant one) as

long as qX < 1 and the debt interest repayment is financed with the capital-

ized period savings. This is natural, in steady state, my per period consump-

tion expenditure has to be lower than my real wage income. Let’s first treat
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the case of qX < 1 and compute the debt path with a backward recursion

Bt+1 =RBt −R (1− qX)

Bt+1 =Rt+1B0 −
(
Rt+1 − 1

)
R

(1− qX)

R− 1

Bt+1 −Bss =Rt+1 (B0 −Bss)

Case 1. If B0 − Bss > 0 we have forever increasing debt and this exceeds

the natural debt limit at some finite time which will make impossible to con-

sume X at that period in the future.

Case 2. IfB0−Bss < 0 then at some finite timeBt+1 = 0 (atRτ+1 (B0 −Bss) =

−Bss and this necessarily happens at τ ≥ 0 because B0 > 0). However, we

only need a τ such that 0 < Bτ+1 < B̃ (the spot borrowing limit) and this also

happens at finite time since B0 > B̃ > 0. It happens at τ = dje+ 1 where j is

the time to close the intial gap and satisfies

Bt+1 − B̃ =Rj+1 (B0 −Bss) +Bss − B̃ = 0 ⇐⇒

B̃ −Bss =Rj+1 (B0 −Bss) .

In this case, in finite time (without the need of a deviation), the worker no

longer has (X, 0) as a solution because S > 0 will eventually become avail-

able and optimal.

Case 3. If Bss = B0 > B̃, the worker never changes the debt level and

consuming (X, 0) could be optimal. In this case, I cannot employ the argu-

ment above to show that this is not a steady state (because the feature before

was that the debt level decreased due to the initial imbalance). However, we

could use a deviation approach to show that there is an affordable and feasi-

ble plan, given prices {R}t≥0 that achieves a higher lifetime utility. Suppose

at time 0, the consumption is chosen X − ε/q (for a fixed ε > 0) and later
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consumption is chosenX so we have the following equations for the path of

debt

R +B1 =RB0 +RqX −Rε

R +Bt+1 =RBt +RqX, ∀t ≥ 1

solving backwards we have

Bt+1 =Rt+1B0 −
(
Rt+1 − 1

)
Bss − εRt+1

Bt+1 −Bss = − εRt+1

B̃ −Bt+1 = εRt+1 −
(
Bss − B̃

)
and we observe that for finite time we can haveBt+1 as low as we want. Sup-

pose τ is the some (need not be the first) time such thatBτ+1 < B̃, The steady

state plan has utility in periods 0 and τ + 1

logX + βτ+1 logX

my deviation plan has utility in periods 0 and τ + 1

log

(
X − ε

q

)
+ βτ+1 log

[
X + εRτ+1 −

(
Bss − B̃

)]
so the change in utility from deviating is{

log

(
X − ε

q

)
− logX

}
+ βτ+1

{
log
[
X + εRτ+1 −

(
Bss − B̃

)]
− logX

}
log

(
1− ε

X
+

ε

X

(
1− 1

q

))
+ βτ+1 log

1 +
ε

X
Rτ+1 −

(
Bss − B̃

)
X


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and by the mean value theorem (since log is continuous)

log

1 +
ε

X
Rτ+1 −

(
Bss − B̃

)
X

 = log
[
1 +

ε

X
Rτ+1

]
+

1

1 + ε
X
Rτ+1 − ω1

(Bss−B̃)
X

−
(
Bss − B̃

)
X


log

[
1− ε

X
+

ε

X

(
1− 1

q

)]
= log

[
1− ε

X

]
+

1

1− ε
X

+ ω2
ε
X

(
1− 1

q

) [ ε
X

(
1− 1

q

)]

with ω1, ω2 ∈ (0, 1), ω1 depends on εRτ+1 and ω2 depends on ε only. Rear-

ranging terms

{
log
[
1− ε

X

]
+ βτ+1 log

[
1 +

ε

X
Rτ+1

]}

+


1

1− ε
X

+ ω2
ε
X

(
1− 1

q

) ε

X

(
1− 1

q

)
︸ ︷︷ ︸

lower price benefit

−βτ+1 1

1 + ε
X
Rτ+1 − ω1

(Bss−B̃)
X

(
B0 − B̃

)
X︸ ︷︷ ︸

initial gap


We know that the first term can be made arbitrarily small choosing ε. Let’s

work with the second term. For each ε > 0 the “lower price benefit” term is

fixed and the denominator of the slope of the “initial gap” is bounded below

1 +
ε

X
Rτ+1 −

(
Bss − B̃

)
X

< 1 +
ε

X
Rτ+1 − ω1

(
Bss − B̃

)
X

and since the LHS of this inequality can get arbitrarily large with some large
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τ , the RHS too. Using this inequality I have

1

1− ε
X

+ ω2
ε
X

(
1− 1

q

) ε

X

(
1− 1

q

)
− βτ+1 1

1 + ε
X
Rτ+1 − ω1

(Bss−B̃)
X

(
Bss − B̃

)
X

>
1

1− ε
X

+ ω2
ε
X

(
1− 1

q

) ε

X

(
1− 1

q

)
− βτ+1 1

1 + ε
X
Rτ+1 − (Bss−B̃)

X

(
Bss − B̃

)
X

where it is easy to see that (for any fixed ε) the quantity

lim
τ+1

βτ+1 1

1 + ε
X
Rτ+1 − (Bss−B̃)

X

= 0

goes to zero. So given ε fixed, we can find k > 0 (sufficiently small) and τ

depending on k satisfying

1

1− ε
X

+ ω2
ε
X

(
1− 1

q

) ε

X

(
1− 1

q

)
︸ ︷︷ ︸

lower price benefit

−βτ+1 1

1 + ε
X
Rτ+1 − ω1

(Bss−B̃)
X

(
B0 − B̃

)
X︸ ︷︷ ︸

initial gap

>

1

1− ε
X

+ ω2
ε
X

(
1− 1

q

) ε

X

(
1− 1

q

)
︸ ︷︷ ︸

A(ε)=lower price benefit

−k > 0

So for every ε > 0 we can define k’s positive but smaller than A (ε) such

that A (ε) − k > 0 and we can make this quantity as close as desired to A (ε)

(choosing a smaller k > 0). Now returning to the change of utility of the

deviation, this expression can be made arbitrarily close to

{
log
[
1− ε

X

]
+ βτ+1 log

[
1 +

ε

X
Rτ+1

]}
+ A (ε)

As a consequence, it only remains to show that the above quantity is positive
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for small ε (fixing τ ). Using a taylor expansion

−
( ε
X

)2

− βτ+1
( ε
X
Rτ+1

)2

+O
(
‖ε‖3)+ A (ε)

> −
( ε
X

)2 [
1 +Rτ+1

]
+

1

1− ε
X

+ ω2
ε
X

(
1− 1

q

) ε

X

(
1− 1

q

)
= aε− bε2

because the third derivative adjustment for log is positive12 and where

a =
1

1− ε
X

+ ω2
ε
X

(
1− 1

q

) 1

X

(
1− 1

q

)
> 0, b =

[
1 +Rτ+1

] 1

X2
> 0

Finally, we know that a linear function (with positive coefficient) is always

greater than a square (with positive coefficient) for ε > 0 small (because the

square stays very close to zero for ε small). Namely, aε − bε2 > 0. So the

deviation was profitable, which finishes the proof of this case.

A special case happens when the initial gap is zero, i.e. Bss = B0 = B̃,

but then we only need to wait one period after our deviation to increase spot

consumption profitably. So a steady state solution with qX < 1 and B0 =

Bss = B̃ is not possible.

Case 4. If qX = 1 then Bss = 0 and only a zero initial level of debt is

admissible. In this case, if B̃ > 0 then spot consumption is available and

because (from euler equation) X > 0, S > 0 is incompatible with a steady

state for the saver, we get a contradiction. So an all chained consumption

steady state with qX = 1 is not possible.

To seet that the economy is at steady state if and only if

Bt ≤ B? =
1

β

(
B − 1

)
12
(
− ε
X

)3
+ βτ+1

(
ε
XR

τ+1
)3 → (

ε
X

)3 [
R2τ+2 − 1

]
> 0
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See that...

B.3 Proof of Propositions 3 and 4

Proof.

The proof of Proposition 3 is immediate. The proof of Proposition 4 re-

quires more work. We begin with a perturbed version of Problem (xxx). Con-

sider the following:

= max .

Thus, we arrive at the recursion.

U
′
(c (B)) ≡ βRt+1

(q − 1) I
[c(B)>Ξ(B̃,B)

+
]
+ 1

U
′

(
c

(
RB − h+ c (B) + (q − 1)

(
c (B)− Ξ

(
B̃, B

)+
)+
))

.

Proof ends here.

B.4 Proof of Corollary xxx

Proof.

Recall that

cr = (1− β)B

and the expenditures of workers is:

s+ qx = h− (1− β)B.

Since we know that

s ≤ Ξ
(
B̃, B

)+

we have that:

s = min

{
Ξ
(
B̃, B

)+

, h− (1− β)B

}
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x =

h− (1− β)B −min

{
Ξ
(
B̃, B

)+

, h− (1− β)B

}
q

.

Then,

µ =
x

cr + s+ x

=

h−(1−β)B−min
{

Ξ(B̃,B)
+
,h−(1−β)B

}
q

(1− β)B +
h−(1−β)B−min

{
Ξ(B̃,B)

+
,h−(1−β)B

}
q

+ min

{
Ξ
(
B̃, B

)+

, h− (1− β)B

}
=

1

1 + q
(1−β)B+min

{
Ξ(B̃,B)

+
,h−(1−β)B

}
h−(1−β)B−min

{
Ξ(B̃,B)

+
,h−(1−β)B

}
.

With this we replace:

µ =
1

1 + 1
A(µ)
· Γ (B)

,

where

Γ (B) =

(1− β)B + min

{
Ξ
(
B̃, B

)+

, h− (1− β)B

}
h−

(
(1− β)B + min

{
Ξ
(
B̃, B

)+

, h− (1− β)B

}) .
Then, using

A (µ) =
(1− µ)

µ

δ

1− δ
ln

(
1− δµ
1− µ

)
we obtain:

1− µ =
µ

A (µ)
· Γ (B) .

• Could have solution if inverse is there. Cross-fingers!

We obtain a fixed point problem in µ. We call this object µ (B) . And q (B) =

q (µ (B)) .

• It may also be possible to solve for q (B) or µ (B) .
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Next, we sum x and s in xxx to obtain:

c (B) =
h− (1− β)B

q (B)
+

(
1− 1

q (B)

)
min

{
Ξ
(
B̃, B

)+

, h− (1− β)B

}
.

Now in the modified euler equation:

U
′
(c (B)) =

βRt+1

(q (µ (B′))− 1) I
[c(B)>Ξ(B̃,B)

+
]
+ 1

U
′
(c (B′)) .

Since we know B′ = βRt+1B we obtain:

U
′
(c (B)) =

βRt+1

(q (µ (βRt+1B))− 1) I
[c(B)>Ξ(B̃,B)

+
]
+ 1

U
′
(c (βRt+1B)) .

With this, we have one equation in one unknown, R.

• May be really simple for log

• The condition may hold everywhere, independent of t.

Proof ends here.

B.5 Proposition Condition...

Proof. Notice that the steady state is indeed a spot-transaction steady state,

the price is p = 1. Assume that the worker consumes spot transactions for-

ever. Then, the labor first-order condition is

hν = 1.

Thus, there’s a total of h = 1 labor effort. Thus,

Y = 1.
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At steady state R = 1/β, otherwise the wealthy households will continue

change their wealth. Then, there consumption is:

Cs = (1− β)B.

By the clearing condition in the goods market,

C = 1− (1− β)B,

where the condition follows from the fact that all consumption is spot. Then,

s = 1− (1− β)B ≤ B̃ −B.

Hence, the condition follows. Finally, we must show that the worker does not

wish to accumulate debt. Notice that he is would not accumulate debt even

if the constraint were not binding ever. Thus, he must be at an optimum.

B.6 Proof of Proposition (xxx) (regarding the transition

after a credit crunch)

Preliminary Observations. The economy starts from a given steady state

ss1. Thus, at the time of the shock, t = 0, B0 = Bss1 . From Proposition 3, we

know that the optimal consumption

Cs
t = (1− β)Bt, ∀t.

Assume that B̃0 > 0 and that the sequence is increasing. Then, the worker

consumes at least some amount by executing spot transactions. Namely,

Sw0 = min
{
B̃0 −B0, C

w
0

}
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and

Xw
0 =

Cw
0 −min

{
max

{
B̃0 −B0, 0

}
, Cw

0

}
q0

.

In particular, this happens at all periods:

Swt = min
{

max
{
B̃t −Bt, 0

}
, Cw

t

}
and

Xw
t =

Cw
t −min

{
max

{
B̃t −Bt, 0

}
, Cw

t

}
qt

.

Now, we combine the household’s expenditures

h = Cs
t + Swt + qtX

w
t .

Thus, subbing (xxx) and (xxx) into (xxx), we obtain:

Xw
t =

h−
(

(1− β)Bt + min
{

max
{
B̃t −Bt, 0

}
, Cw

t

})
qt

.

Assume that the borrowing limit is binding such that Xw
t . Thus, we must

have that:

Xw
t =

h−
(

(1− β)Bt + max
{
B̃t −Bt, 0

})
qt

> 0.

Item (i). Combining (xxx) and the definition of µ, (xxx), we obtain:

µ =

h−((1−β)Bt+max{B̃t−Bt,0})
qt

(1− β)Bt + max
{
B̃t −Bt, 0

}
+

h−((1−β)Bt+max{B̃t−Bt,0})
qt

=
h−

(
(1− β)Bt + max

{
B̃t −Bt, 0

})
qt

(
(1− β)Bt + max

{
B̃t −Bt, 0

})
+ h−

(
(1− β)Bt + max

{
B̃t −Bt, 0

}) .
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Thus,

1

µ
= qt

(
(1− β)Bt + max

{
B̃t −Bt, 0

})
h−

(
(1− β)Bt + max

{
B̃t −Bt, 0

}) + 1.

Then, subtracting one from both sides, we obtain:

1− µ
µ
· 1

qt
= Λ

(
Bt, B̃t

)
,

where

Λ
(
B, B̃

)
=

(
(1− β)B + max

{
B̃ −B, 0

})
h−

(
(1− β)B + max

{
B̃ −B, 0

}) .
Then, observe that qt = 1/A (µt). Hence, we obtain:

1− µ
µ
· 1

qt
= − (µt) .

where we applied the definition ofA (µt) in the second equality and use the

following definition

− (µ) ≡ 1− µ
µ
A (µt) .

Thus, at any t where spot transaction are binding:

− (µ) = Λ
(
B, B̃

)
. (11)

Notice that in any equilibrium, because B satisfies the natural debt limit,

h > (1− β)B. Since chained expenditures are positive, it must be that h −(
(1− β)B + max

{
B̃ −B, 0

})
is non-negative. Thus, Λ

(
B, B̃

)
> 0. Also,

observe that− (µ) is decreasing in µ because by PropositionA (µt), the term

A is decreasing. Moreover, it has the limits: limµ→0− (µ) =∞ and limµ→1− (µ) =

0. This means that there’s a unique solution to (11) we denote by the function

µ
(
B, B̃

)
≡
{
µ|− (µ) = Λ

(
B, B̃

)}
.
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There is no known analytic root to this problem.

However, in equilibrium

µt = µ
(
Bt, B̃t

)
and moreover:

q
(
B, B̃

)
=

µ
(
B, B̃

)
(

1− µ
(
B, B̃

)) · (1− δ)
δ

· ln

 1− µ
(
B, B̃

)
1− µ

(
B, B̃

)
δ

 .

qt = q
(
Bt, B̃t

)
.

Item (ii). Next, we combine the worker and savers first order condition.

Consider the first-order condition at a point where t is such that Xw
t > 0

and Swt = 0. Thus, we have that:

Cw
t+1 = Xw

t + Swt

=
h− (1− β)Bt − Swt

qt
+ Swt

=
h− (1− β)Bt + (qt − 1)Swt

qt

=
h− (1− β)Bt + (qt − 1) max

{
B̃t −Bt, 0

}
qt

.

Now consider the worker’s first order condition [Important: must bind at t+1

also...else, must replace by future S, not, the binding one...just patch with
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X=0]

qtβRt =
Cw
t+1

Cw
t

=
qt
qt+1

h− (1− β)Bt+1 + (qt+1 − 1) max
{
B̃t+1 −Bt+1, 0

}
h− (1− β)Bt + (qt − 1) max

{
B̃t −Bt, 0

} .

Thus,

βRt =
1

qt+1

h− (1− β)Bt+1 + (qt+1 − 1) max
{
B̃t+1 −Bt+1, 0

}
h− (1− β)Bt + (qt − 1) max

{
B̃t −Bt, 0

} .

Now, recall that Bt+1 = βRtBt. Thus, we obtain:

βRt =
1

qt+1

h− (1− β) βRtBt + (qt+1 − 1) max
{
B̃t+1 − βRtBt, 0

}
h− (1− β)Bt + (qt − 1) max

{
B̃t −Bt, 0

} .

Hence, we obtain:

βR =
1

q
(
βRB, B̃′

) h− (1− β) βRB +
(
q
(
βRB, B̃′

)
− 1
)

max
{
B̃ − βRB, 0

}
h− (1− β)B +

(
q
(
B, B̃

)
− 1
)

max
{
B̃ −B, 0

} .

This gives us an implicit solution which we can solve:

R
(
B, B̃, B̃′

)
and

B′
(
B, B̃, B̃′

)
= βR

(
B, B̃, B̃′

)
B.


