Alternative Monetary-Policy Instruments and Limited Credibility: An Exploration

Javier García-Cicco

Universidad del CEMA

November, 2021
Most studies on policy rules heavily influenced by IT:
- Interest rate as the instrument + rational expectations (RE).
- Even those relaxing RE still focus on interest rate rules.

IMF AREAER database 2019:

<table>
<thead>
<tr>
<th>% over 183 countries (excluding EMU members)</th>
<th>IT</th>
<th>Money Target</th>
<th>FX anchor</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>23</td>
<td>12</td>
<td>49</td>
<td>15</td>
</tr>
<tr>
<td>Low Income & Emerging</td>
<td>17</td>
<td>12</td>
<td>42</td>
<td>14</td>
</tr>
<tr>
<td>FX management</td>
<td>4</td>
<td>11</td>
<td>49</td>
<td>14</td>
</tr>
</tbody>
</table>
Most studies on policy rules heavily influenced by IT:

- Interest rate as the instrument + rational expectations (RE).
- Even those relaxing RE still focus on interest rate rules.

IMF AREAER database 2019:

<table>
<thead>
<tr>
<th></th>
<th>IT</th>
<th>Money Target</th>
<th>FX anchor</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>23</td>
<td>12</td>
<td>49</td>
<td>15</td>
</tr>
<tr>
<td>Low Income & Emerging</td>
<td>17</td>
<td>12</td>
<td>42</td>
<td>14</td>
</tr>
<tr>
<td>FX management</td>
<td>4</td>
<td>11</td>
<td>49</td>
<td>14</td>
</tr>
</tbody>
</table>

RE implies high degree of credibility (agents forecast knowing the policy rule that will be implemented in the future); which cannot be taken for granted in Low Income & Emerging countries.

Can limited credibility (LC) influence the choice of policy instrument?
Introduction

What do we do?

- Use a NK-SOE DSGE model as a laboratory.
- LC: Adaptive learning for inflation-related variables.
 - VAR with time-varying long-run inflation expectations (anchoring).
 - Surprises in inflation and FX can shift long-run expectations.
- Study dynamics after a world-interest-rate shock under 3 alternatives:
 - Taylor rule for the interest rate (R), calibration based on Chile.
 - Constant money supply (M).
 - Crawling peg (S).

Preview of results:

- RE: Trade-off between R and M: M insulates activity, but is more inflationary. Larger recession with S rule, no clear inflation advantage.
- LC if only inflation surprises affect long-run expectations: qualitatively similar trade-offs, differences are exacerbated (more persistence).
- LC if FX surprises also affect long-run expectations: less insulation and more inflation with M. Potential role for FX stabilization.
Introduction

What do we do?

- Use a NK-SOE DSGE model as a laboratory.
- LC: Adaptive learning for inflation-related variables.
 - VAR with time-varying long-run inflation expectations (anchoring).
 - Surprises in inflation and FX can shift long-run expectations.
- Study dynamics after a world-interest-rate shock under 3 alternatives:
 - Taylor rule for the interest rate (R), calibration based on Chile.
 - Constant money supply (M).
 - Crawling peg (S).

Preview of results:

- RE: Trade-off between R and M: M insulates activity, but is more inflationary. Larger recession with S rule, no clear inflation advantage.
- LC if only inflation surprises affect long-run expectations: qualitatively similar trade-offs, differences are exacerbated (more persistence).
- LC if FX surprises also affect long-run expectations: less insulation and more inflation with M. Potential role for FX stabilization.
Main ingredients:

- SOE, free capital mobility, incomplete financial markets.
- Households: Consumption (habits), labor supply, money demand, foreign and domestic bonds.
- Home goods: Produced using labor and capital.
- Final goods: Combine home and foreign goods. Calvo prices, indexation.
- Dominant currency pricing (limited expenditure switching).
- Calvo sticky wages, indexation.
- Capital accumulation, adjustment costs.
Model Overview

- **Main ingredients:**
 - SOE, free capital mobility, incomplete financial markets.
 - Households: Consumption (habits), labor supply, money demand, foreign and domestic bonds.
 - Home goods: Produced using labor and capital.
 - Final goods: Combine home and foreign goods. Calvo prices, indexation.
 - Dominant currency pricing (limited expenditure switching).
 - Calvo sticky wages, indexation.
 - Capital accumulation, adjustment costs.

- **Inflation-related expectations are relevant for...**
 - Phillips curves (prices and wages).
 - Inter-temporal choices (consumption, investment, etc.): $\hat{R}_t - E_t\{\hat{\pi}_{t+1}\}$.
Model Overview

- Main ingredients:
 - SOE, free capital mobility, incomplete financial markets.
 - Households: Consumption (habits), labor supply, money demand, foreign and domestic bonds.
 - Home goods: Produced using labor and capital.
 - Final goods: Combine home and foreign goods. Calvo prices, indexation.
 - Dominant currency pricing (limited expenditure switching).
 - Calvo sticky wages, indexation.
 - Capital accumulation, adjustment costs.

- Inflation-related expectations are relevant for...
 - Phillips curves (prices and wages).
 - Inter-temporal choices (consumption, investment, etc.): \(\hat{R}_t - E_t[\hat{\pi}_{t+1}] \).

- Shock to be analyzed: World interest rate / country premium (\(R^W \)).
 - AR(1) persistence: 0.7 (half-life 5 quarters).
Price- and wage-inflation expectations determined by empirical model. Let $x_t \equiv [\hat{\pi}_t, \Delta \hat{W}_t, \Delta \hat{S}_t]'$, the forecasting model is

$$x_t = (I - \Phi)Z\alpha_t + \Phi x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, H)$$

$$\alpha_t = \alpha_{t-1} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma^2_\eta)$$

α_t is a scalar \Rightarrow VAR with a common time-varying long-run trend.
Price- and wage-inflation expectations determined by empirical model. Let $x_t \equiv [\hat{\pi}_t, \Delta \hat{W}_t, \Delta \hat{S}_t]'$, the forecasting model is

$$x_t = (I - \Phi)Z\alpha_t + \Phi x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, H)$$

$$\alpha_t = \alpha_{t-1} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma^2_\eta)$$

α_t is a scalar \Rightarrow VAR with a common time-varying long-run trend.

Inference about $\bar{\alpha}_t \equiv E_t\{\alpha_t\}$: Constant-gain filter,

$$\bar{\alpha}_t = \bar{\alpha}_{t-1} + K [x_t - \Phi x_{t-1} - (I - \Phi)Z \bar{\alpha}_{t-1}],$$

where $K = [K_\pi, K_W, K_S]$ is a function of H and σ^2_η.

Two channels:

- Persistence (emphasized elsewhere, mostly closed economy models).
- FX movements can affect long-run inflation expectations
Estimation of forecasting model: Argentina and Chile. Observables:
- Core inflation, Nominal wage growth, FX depreciation.
- One-year-ahead market expectations of inflation and FX depreciation.

Some estimation results:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Argentina</th>
<th>Chile</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 \times \frac{V(\alpha_t)}{V(\pi_t)}</td>
<td>13.8</td>
<td>2.9</td>
</tr>
<tr>
<td>K_\pi</td>
<td>0.20</td>
<td>0.14</td>
</tr>
<tr>
<td>K_W</td>
<td>0.23</td>
<td>0.04</td>
</tr>
<tr>
<td>K_S</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Limited Credibility / Imperfectly Anchored Expectations

Non-linear effect? Large surprises: \(S_t - E_{t-1}\{S_t\} > 1 \text{ St.Dev.} \)

\[\Delta E_t\{\pi_{t,t+12}\} \text{ vs. } S_t - E_{t-1}\{S_t\} \]

⇒ 2 Calibrations: \(K_S = 0, K_\pi = K_W = 0.2; \) and \(K_S = K_\pi = K_W = 0.2. \)
R^W_t Shock with Alternative Instruments, RE

$R^W_0 \Rightarrow gdpt$

$R^W_0 \Rightarrow c_t$

$R^W_0 \Rightarrow \pi_t$

$R^W_0 \Rightarrow E_t\{\pi_{t+1}\}$

$R^W_0 \Rightarrow St$

$R^W_0 \Rightarrow R_t$

$R^W_0 \Rightarrow \Delta M_t$

R-rule; M-rule; S-Rule.

Javier García-Cicco (UCEMA)
\(R^W \) Shock with Alternative Instruments, LC, \(K_S = 0 \)

- \(R_{t}^W \Rightarrow gdpt \)
- \(R_{t}^W \Rightarrow c_t \)
- \(R_{t}^W \Rightarrow \pi_t \)
- \(R_{t}^W \Rightarrow E_t\{\pi_{t+1}\} \)
- \(R_{t}^W \Rightarrow S_t \)
- \(R_{t}^W \Rightarrow R_t \)
- \(R_{t}^W \Rightarrow \Delta M_t \)

- **R-rule;** --- **M-rule;** --- **S-Rule.**
R^W Shock with Alternative Instruments, LC, $K_S = 0.2$

$R^W_0 \Rightarrow gdp_t$

$R^W_0 \Rightarrow c_t$

$R^W_0 \Rightarrow i_t$

$R^W_0 \Rightarrow \pi_t$

$R^W_0 \Rightarrow E_t\{\pi_{t+1}\}$

$R^W_0 \Rightarrow R_t - E_t\{\pi_{t+1}\}$

$R^W_0 \Rightarrow S_t$

$R^W_0 \Rightarrow R_t$

$R^W_0 \Rightarrow \Delta M_t$

R-rule; M-rule; S-Rule.
Welfare Evaluation

Welfare Equivalent Comparison

<table>
<thead>
<tr>
<th>Rules</th>
<th>(\Lambda)</th>
<th>Rational Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M) vs (R)</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>(S) vs (R)</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>(\textit{Limited Credibility, } K_S = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M) vs (R)</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>(S) vs (R)</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>(\textit{Limited Credibility, } K_S = 0.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M) vs (R)</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>(S) vs (R)</td>
<td>0.46</td>
<td></td>
</tr>
</tbody>
</table>

Notes: \(\Lambda \) is the welfare-equivalent-consumption compensation relative to the \(R \)-rule case (in %).
Robustness in the Paper

Sensitivity analysis:

- Financial Frictions + Liability Dollar.: Smaller cost of peg if $K_S > 0$.
- Limited Expenditure Switching (good-level habits): Similar to baseline.
- Domestic Banks: Smaller cost of peg if $K_S > 0$.
- Restricted Access to Financial Markets (TANK): some disagreement under RE and $K_S = 0$, but similar comparison if $K_S > 0$.
- All combined: Smaller cost of peg if $K_S > 0$.
Conclusions

- RE: Trade-off (inflation vs. activity) between M and R rules. No clear benefit of S rule.
- LC, $K_S = 0$: Similar to RE, larger differences, more persistence.
- LC, $K_S > 0$: Less obvious advantages of M rule. Potential benefit of stabilizing FX, specially under financial frictions.
Thank You!