SOFTWARE TOOLS FOR STATISTICAL DISCLOSURE CONTROL

Herramientas software para el control de la confidencialidad y del output

Eugenia Koblents
División de Central de Balances
Banco de España

SEMINARIO SOBRE APLICACIONES Y DESARROLLO DE BIG DATA Y DATA SCIENCE EN LA BANCA CENTRAL

3 de junio de 2021
ÍNDICE

1. Data laboratory BELab
2. Introduction to SDC
3. SDC workflow for microdata protection
4. SDC tools for data protection:
 - Protecting tabular data with tau-argus
 - Protecting microdata with sdcMicro
5. Resources
6. Summary and conclusions
Data laboratory BELab

- https://www.bde.es/bde/es/areas/analisis-economia/otros/que-es-belab/

- Banco de España launched BELab in **July 2019** to provide access to the research community to high quality microdata, as part of its **strategic plan** (December 2019)

- **On-site and remote access**

- **Available datasets:**
 - Non-financial enterprises and corporate groups
 - Debt securities issuers
 - Households surveys
 - The German Federal Employment Agency

- Interactive **dashboards** for the exploration of available datasets

- Exploring **anonymization and output control tools** for future use
Due to **national laws on privacy**, micro-data cannot be distributed to the public or to researchers whenever re-identification of persons or establishments is possible.

The goal of **anonymizing** micro-data and tabular data is to prevent confidential information from being assigned to a specific respondent.

Disclosure, also known as “**re-identification**”, occurs when an intruder uses some released data to reveal previously unknown information about an individual.

Types of disclosure: identity disclosure, attribute disclosure, inferential disclosure.

Confidentiality can be achieved by applying **statistical disclosure control (SDC)** methods to the data in order to **decrease the disclosure risk** [1].

Software packages are fundamental for the anonymization of data sets.

Unsafe data that DOES allow re-identification of individual units

Unsafe microdata

Unsafe tables

SDC tools

- mu-argus or sdcMicro
- tau-argus or sdcTable

Safe data that DOES NOT allow re-identification of individual units

Safe microdata for research or publication

Output control

Safe tables for publication
Unsafe data that DOES allow re-identification of individual units

<table>
<thead>
<tr>
<th>Company</th>
<th>Activity</th>
<th>Location</th>
<th>Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telefonica</td>
<td>Telecom</td>
<td>Madrid</td>
<td>1 mill</td>
</tr>
<tr>
<td>Taller Pérez</td>
<td>Motor</td>
<td>Patones</td>
<td>100</td>
</tr>
</tbody>
</table>

Unsafe microdata

Frequency table

<table>
<thead>
<tr>
<th></th>
<th>Madrid</th>
<th>Patones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecom</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>Motor</td>
<td>500</td>
<td>1</td>
</tr>
</tbody>
</table>

Average turnover (magnitude table)

<table>
<thead>
<tr>
<th></th>
<th>Madrid</th>
<th>Patones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecom</td>
<td>1.1 mill</td>
<td>50</td>
</tr>
<tr>
<td>Motor</td>
<td>3 mill</td>
<td>100</td>
</tr>
</tbody>
</table>

Unsafe tables

SDC tools

mu-argus or sdcMicro

Safe data that DOES NOT allow re-identification of individual units

Safe microdata for research or publication

<table>
<thead>
<tr>
<th>Company</th>
<th>Activity</th>
<th>Location</th>
<th>Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Telecom</td>
<td>Madrid</td>
<td>>500 mil</td>
</tr>
<tr>
<td>?</td>
<td>Motor</td>
<td>Patones</td>
<td>-</td>
</tr>
</tbody>
</table>

Output control

Average turnover (magnitude table)

<table>
<thead>
<tr>
<th></th>
<th>Madrid</th>
<th>Patones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecom</td>
<td>>1 mill, <2 mill</td>
<td><100</td>
</tr>
<tr>
<td>Motor</td>
<td>> 2 mill</td>
<td><500</td>
</tr>
</tbody>
</table>

Unsafe tables

Safe tables for publication
Identifying variables, those whose values might lead to re-identification, must be determined:

- **Direct identifiers** precisely identify statistical units (company name, CIF, address, etc).

- **Key variables** (categorical or continuous), when considered together, can be used to identify individual units (region, activity, net turnover, total assets, total employment, etc).

- **Sensitive variables** must not be discovered for any individual unit (insolvency status, etc).

Determining key variables is a challenge and involves discussions with domain experts and interpretation of national laws.
1. **Deletion of direct identifiers**, to guarantee primary confidentiality.

2. **Key and sensitive variables identification**, to address secondary confidentiality.

3. **Individual disclosure risks measurement** based on sample frequency counts (k-anonymity, l-diversity, etc).

4. **Application of SDC-methods** to modify high-risk observations.

5. **Disclosure risk and information loss** are recomputed comparing original and modified data.

- The goal is to **release a safe data set** with low (individual) risks and high data utility.
Anonymization tool developed by the IT Dept for BELab to guarantee primary confidentiality:

- Replaces direct identifiers by anonymous unique identifiers (sha256, sha512 hashing algorithm)
- Repeatable but irreversible process

Steps:

- Select input file
- Select configuration parameters (seed)
- Select identifying variables
- Run anonymization and save data

Future functionalities: allow for string substitutions, etc
A **trade-off** between information loss and disclosure risk must be achieved, based on the use case requirements.

Very **sensitive data** requires more **aggressive anonymization** to guarantee low disclosure risk.

The **access mode** (on-site vs remote access) also determines the degree of anonymization.

The complexity of **output control** depends on the anonymization used and the affordable risk.

Multiple SDC methods for microdata and tabular data protection are available:

<table>
<thead>
<tr>
<th>Deterministic SDC methods</th>
<th>Probabilistic SDC methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical key variables</td>
<td>Recoding</td>
</tr>
<tr>
<td>Local suppression</td>
<td></td>
</tr>
<tr>
<td>Continuous key variables</td>
<td>Micro-aggregation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SDC tools for tabular data and microdata protection

- SDC software is used by National Statistical Institutes, Eurostat, National Banks, and other public bodies.

- Eurostat launched a Specific Grant for the user support and maintenance of SDC tools.

- Git repository: https://github.com/sdcTools

- Tools for microdata protection: mu-argus, sdcMicro

- Tools for tabular data protection: tau-argus, sdcTable
SDC tools for tabular data and microdata protection

- **Tabular data protection**: tau-argus vs sdcTable:
 - Tau-argus has a **GUI**, sdcTable is command line and requires programming
 - We will use **tau-argus** in BELab

- **Microdata protection**: mu-argus vs sdcMicro:
 - Both libraries have a **GUI**, no programming required
 - Mu-argus is similar to tau-argus, learning can be easier
 - sdcMicro incorporates more algorithms
 - sdcMicro claims to be better optimized for **large datasets**.
 - We will probably use **sdcMicro** in BELab

- Tau-argus and mu-argus are implemented in **Java**, sdcTable and sdcMicro in **R**.

<table>
<thead>
<tr>
<th>Method</th>
<th>Software</th>
<th>μ-Argus</th>
<th>sdcMicroGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency counts</td>
<td>4.2</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Individual risk</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Individual risk on households</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(l)-diversity</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>SUDA2</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Global risk</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Global risk with log-lin mod.</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Recoding</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Local suppression</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Swapping</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PRAM</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Adding correlated noise</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Micro-aggregation</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Shuffling</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Utility measures</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>GUI</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CLI</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Missing values</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Cluster designs</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Large data</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Platform independent</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Free and open-source</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
1. Open microdata (or table)
2. Select variables and **specify** tables
3. Set **anonymization parameters** (dominance rule, P% rule, weights, etc)
4. Tau-argus identifies table cells with high **risk of re-identification**.

5. Select and run **SDC algorithm** (primary and secondary suppression, recoding, etc)
6. Generate an anonymization report summarizing the process and results.

t-ARGUS Report

- **Original file:** C:\APS\TauArgus\data\vars1to5sampleG.asc
- **Meta file:** C:\APS\TauArgus\data\vars1to5sampleG.rda
- **Table file:** C:\APS\TauArgus\data\cosa.txt

Sensitivity Rule:
- Dominance rule (individual level) with $n = 3$ and $k = 70\%$
- Manual safety margin: 10%
- Missing codes have been considered unsafe

Modular (HITAS) Salazar solution

Solver used: SCIP
- IPObTauHTaS version is 4.2.4.1
- Using SCIP
- SCIP version is 3.1110000
- Using SoFlex 2.0.1

Max time per subtable: 1 minutes
- Additional Singleton/Singleton option has been used
- Additional Singleton/Multiple option has been used
- Additional Min. Frequency option has been used

Time used to protect the table: 10 min 48 sec

Summary of the table

<table>
<thead>
<tr>
<th>Status</th>
<th>Number of cells</th>
<th>Number of respondents</th>
<th>Response value</th>
<th>Cost value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe</td>
<td>5152</td>
<td>1472648</td>
<td>2988357328</td>
<td>2988357328</td>
</tr>
<tr>
<td>Safe (manual)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unsafe</td>
<td>17061</td>
<td>152983</td>
<td>1252095455</td>
<td>1252095455</td>
</tr>
<tr>
<td>Unsafe (request)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Key variables (categorical and continuous) are manually identified by the domain expert. High risk samples are identified and SDC methods applied to minimize risk.
Protecting microdata with sdcMicro
Example with a BELab dataset (MCB)

- Disclosure risk assessment
- Anonymization methods to reduce risk
- Information loss and data utility assessment
- Report generation

Risk measures
The output on this page is based on the categorical key variables is the current problem.

What kind of results do you want to show?
- Risk measures
- Risky observations
- Plot of risk

Plot showing distribution of individual re-identification risk levels

Anonymized data

Recode categorical key variables
To reduce risk, it is often useful to combine the levels of categorical key variables into a new, combined category. You need to select a categorical key variable and then choose two or more levels, which you want to combine. Once this has been done, a new label for the new category can be assigned.

Note: If you only select only one level, you can rename the selected value.

Variable selection

Additional parameters

Create anonymization report
A report for internal use (more detailed) or a report for external use (less detailed) is saved to the export directory.
Resources

- **Git repository:** https://github.com/sdcTools
- **User support:** https://sdctools.github.io/UserSupport/
- **Eurostat courses:** https://ec.europa.eu/eurostat/cros/content/estp-training-offer_en

<table>
<thead>
<tr>
<th>DATE</th>
<th>COURSE TITLE</th>
<th>VENUE</th>
<th>COURSE ORGANISER</th>
<th>APPLICATION DEADLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-26 March 2021</td>
<td>Statistical Disclosure Control</td>
<td>ONLINE</td>
<td>EUROSTAT</td>
<td>25.01.2021</td>
</tr>
<tr>
<td>4 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-22 October 2021</td>
<td>Output checking in research data centres</td>
<td>Eurostat, Luxembourg</td>
<td>EUROSTAT</td>
<td>23.08.2021</td>
</tr>
<tr>
<td>2 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-10-2021 12-10-2021</td>
<td>Big Data tools for data scientists</td>
<td>ONLINE</td>
<td>ICON-INSTITUT Public Sector GmbH</td>
<td>09.08.2021</td>
</tr>
<tr>
<td>19-10-2021 26-10-2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 sessions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The goal of **Statistical Disclosure Control** is to minimize disclosure risk while maximizing information utility when releasing microdata or tabular data.

Powerful and reliable **software tools** for SDC are available, including mu-argus, tau-argus, sdcMicro and sdcTable.

Multiple **public institutions** use them (Central Banks, Data Centers, Statistical Institutes, etc).

The identification of **key variables** is a challenge and requires expert knowledge of the data.

Eurostat courses and other learning **resources** are available.

Output control is still a highly manual process. **Eurostat** is about to release a Stata tool to support output control.

BELab staff has recently explored existing SDC tools and plans to use them in the near future when sensitive datasets are incorporated to the laboratory.
Thank you for your attention!