Stages of Development of Payments Systems: Leapfrogging across Countries and MENA's Place in the World

Clément Gévaudan Consultant World Bank Group

2021 Regional Conference on Payments and Market Infrastructures

Outline of the presentation

- Context where this research is coming from
- Technology adoption and leapfrogging
- Innovation stages in the case of payment systems
- Empirical framework
- Findings
- Discussion

Before we start

Context of the paper

- Research program led by the WB Office of the Chief Economist in MENA
 - How is digital technology adoption in the MENA region?
 - Are there conditions or bottlenecks that may thwart the upside of digital?
 - How is MENA's performance compared to the rest of the world?
- This working paper with Daniel Lederman was one of the background papers

Overview of digital technology pillars and impact

- Digital technologies as general-purpose technologies (Cusolito et al 2021)
 - Usable across sectors and diffuse widely in the economy
 - Enables new modes of production and consumption
 - Thrive on economies of scale and network externalities.

- Countries tend to adopt digital technologies at different speeds
 - In MENA, slow technology adoption has been associated with lower economic growth relative to other regions (Arezki et al 2019)
- Countries' digital transformation require core foundational elements for the digital economy (World Bank 2020)
 - Skilled workforce; quality connectivity; digital financial services; regulatory framework

Empirical definition of leapfrogging

- Leapfrog as an alternative to the "catch-up" theory
- Concept used many times, but lacks a consistent approach in research
 - "Leapfrogging occurs when a nation bypasses traditional stages of development to either jump directly to the latest technologies (stage-skipping) or explore an alternative path of technological development involving emerging technologies with new benefits and new opportunities (path-creating). " (CSIS 2020)
- We attempt an empirical definition. Assuming two paradigms, we propose the definitions:

STAGE 1 (legacy):
$$Y_{c,t}^1 = C + \beta_1 * \log(GDPpc_{c,t}) + v_t + \varepsilon$$

STAGE 2 (new):
$$Y_{c,t}^2 = C + \beta_2 * \log(GDPpc_{c,t}) + v_t + \varepsilon$$

$$\hat{Y}_{c,t}^2 > \hat{Y}_{c,t}^1 \Rightarrow \text{relative leapfrogging}$$

$$\beta_2 < 0 \Rightarrow$$
 absolute leapfrogging

Let's apply this framework to digital payment

• We assume simple stages of innovation in payment systems:

STAGE 1	Traditional bank-based payment systems, measured by incidence of access to bank accounts
STAGE 2	Digitalization of banking systems , measured by the use of debit/credit cards and online banking
STAGE 3	Prepaid mobile money accounts , measured by incidence of access to mobile money accounts
STAGE 4	Decentralized payments native to specific devices but linked to prepaid accounts (ex: Apple pay or Alipay)
STAGE 5	Decentralized digital currencies native to specific private or local applications or systems (ex: cryptocurrencies)

Data and empirical framework

- Three dependent variables Y^1 , Y^2 , Y^3 from World Bank Findex 2017:
 - Y^1 : Having an account in a financial institution (bank; % of adult population)
 - Y^2 : Using digital payments (debit/credit cards, online banking, internet payment, also mobile money...; % of adult population)
 - Y^3 : Having an account with a mobile money provider (% of adult population)
- Some precisions about the data:
 - Comprehensive dataset but relatively old, pre-COVID
 - Pooled cross-section with two years (2014 and 2017)
 - Less data on Stage 3 (mobile money) -> reduced sample to make comparisons
- Simple but effective empirical strategy:

$$Y_{c,t}^{i} = C + \beta_{i} * \log(GDPpc_{c,t}) + v_{t} + \varepsilon$$

Regression results

 Evidence of absolute leapfrogging in mobile money

- Consistent underperformance of the MENA region
- Relative leapfrogging in both digital payments and mobile money

	STAGE 1	STAGE 2	STAGE 3
VARIABLES	bankaccount	digitalpayment	mobilemoney
	(quadratic)	(quadratic)	(log-linear)
log gdppc	-0.243	-0.662***	-0.0255**
	(0.177)	(0.166)	(0.00999)
log_gdppc_2	0.0240**	0.0436***	
	(0.0101)	(0.00944)	
MENA	-0.0886*	-0.0731*	-0.0265
	(0.0466)	(0.0438)	(0.0366)
Constant	0.649	2.638***	0.285***
	(0.774)	(0.727)	(0.0872)
Observations	149	149	149
R^2	0.594	0.440	0.161
Adjusted R ²	0.583	0.424	0.144
Min. of log_gdppc	6.70		
Predicted value at minimum	0.105**	0.197***	0.157***
20 th percentile of log_gdppc		7.64	
Predicted value at 20 th perc.	0.200***	0.163***	0.133***

Standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1) Time fixed effects are controlled with a dummy variable

Visual analysis

Bank accounts

- Almost all MENA countries underperform relative to their level of development
- Only Iran, Malta and Israel have high rates of banking access

Visual analysis (cont'd)

Digital payments

- Same groups of countries
- Iran, Malta and Israel are the only MENA countries with high use of digital payments

Visual analysis (end)

Mobile money

• Smaller sample, but similar results

- Iran and the United Arab Emirates are the high performers (MLT and ISR not in the sample)
- Higher uptake at lower levels of development

MENA's digital paradox

- One can wonder about the drivers of this underperformance, but:
 - MENA has high levels of internet usage
 - Internet users are highly connected to social networks
 - Why are they not adopting digital payments?

Drivers of leapfrogging

 Unfortunately, this WP aims to identify MENA's performance and does not look into the drivers of technology adoption and leapfrogging

- Some considerations:
 - Digital finance may arise to compensate for the lack of a formal financial system
 - A formal financial system can also enable digital finance innovation
 - In MENA, neither of these appear to be true

 More research is needed to test additional data sources, identification strategies, adoption of digital services

Conclusion

 The paper proposes a simple empirical strategy to identify absolute and relative leapfrogging applied to digital financial services

- While there is evidence of leapfrogging to digital finance globally, the MENA region exhibits a consistent underperformance
 - This outlines the existence of a digital paradox:
 - Internet users outperform on use of social networks (non-productive use-case)
 - But they underperform on use of digital payments (productive use-case)

• In MENA, there appear to be a set of factors not related to technology adoption that prevent access to financial services in general, and thus may also slow down digital transformation

References

- Ali, Robleh; Barrdear, John; Clews, Roger; Southgate, James. 2014. Innovations in Payment Technologies and the Emergence of Digital Currencies. Bank of England Quarterly Bulletin Q3 2014
- Arezki, Rabah; Fan, Yuting; Nguyen, Ha Minh. 2019. Technology Adoption and the Middle-Income Trap: Lessons from the Middle East and East Asia. Policy Research working paper; no. WPS 8870
- Cusolito, Ana Paula; Gevaudan, Clement; Lederman, Daniel; Wood, Christina. 2021. The Upside of Digital for the Middle East and North Africa: How Digital Technology Adoption Can Accelerate Growth and Create Jobs. (forthcoming)
- Natarajan, Harish. 2019. Developing Payment Services in the Middle East and North Africa: A Strategic Approach. Background paper
- World Bank. 2020. Digital Economy for Africa Country Diagnostic Tool and Guidelines for Task Teams.

