Stages of Development of Payments Systems: Leapfrogging across Countries and MENA’s Place in the World

Clément Gévaudan
Consultant
World Bank Group

2021 Regional Conference on Payments and Market Infrastructures

Friday, June 18, 2021
Outline of the presentation

• Context – where this research is coming from

• Technology adoption and leapfrogging

• Innovation stages in the case of payment systems

• Empirical framework

• Findings

• Discussion
Before we start
Context of the paper

• Research program led by the WB Office of the Chief Economist in MENA

 • How is digital technology adoption in the MENA region?

 • Are there conditions or bottlenecks that may thwart the upside of digital?

 • How is MENA’s performance compared to the rest of the world?

• This working paper with Daniel Lederman was one of the background papers

 • Key question is to identify MENA’s adoption of digital financial services, relative to levels of development → are there opportunities of leapfrogging?
Overview of digital technology pillars and impact

- Digital technologies as general-purpose technologies (Cusolito et al 2021)
 - Usable across sectors and diffuse widely in the economy
 - Enables new modes of production and consumption
 - Thrive on economies of scale and network externalities

- Countries tend to adopt digital technologies at different speeds
 - In MENA, slow technology adoption has been associated with lower economic growth relative to other regions (Arezki et al 2019)

- Countries’ digital transformation require core foundational elements for the digital economy (World Bank 2020)
 - Skilled workforce; quality connectivity; digital financial services; regulatory framework
Empirical definition of leapfrogging

• Leapfrog as an alternative to the “catch-up” theory

• Concept used many times, but lacks a consistent approach in research
 • “Leapfrogging occurs when a nation bypasses traditional stages of development to either jump directly to the latest technologies (stage-skipping) or explore an alternative path of technological development involving emerging technologies with new benefits and new opportunities (path-creating). “ (CSIS 2020)

• We attempt an empirical definition. Assuming two paradigms, we propose the definitions:

STAGE 1 (legacy): \(Y_{c,t}^1 = C + \beta_1 \times \log(GDPpc_{c,t}) + \nu_t + \varepsilon \)

STAGE 2 (new): \(Y_{c,t}^2 = C + \beta_2 \times \log(GDPpc_{c,t}) + \nu_t + \varepsilon \)

\(\hat{Y}_{c,t}^2 > \hat{Y}_{c,t}^1 \Rightarrow \text{relative leapfrogging} \)

\(\beta_2 < 0 \Rightarrow \text{absolute leapfrogging} \)
Let’s apply this framework to digital payment

- We assume simple stages of innovation in payment systems:

<table>
<thead>
<tr>
<th>STAGE 1</th>
<th>Traditional bank-based payment systems, measured by incidence of access to bank accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAGE 2</td>
<td>Digitalization of banking systems, measured by the use of debit/credit cards and online banking</td>
</tr>
<tr>
<td>STAGE 3</td>
<td>Prepaid mobile money accounts, measured by incidence of access to mobile money accounts</td>
</tr>
<tr>
<td>STAGE 4</td>
<td>Decentralized payments native to specific devices but linked to prepaid accounts (ex: Apple pay or Alipay)</td>
</tr>
<tr>
<td>STAGE 5</td>
<td>Decentralized digital currencies native to specific private or local applications or systems (ex: cryptocurrencies)</td>
</tr>
</tbody>
</table>
Data and empirical framework

• Three dependent variables Y^1, Y^2, Y^3 from World Bank Findex 2017:
 • Y^1: Having an account in a financial institution (bank; % of adult population)
 • Y^2: Using digital payments (debit/credit cards, online banking, internet payment, also mobile money...; % of adult population)
 • Y^3: Having an account with a mobile money provider (% of adult population)

• Some precisions about the data:
 • Comprehensive dataset but relatively old, pre-COVID
 • Pooled cross-section with two years (2014 and 2017)
 • Less data on Stage 3 (mobile money) -> reduced sample to make comparisons

• Simple but effective empirical strategy:

$$Y_{c,t}^i = C + \beta_i \ast \log(GDPP_{pc_{c,t}}) + v_t + \varepsilon$$
Regression results

- Evidence of absolute leapfrogging in mobile money
- Consistent underperformance of the MENA region
- Relative leapfrogging in both digital payments and mobile money

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>STAGE 1 bankaccount (quadratic)</th>
<th>STAGE 2 digitalpayment (quadratic)</th>
<th>STAGE 3 mobilemoney (log-linear)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log_gdppc</td>
<td>-0.243 (0.177)</td>
<td>-0.662*** (0.166)</td>
<td>-0.0255*** (0.00999)</td>
</tr>
<tr>
<td>log_gdppc_2</td>
<td>0.0240** (0.0101)</td>
<td>0.0436*** (0.00944)</td>
<td></td>
</tr>
<tr>
<td>MENA</td>
<td>-0.0886* (0.0466)</td>
<td>-0.0731* (0.0458)</td>
<td>-0.0265 (0.0366)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.649 (0.774)</td>
<td>2.638*** (0.727)</td>
<td>0.285*** (0.0872)</td>
</tr>
<tr>
<td>Observations</td>
<td>149</td>
<td>149</td>
<td>149</td>
</tr>
<tr>
<td>R²</td>
<td>0.594</td>
<td>0.440</td>
<td>0.161</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.583</td>
<td>0.424</td>
<td>0.144</td>
</tr>
<tr>
<td>Min. of log_gdppc</td>
<td></td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>Predicted value at minimum</td>
<td>0.105**</td>
<td>0.197***</td>
<td>0.157***</td>
</tr>
<tr>
<td>20th percentile of log_gdppc</td>
<td>7.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted value at 20th perc.</td>
<td>0.200***</td>
<td>0.163***</td>
<td>0.133***</td>
</tr>
</tbody>
</table>

Standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1)
Time fixed effects are controlled with a dummy variable
Bank accounts

- Almost all MENA countries underperform relative to their level of development
- Only Iran, Malta and Israel have high rates of banking access
Digital payments

- Same groups of countries
- Iran, Malta and Israel are the only MENA countries with high use of digital payments
Mobile money

• Smaller sample, but similar results

• Iran and the United Arab Emirates are the high performers (MLT and ISR not in the sample)

• Higher uptake at lower levels of development
MENA’s digital paradox

• One can wonder about the drivers of this underperformance, but:
 • MENA has high levels of internet usage
 • Internet users are highly connected to social networks
 • Why are they not adopting digital payments?
Drivers of leapfrogging

• Unfortunately, this WP aims to identify MENA’s performance and does not look into the drivers of technology adoption and leapfrogging

• Some considerations:
 • Digital finance may arise to compensate for the lack of a formal financial system
 • A formal financial system can also enable digital finance innovation
 • In MENA, neither of these appear to be true

• More research is needed to test additional data sources, identification strategies, adoption of digital services
Conclusion

• The paper proposes a simple empirical strategy to identify absolute and relative leapfrogging applied to digital financial services

• While there is evidence of leapfrogging to digital finance globally, the MENA region exhibits a consistent underperformance
 • This outlines the existence of a digital paradox:
 • Internet users outperform on use of social networks (non-productive use-case)
 • But they underperform on use of digital payments (productive use-case)

• In MENA, there appear to be a set of factors not related to technology adoption that prevent access to financial services in general, and thus may also slow down digital transformation
References

• Arezki, Rabah; Fan, Yuting; Nguyen, Ha Minh. 2019. Technology Adoption and the Middle-Income Trap: Lessons from the Middle East and East Asia. Policy Research working paper; no. WPS 8870

• Natarajan, Harish. 2019. Developing Payment Services in the Middle East and North Africa: A Strategic Approach. Background paper