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Abstract

We conduct an extensive out-of-sample forecasting exercise, across a variety of machine

learning techniques and traditional econometric models, with the objective of building

accurate forecasts of the Brazilian consumer prices inflation at multiple horizons. A large

database of macroeconomic and financial variables is employed as input to the competing

methods. The results corroborate recent findings in favor of the nonlinear automated

procedures, indicating that machine learning algorithms (in particular, random forest)

can outperform traditional forecasting methods in terms of mean-squared error. The main

reason is that some machine learning methods can yield a sizeable reduction in the forecast

bias, while keeping the forecast variance under control. As result, forecast accuracy can

be improved over traditional inflation forecasting models. These findings offer a valuable

contribution to the field of macroeconomic forecasting, and provide alternative methods

to the usual statistical models often based on linear statistical relationships.
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1 Introduction

Machine Learning (ML) is a branch of artificial intelligence, often described as the art and

science of pattern recognition. It is essentially a data-driven approach, with mild assumptions

about the underlying statistical relationships in the data, and entails a large variety of methods.

Machine learning also usually comprises two core elements, a learning method and an algorithm,

enabling one to automate as many of the modeling choices as possible in a manner that is not

subject to the discretion of the forecaster (Hall, 2018).

Producing accurate forecasts is not an easy task, since it requires an approach complex

enough to incorporate relevant variables but also focused on excluding irrelevant data. In this

sense, machine learning methods, in general, are able to deal with nonlinear patterns in the

data, often hidden to standard linear models, thus offering an alternative (and compelling)

approach to traditional econometric models.

The objective of this paper is to forecast Brazilian inflation based on a large number of

macroeconomic and financial variables. Our goal is also to assess whether machine learning

approaches can indeed offer improvement to forecast accuracy in applied macroeconomics and

make a contribution to the standard statistical toolkit used in macro forecasting.

Many emerging economies, including Brazil, have experienced periods of hyperinflation in

past decades. Nowadays, inflation in those countries is much lower, in a historical perspective,

but still greater and more volatile when compared to developed economies.1 This empiri-

cal evidence adds uncertainty to investment decisions and shortens the investment horizon in

emerging markets, making the construction of accurate inflation forecasts a relevant task in

these economies.

It is well known in the literature that a good in-sample fit does not guarantee a good out-of-

sample forecast performance (Greene, 2003). Moreover, machine learning algorithms generally

deal with large amounts of data (big data). However, in macroeconomics, the usual indicators

of interest are collected on an annual, quarterly or monthly basis and, therefore, lead to much

less data accumulation compared, for instance, to a daily high-frequency database. In principle,

this could undermine the reliability of machine learning results, especially since the data is split

into training and test sets (i.e., in-sample and out-of-sample, respectively), reducing still further

1The IMF (2018) report projects a consumer prices inflation in 2019 (annual percent change) of 1.9% for the
advanced economies and 5.2% for the emerging market and developing economies. Also, these figures are very
heterogeneous among emerging countries. For example, the IMF forecasts for inflation in 2019 for Chile, Brazil
and India are, respectively, 3.0%, 4.2% and 4.9%, whereas for Turkey and Argentina are 16.7% and 31.7%,
respectively.
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the actual data used for model estimation.

In order to check for actual predictive power, we construct an out-of-sample empirical ex-

ercise with sixteen inflation forecasting methods, and forecast horizon ranging from one month

up to twelve months. The list of competing models includes some traditional econometric

approaches (ARMA, VAR), reduced-form structural models (Phillips curves), factor models,

regularization methods (lasso, ridge, elastic net), regression trees (random forest, quantile re-

gression forest) and survey-based forecasts (Focus).

Real-time inflation forecasting has been studied extensively in the literature (Stock and

Watson, 1999). Due to an ever-changing world, producing reliable inflation forecasts is a

constant challenge for policymakers and of greatest importance to economic agents and their

investment decisions. One of the key features of the inflation dynamics in emerging economies is

the degree of persistence (or inertia).2 Besides past inflation, other predictors usually suggested

in the literature to forecast inflation include measures of economic slack (e.g., unemployment)

in a traditional Phillips curve setup, variables related to production (Stock and Watson, 1999),

financial variables (Forni et al., 2003), surveys of expectations (Ang et al., 2007; Faust and

Wright, 2013), among many others.

Moreover, there is a variety of approaches to model the inflation dynamics. According to

Ang et al. (2007), economists use four main methods to forecast inflation: time-series models

(e.g., ARIMA), structural models (e.g., Phillips curve), asset price models (e.g., term-structure

of interest rate), and methods that employ survey-based measures (e.g., survey of professional

forecasters). This lack of consensus motivates the use of an automated method to find out what

are the best variables to predict inflation at different horizons.

The literature on macroeconomic forecasting using machine learning methods is relatively

new and far from extensive; see Medeiros et al. (2016) and Garcia et al. (2017) for applications

with Brazilian data, and Cheng et al. (2019) for aggregating individual survey-based forecasts,

using machine learning tools, to improve forecasting of the US inflation.

Our research contributes to this fast growing literature in three ways: The first original

contribution of this paper is to propose a new quantile combination approach using quantile

regression forest to build conditional mean forecasts. The second contribution is to help "open-

2In Brazil, the relevance of past inflation has been vastly documented. For instance, Kohlscheen (2012)
suggests that models in which past inflation have greater weight in the expectations formation process are
more accurate than others purely based on the rational expectations assumption. In turn, Gaglianone, Guillén
and Figueiredo (2018) points out to the relevance of considering a time-varying inertia when building accurate
forecasting models.
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ing" the machine learning black box,3 by constructing a set of auxiliary graphs: (i) word cloud

and variable importance plots to reveal the most important variables for inflation forecasting,

thus summarizing the more relevant predictors according to a given ML method of interest;

(ii) decomposition of the mean-squared forecast error plots, which allows one to disentangle

the effect of forecast bias from the variance of the forecast. This is particularly important in

model selection and helps understanding why some methods display a better forecast accu-

racy compared to others; and (iii) time series plots of the differences between the cumulative

squared prediction error, which complement the graphical analysis by presenting the evolution

over time of the cumulative performance of a given forecasting method in respect to a selected

benchmark. The third contribution is to build a set of high dimensional models to forecast

Brazilian inflation, in the same spirit as in Medeiros et al. (2016). However, compared to

the previous papers: (i) we broaden the range of forecasting methods under consideration to

include different ML approaches, besides considering a set of traditional inflation forecasting

methods; and (ii) we put together a larger database of financial and macroeconomic variables,

to include additional predictors that might be of practical interest.

The outline of the paper is as follows. In Section 2, we present the methodology comprising

machine learning methods and traditional econometric models to predict inflation. Section 3

presents an out-of-sample empirical exercise and Section 4 concludes.

2 Methodology

2.1 Machine Learning in a nutshell

Most traditional forecasting methods rely on fitting data to a pre-specified relationship be-

tween dependent and independent variables, thus assuming a specific functional and stochastic

process. In contrast, a different approach to statistical analysis and forecasting, in particular,

is offered by machine learning (ML), which is to a great extent a data-driven approach, since

it makes almost no assumption about the underlying statistical relationship in the data.

According to Hansen (2019): "The term ‘machine learning’is a new and somewhat vague

term, but typically is taken to mean procedures which are primarily used for point prediction

in settings with unknown structure. Machine learning methods generally allow for large sam-

ple sizes, large number of variables, and unknown structural form." In fact, machine learning

3The black box term applied to describe ML techniques has been around for years now. It is often employed
to critisize neural networks’lack of explainability. We take a step towards transparency (turning the black box
into a gray box ) by providing complementary tools to analyze and further understand the ML outcomes.
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encompasses a wide variety of models, nonetheless, it often comprises two core elements: a

learning method, where data is used to determine the best fit for the input variables, and an

algorithm which models the relationship between the input and output. In general, ML can be

categorized into three types (see Jung et al., 2018):

(i) supervised learning, where the dependent variables are clearly identified, even if the

specific relationships in the data are not known (e.g., linear regression, logistic regression);

(ii) unsupervised learning, where there is no specific output defined beforehand, and the

goal is to recognize data patterns and determine output classification categories (e.g., cluster

analysis, principal components); and

(iii) reinforcement learning, which iteratively search for an optimal location of the input

variables that yield the highest reward, that is, optimize a given "reward" function using no

training set (e.g., sarsa, Q-learning).

According to Varian (2014), the growing amounts of data and ever complex-growing relation-

ships warrant the usage of machine learning approaches in economics. Here, we build inflation

forecasts using five different machine learning (supervised) algorithms: ridge regression, lasso,

elastic net, random forest and quantile regression forest.

The first three methods are regularization techniques that introduce penalties for overfitting4

the data. For example, the elastic net approach mixes two different kinds of regularization, by

penalizing both the number of variables in the model and the extent to which any given variable

contributes to the model’s forecast. By applying these penalties, the elastic net learns which

variables are most important, eliminating the need for researchers to make discretionary choices

about which variables to include.

The last two methods are nonparametric approaches, based on the recursive binary parti-

tioning of the covariate space, which can deal with very large number of explanatory variables,

thus producing highly nonlinear predicted models.

4In statistics, overfitting denotes the production of an analysis, which is assumed to be valid for the entire
population (for instance, an estimated input-output relationship), that corresponds too closely to a particular
set of data, but it may fail to fit additional data, or forecast future observations, reliably.
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2.2 ML estimation and forecasting

Our main goal is to forecast the inflation rate yt+h, at period t + h, using the information set

available at period t. In this sense, inflation is modeled as a function of a set of predictors x̃t,

measured at time t, as follows:

yt+h = Υh (x̃t) + εt+h, (1)

where Υh (·) is a possibly nonlinear mapping of a set of predictors, εt+h is the forecasting error

and x̃t may include weakly exogenous predictors, lagged values of inflation and a number of

factors computed from a large number of potential covariates; see Garcia et al. (2017).

Here, we consider x̃′t ≡ {1t, xt, xt−1, . . . , xt−s, d1,t, ..., d11,t}, where 1t is a constant term,

xt = {x1,t, . . . , xn,t} is a set of n predictors, di,t are dummies added to control for seasonality5

and s is the maximum lag adopted for the set of variables xt when forming the database x̃′t.

In order to build our forecasting exercise, we divide the sample into two sub-periods: the

first one (t = 1, ..., T1) is labeled as “training set”, where observations of inflation (yt) are

confronted with forecasts provided by the ML. The out-of-sample forecasts are considered in

the second sub-period, also known as the "test set", comprising the last P observations of our

sample (t = T1 + 1, ..., T ). This way, P = T − T1 observations are used to compare different

forecasts, computing forecast-accuracy measures.

For the three regularization approaches considered in this paper (ridge regression, lasso and

elastic net), the mapping Υh (·) is linear, such that:

yt+h = x̃′tβh + εt+h, (2)

where βh ∈ Rns+12 is a vector of unknown parameters. The inflation forecast from the linear

ML approach, fML
yT1+h

, using a sample of t = 1, ..., T1 observations, is given by:

fML
yT1+h

= x̃′T1 β̂h, for h = 1, ..., H. (3)

To evaluate forecast fML
yT1+h

, we compute its respective mean-squared error as follows: MSEh =

1
P

T∑
t=T1+1

(
yt − fML

yT1+h

)2
.

Note that we adopt the direct forecast approach, where the inflation h periods ahead (yT1+h)

is modeled as a function of a set of predictors x̃′T1 measured at time T1. In other words, for

5Although inflation seasonality could alternatively be captured by the candidate predictors with seasonal
behavior.
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each horizon h we estimate a different vector of unknown parameters βh (in contrast to the

iterated multistep approach; see Marcellino, Stock and Watson, 2006). This way, we avoid the

necessity of estimating a model for the time-evolution of x̃t.

2.2.1 Ridge Regression

It is well known that OLS often does poorly in prediction on future data, for instance, due

to overfitting. In this sense, penalization techniques have been proposed in the literature

to improve OLS accuracy. For instance, the ridge regression (see Hoerl and Kennard, 1988)

minimizes the squared sum of the residuals subject to a bound on the l2-norm of the parameters,

as follows:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
yt −

k∑
j=1

x′j,tβj

)2
+ λ

k∑
j=1

β2j

 , (4)

where β is the k × 1 vector of parameters, yt is the dependent variable,
{
x1,t, . . . , x

′
k,t

}
is the

k × 1 vector of regressors and λ is the so-called shrinkage parameter.

Note that the extent of the shrinkage penalty is determined by the parameter λ, whose

optimal value will in practice be determined by cross-validation (i.e., splitting the data into K

folds and iteratively re-estimating the model for each fold). Choosing a higher λ will lead to a

stronger shrinkage of the regression coeffi cients, whereas setting λ = 0 will produce the same

results of a standard ordinary least squares (OLS) regression.

Also, because ridge regression is a continuous shrinkage method, it can achieve a better

out-of-sample performance through a bias-variance trade-off (i.e., use regularization to balance

the forecast errors due to bias and variance). In particular, the ridge regression is good at im-

proving the OLS counterpart when multicollinearity is present. However, ridge cannot produce

a parsimonious model, since it always keeps all the predictors in the model.

2.2.2 Lasso

The least absolute shrinkage and selection operator (lasso) was originally proposed by Tibshirani

(1996). The core idea is to shrink to zero the irrelevant coeffi cients. The lasso is a penalized

least squares method imposing an l1-penalty on the regression coeffi cients, as follows:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
yt −

k∑
j=1

x′j,tβj

)2
+ λ

k∑
j=1

∣∣βj∣∣
 , (5)
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where (as in the ridge regression) β is the vector of parameters and λ is the shrinkage parameter.

Due to the nature of the l1-norm, lasso is able to do continuous shrinkage and automatic variable

selection simultaneously, whereas the ridge regression only shrinks the coeffi cients close to zero

(but does not exclude them from the model). Also, by setting λ = 0 leads to the OLS estimation.

According to Cheng et al. (2019), lasso is “the most intensively studied statistical method

in the past 15 years”. Indeed, it has shown success in many practical situations, since it can

handle more variables than observations.

Nonetheless, it has some limitations and might even become an inappropriate variable selec-

tion method in some cases. Zou and Hastie (2005) list a few examples: (i) when the number of

predictors k is greater than the number of observations T , the lasso selects at most T variables

before it saturates, due to the nature of the convex optimization problem; (ii) in the case of

grouping effect6, the lasso tends to select only one variable from the group (and does not care

which one is selected); (iii) in the case of T > k and in the presence of high correlations between

predictors, it has been empirically observed that ridge regression tends to perform better than

lasso.

2.2.3 Adaptive Lasso

Zou (2006) shows that the lasso estimator is inconsistent for variable selection under certain

circumstances. This way, the author proposes a new version of the lasso, called the adaptive

lasso (or simply adalasso), where adaptive weights are used for penalizing different coeffi cients

in the l1-penalty. According to the author, the adaptive lasso enjoys the oracle properties (i.e.,

it performs as well as if the true underlying model were known) and not select useless variables

(which may damage the forecasting accuracy). The core idea behind the model is to use some

previously known information to select the variables more effi ciently.

In practice, it consists of a two-step estimation that uses a first model to generate different

weights wj for each candidate variable xj,t. These weights are used in the second-step in the

lasso estimation as additional information. The adalasso estimator is thus defined as:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
yt −

k∑
j=1

x′j,tβj

)2
+ λ

k∑
j=1

wj
∣∣βj∣∣

 , (6)

where wj =
∣∣∣β̂∗j ∣∣∣−τ represents the weights; β̂∗j is a parameter estimated in the first-step, and

6The grouping effect occurs if the regression coeffi cients of a group of highly correlated variables tend to be
equal (up to a change of sign if negatively correlated).
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τ > 0 is an additional tuning parameter (which can be chosen by using the same criterion as

λ) that determines how much one wants to emphasize the difference in the weights.

In general, τ is set to unity and β̂
∗
j is the respective lasso coeffi cient estimated in the

first-step. According to Medeiros and Mendes (2016), the conditions required by the adalasso

estimator are very general, and the model works even when the errors are non-Gaussian, het-

eroskedastic, and the number of variables increases faster than the number of observations.

2.2.4 Elastic Net

The elastic net is a regularization and variable selection method proposed by Zou and Hastie

(2005), as a generalization of the lasso. Similarly to the lasso, the elastic net simultaneously does

automatic variable selection and continuous shrinkage, and it can select groups of correlated

variables. According to the authors: “It is like a stretchable fishing net that retains ‘all the big

fish’.”

Simulation studies show that the elastic net often outperforms the lasso, in terms of pre-

dictive power, while enjoying a similar sparsity representation. The elastic net encourages a

grouping-effect, where highly correlated regressors tend to be jointly included (or excluded)

from the model, and it can be particularly useful when the number of predictors k is high when

compared to the number of observations T .

For a nonnegative shrinkage parameter λ, and a combination parameter α strictly between

0 and 1, the elastic net solves the following problem:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
yt −

k∑
j=1

x′j,tβj

)2
+ λPα (β)

 , (7)

where

Pα (β) =
k∑
j=1

α
∣∣βj∣∣+

(1− α)

2
β2j . (8)

Note that the elastic net is the same as the lasso when α = 1. As α shrinks toward 0, elastic

net approaches the ridge regression. For other values of α, the penalty term Pα (β) interpolates

between the l1-norm of β and the squared l2-norm of β. The tuning parameter λ controls the

overall strength of the penalty. Note the objective function is convex and so can be minimized

using any convex optimization method such as gradient or coordinate descent.

In addition, although we defined the elastic net by using (λ, α), this is not the only choice

as the tuning parameters; see Zou and Hastie (2005). For example, one could use the l1-norm
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of the coeffi cients or the fraction of the l1-norm to parameterize the elastic net.

Choice of the tuning parameters (λ, α) There are well-established methods for choosing

tuning parameters. For instance, K-fold cross-validation is a popular method for computing

the prediction error and comparing different models using training data. The loss often used for

cross-validation is the mean squared-error (MSE). The goal is to produce the so-called "cross-

validation curve", which is built by computing the MSE as a function of the tuning parameter

λ chosen over a pre-selected grid.

To do so, for each selected fold, the algorithm splits the training set of observations in

two parts: training folds (used for the estimation of parameters) and test fold (based on the

remaining observations, used for model predictions); see Figure 1. Then, forecast errors are

computed and used to calculate the MSE over the entire set of predictions using all K-folds.

Figure 1 - Example of a K-fold cross-validation (K = 10)

Source: Jung et al. (2018).

In the elastic net, there are two tuning parameters, so one needs to cross-validate the model

on a two-dimensional surface. The minimum MSE, thus, provides the pair (λ, α) to be used

in the final model estimation. Parameters can be estimated using the penalized maximum

likelihood, in which the regularization path (i.e., the path of each coeffi cient βj against, for

instance, the l1-norm of the whole coeffi cient vector as λ varies) can be computed.

On the other hand, Zou et al. (2007) show that one can consistently estimate the degrees of

freedom of the lasso model using information criterion as an alternative to the cross-validation

approach. An advantage of such procedure is that selecting the model using information cri-

terion is faster than using cross-validation. More importantly, performing cross-validation in

a time-series context may be complicated in cases where the data is not independent and

identically distributed (i.i.d.). See Medeiros et al. (2016) for further details.
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In this paper, we select the best lasso, adalasso and elastic net models using the Bayesian

Information Criterion (BIC).

2.2.5 Random Forest

Random Forest (RF) was introduced as a machine learning tool in Breiman (2001) and have

since proven to be very popular and powerful for high-dimensional regression and classification.

A random forest is a collection of regression trees, designed to reduce the prediction variance

by using bootstrap aggregation (bagging) of randomly constructed regression trees.7

A regression tree is a nonparametric model based on the recursive binary partitioning of the

covariate space X. The main idea is that if a suffi ciently large number of step functions are

used, then a step function can be a good approximation to any functional form.8 According

to Garcia et al. (2017), the model is usually displayed in a graph, which has the format of a

binary decision tree with P parent nodes (or split nodes) and L terminal nodes (also called

leaves; which represent different partitions of X).9 Figure 2 shows an example of a regression

tree with two covariates.

Figure 2 - Example of a recursive binary splitting in a regression tree

Notes: The left panel shows an example of partition of a two-dimensional covariate space

by recursive binary splitting. The center panel exhibits the corresponding tree and the right

panel shows a perspective plot of the prediction surface. Source: Hastie et al. (2009, chapter 9).

7According to Hastie et al. (2009), tree learning is invariant under scaling and various other transformations
(and it is robust to inclusion of irrelevant covariates), however it is seldom accurate. In particular, large trees
tend to learn highly irregular patterns and overfit their training sets, thus producing low bias but very high
prediction variance. In order to reduce such high variance, random forests average multiple decision trees,
trained on different parts of the same training set. This often comes at the expense of a small increase in the
bias, but generally improves the overall performance of the final model.

8According to Hansen (2019): "The literature on regression trees has developed some colorful language to
describe the tools, based on the metaphor of a living tree. 1. A split point is node. 2. A subsample is a branch.
3. Increasing the set of nodes is growing a tree. 4. Decreasing the set of nodes is pruning a tree."

9According to the authors, the partitions are often defined by a set of hyperplanes, each of which is orthogonal
to the axis of a given predictor variable (also called the split variable).
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Note that we first split the covariate space into two regions (X1 ≤ t1 and X1 > t1)10 and

model the dependent variable by the mean of Y in each region. The selected variable (X1)

and the corresponding split-point (t1) are chosen in order to achieve the best fit. Then one (or

both) of these regions are split into two more regions, and this process is continued, until some

stopping rule is applied. In the example shown in Figure 2, the regression tree model predicts

Y with a constant cm in region Rm, m = 1, ..., 5, as follows:

Eregression tree (Y | (X1, X2)) =
5∑

m=1

cm1{(X1,X2)∈Rm}. (9)

We now turn to the question of how to properly grow a regression tree: the algorithm

needs to automatically decide on both the splitting variables and split points. In the previous

example, if one assumes a mean-squared error loss function, the optimal ĉm is simply the average

of the response Y in the region Rm. However, finding the best partition in terms of overall

MSE, according to Hastie et al. (2009), is usually computationally infeasible. In this sense, the

authors propose the following approach, focused on the implementation of CART (classification

and regression tree) models:

(i) consider a splitting variable j and split point s, and define the pair of half-planes:

R1 (j, s) = {X | Xj ≤ s} and R2 (j, s) = {X | Xj > s} , (10)

(ii) find the splitting variable j and split point s that solve the minimization problem:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2
 , (11)

where the previous inner minimizations, for any choice j and s, can be solved by:

ĉ1 = E (yi | xi ∈ R1 (j, s)) and ĉ2 = E (yi | xi ∈ R2 (j, s)) . (12)

Note that for a given splitting variable, the calculation of the optimal split point s can be

easily done. Thus, by searching through all covariates, the determination of the best pair (j, s)

is feasible. Then, based on the best split, we divide the data into the two resulting regions R1
10Rather than splitting each node into just two groups, one might consider multiple splits into more than two

groups at each stage. However, according to Hastie et al. (2009, p.311), while this can sometimes be useful, it
is not a good general strategy, since multiple splits fragment the data too quickly, leaving insuffi cient data at
the next level down.
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and R2 and repeat the splitting process on each of the two regions. This process is repeated on

all of the resulting regions. To sum it up, the regression tree can be estimated by repeating the

three steps below, for each terminal node of the tree, until the minimum number of observations

at each node is achieved:

(1) randomly select m out of p covariates as possible split variables;11

(2) select the best variable/split point among the m candidates;

(3) split the node into two child nodes.

In practice, one major problem with regression trees is their high prediction variance. Usu-

ally, a small change in the data lead to a very different sequences of splits. The main reason

for such instability is the hierarchical nature of the algorithm: the effect of a big error in the

top split is propagated down to all of the splits below it.

To overcome this issue, one can employ the bagging technique (i.e., bootstrap aggregation),

which consists on fitting the same regression tree several times to bootstrap-sampled versions

of the training data and average the result. This bootstrapping approach often leads to better

model performance because it decreases the variance of the model, without increasing too much

the bias.12

The random forest approach uses a modified bagging algorithm (called random subspace

projection) that selects, at each candidate split in the learning process, a random subset of

the covariates. The reason for doing this is the correlation of the trees in an ordinary boot-

strap sample: if one or a few covariates are very strong predictors for the dependent variable,

these covariates will be selected in many of the K bootstraped trees, causing them to become

correlated. According to Hansen (2019), the modification proposed by RF is to decorrelate

the bootstrap regression trees by introducing extra randomness. Besides, the reduction of the

tuning parameter m will, in general, reduce the correlation between any pair of trees. The

random forest algorithm can be summarized as follows:13

Given a training set (Yi, Xi), for i = 1, ..., n, where Y is the dependent (response) variable

11The size of a tree is a tuning parameter governing the model’s complexity, and the optimal size should be
adaptively chosen from the data. The preferred strategy is to stop the splitting process when some minimum
node size is reached. Typically, for regression problems with p predictors, the literature recommends to use
m = p/3 (rounded down) in each split, with a minimum node size of 5 as the default; see Hastie et al. (2009,
chapter 15.3) for more details.
12While the predictions of a single tree are highly sensitive to noise in its training set, the average of many

trees might be not, as long as the trees are not correlated. Besides, training many trees on a single training
set would give strongly correlated trees, whereas bootstrap sampling helps de-correlating the trees by showing
them different training sets.
13The appendix B provides a short mathematical description of the random forest approach. See also Hastie

et al. (2009, chapters 9 and 15) for further details.
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and X represents a set of covariates, bagging repeatedly (K times) selects a random sample

(with replacement) of the training set and fits regression trees to these bootstraped samples,

that is, for k = 1, ..., K:

(i) sample with replacement n training observations from (X, Y ); calling them (Xk, Yk);

(ii) train a regression tree Tk (·) on (Xk, Yk);

(iii) build the random forest prediction of Y conditioned on the test set (unseen samples x′)

by averaging the predictions from all the individual regression trees on x′, as follows:

Erandom forest (Y | X = x′) =
1

K

K∑
k=1

Tk(x
′). (13)

2.2.6 Quantile Regression Forest

Random forest approximates the conditional mean of Y by constructing a weighted average

over the sample observations of Y . Nonetheless, random forests can also provide information

about the full conditional distribution of the response variable, not only about the conditional

mean. This information can be used, for instance, to build prediction intervals and account for

outliers in the data. This way, conditional quantiles can be inferred with quantile regression

forests (QRF), a generalization of random forests proposed by Meinshausen (2006).14

The idea is to provide a non-parametric way of estimating conditional quantiles for a high-

dimensional set of predictor variables. According to the author, the QRF algorithm is shown

to be consistent and competitive in terms of predictive power. First, recall that the conditional

distribution function (CDF) of Y , given X = x, is given by:

F (y | X = x) = Pr (Y ≤ y | X = x) = E
(
I{Y≤y} | X = x

)
. (14)

Also, recall that the conditional quantile of Y , given X = x, at quantile level τ , is given by:

Qτ (Y | X = x) = inf{y : F (y | X = x) ≥ τ}. (15)

In other words, for a continuous distribution function of Y , conditional on X = x, the

probability of Y being smaller than Qτ (·) is exactly equal to τ . Now, similarly to the random

forest approximation of the conditional mean, define an approximation to E
(
I{Y≤y} | X = x

)
14The main difference between QRF and RF is that for each node (in each tree), RF keeps only the mean of

the observations that fall into this node (and neglects all other information). In contrast, QRF keeps the value
of all observations in this node (not just their mean) and assesses the conditional distribution based on this full
information.
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by the weighted mean over the observations of I{Y≤y}, as follows:

F̂ (y | X = x) =

n∑
i=1

wi(x)I{Yi≤y}, (16)

using the same weights wi(x) for random forests, as defined in the appendix A. See the appendix

B for a summary of the algorithm used to compute the previous CDF estimate. Estimates Q̂τ (·)

of the conditional quantiles Qτ (·) can, thus, be obtained by simply plugging F̂ (y | X = x),

instead of F (y | X = x), into (15).

In this paper, we go one step further by relating the conditional quantiles with the condi-

tional mean of Y . This could be accomplished by integrating the conditional quantile function

of Y over the entire domain τ ∈ [0, 1], as follows (see Koenker, 2005, p.302):

E (Y | X = x) =

∫ 1

0

Qτ (Y | X = x) dτ . (17)

The conditional mean of Y , based on the QRF approach, can thus be approximated15 by a

sum of estimated conditional quantiles, as follows:16

1∫
0

Qτ (Y | X = x) dτ = lim
P→∞

(
P∑
p=1

Q̂τp (Y | X = x) ∆τ p

)
. (18)

The approximation of the conditional mean by a combination of conditional quantiles is

not a novel approach in the literature. Indeed, it has a long tradition in statistics (see Judge

et al., 1988) and has been previously applied in the forecasting literature. Nonetheless, an

original contribution of this paper is to propose a new quantile combination approach, based

on quantile regression forest to build conditional mean forecasts, through equations (15), (16),

(17) and (18).

The proposed quantile combination approach based on QRF follows the spirit of the aver-

aging scheme applied to quantiles conditional on predictors selected by lasso, as proposed by

Lima and Meng (2017). The advantage of these approaches relies on the fact that quantiles are

robust to outliers (in our case, extreme unanticipated inflationary shocks), which potentially

improves forecast-accuracy and likely impact the performance of standard models, which are

usually designed to only account for average responses.

15By applying the second fundamental theorem of calculus (or the Newton-Leibniz axiom) on the sum of
quantiles, the Riemann integral is obtained in the limit P → ∞ (see Apostol, 1967) and the partitions ∆τp =
1

P+1 get finer (i.e., ∆τp → 0 as long as P →∞).
16We rely on the fact that the conditional quantiles are consistenly estimated using the QRF approach.
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In other words, each considered predictor might be useful to forecast some, but not all,

conditional quantiles of Y (being called as partially weak predictor). Moreover, if the predictor

helps forecast all quantiles, it is then considered to be a strong predictor, whereas predictors

that help predict no quantile at all are called fully weak predictors.

According to Lima and Meng, the quantile combination method usually results in a predic-

tion model in which the coeffi cients of fully weak predictors are not statistically significant (in

contrast to statistically significant strong predictors), while the coeffi cients of partially weak

predictors are adjusted to reflect the magnitude of their contribution to the conditional mean

forecast. This method potentially offers improvement in forecast accuracy compared to usual

conditional mean models not designed to deal with partial and fully weak predictors across

quantiles and over time.

2.3 Traditional Inflation Forecasting

We next build inflation forecasts using more traditional methods. This short suite of models, of

course, is far from an exhaustive list and should not be interpreted as the best possible one, since

more complex models (e.g., DSGE) could be included. Although we think that this extension

would be valuable, the list next presented also seems to be a reasonable approximation to the

spectrum of models often used by economic agents interested in producing inflation forecasts.

RandomWalk: The standard random walk (RW) model assumes that the h−period inflation

change is an unforecastable martingale difference sequence (MDS), that isE (yt+h − yt | Ft) = 0,

for all t = 1, ..., T1 and h = 1, ..., H. The out-of-sample inflation forecast, f rwyT1+h , is given by:

f rwyT1+h
= yT1 . (19)

RW-AO: This is the variant of the pure random walk model, considered by Atkeson and

Ohanian (2001), which takes the average inflation over the previous four quarters as the forecast

for yT1+h. Here, in order to build a low-variance forecast, we consider the moving average over

the previous four years, as follows:

f rw−aoyT1+h
=

1

48

47∑
j=0

yT1−j. (20)

ARMA: One of the most common statistical models used for time-series forecasting is the

autoregressive moving average (ARMA) model, which assumes that future observations are
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primarily driven by recent observations. Inflation, which often exhibits persistent behavior, is

largely consistent with this assumption. The best model for the monthly inflation rate yt, in

our sample, according to the Schwarz information criterion, is the AR(1), described as follows:

yt = α + βyt−1 + εt, (21)

where the estimates
[
α̂; β̂

]′
can be computed using a sample with t = 1, ..., T1 observations.

The respective h-step-ahead forecast (faryT1+h) is given by

faryT1+h
= β̂

h
yT1 +

h−1∑
i=0

α̂β̂
i
. (22)

VAR: The vector autoregression (VAR) is also a traditional forecasting method based on a

backward-looking approach. In its basic form, a VAR consists of a set of k endogenous variables

xt =
[
x1,t · · · xk,t

]′
. The VAR(p) process is defined as xt = F1xt−1 + ...+ Fpxt−p + φ+ ut,

where Fi are k × k coeffi cient matrices for i = 1, .., p, φ is a k × 1 vector of intercepts and ut

is a k−dimensional white noise process with E(ut) = 0. As well-known, the VAR(p) can be

rewritten as a VAR(1), as follows:

ξt = Fξt−1 + c+ vt, (23)

where ξt =
[
xt xt−1 · · · xt−p+1

]′
is a kp× 1 vector stacking all variables (and lags), F is

a kp × kp matrix and c =
[
φ 0 · · · 0

]′
and vt =

[
ut 0 · · · 0

]′
are kp × 1 vectors.

Successive substitution for lagged ξt’s gives (Lütkepohl, 2005): ξt+h = F hξt+
h−1∑
i=0

F i (c+ vt+h−i).

Taking the conditional expectation on both sides: E
(
ξt+h | Ft

)
= F hξt+

h−1∑
i=0

cF i. Now, selecting

the i− th element of ξt+h gives E (xi,t+h | Ft) = J ′iE
(
ξt+h | Ft

)
, where J ′i is a 1× kp selection-

vector filled with zeros, excepting the i− th element, which is set to one.

In this paper, the VAR is estimated with four endogenous variables: market price inflation

(approximately 75% of IPCA), administered price inflation (approximately 25% of IPCA), M4

and nominal exchange rate (R$/US$),17 and 1 lag (by Schwarz information criterion and diag-

nostic testing). The exchange rate and M4 are first-differenced to avoid unit roots. The choice

of variables recognizes the different time dynamics of the two main components of inflation18,

17See variables n.2, 3, 38 and 53 in Table C1 (Appendix C).
18The administered price inflation is in some way regulated by a public agency or set by contracts (often

including backward indexation clauses), rather than by the interaction between domestic demand and supply
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and incorporates the possible pass-through of imported inflation to domestic inflation. As-

suming that (x1,t, x2,t)
′ denotes, respectively, the market price inflation and administered price

inflation, the VAR forecast for the headline inflation, f varyT1+h
, can be constructed by aggregating

the h-step ahead forecasts of the two main inflation components, using ω = 0.75 as the weight

of the IPCA market, in respect to the IPCA headline, as follows:

f varyT1+h
= Ê (ωx1,T1+h + (1− ω)x2,T1+h | FT1) (24)

= (ωJ ′1 + (1− ω) J ′2) F̂
hξT1 +

h−1∑
i=0

ĉF̂ i. (25)

PC-backward: The Phillips curve model (PC) has a long tradition in forecasting inflation

(Stock and Watson, 1999). We consider here a backward-looking version of the curve, only

including past inflation (inertia), imported inflation (pass-through channel) and output gap

(traditional monetary policy channel via aggregate demand). Following the VAR approach, we

also disaggregate inflation in two components (market price inflation and administered price

inflation), which are modeled separately. First, we estimate a Phillips curve for inflation of

market prices, as follows:

πmarkett+h = α0 + α1π
market
t + α2π

imp
t + α3gt + εt+h, (26)

where πmarkett is the inflation of market prices, πimpt is the imported inflation,19 and gt is the

output gap.20 Regarding the administered price inflation, we estimate an auxiliary ARMA(p, q)

model. The Schwarz information criterion for lag selection indicate one lag only and no moving

average term (p = 1, q = 0). Finally, we use each model to produce h-step ahead point forecasts

(h = 1, . . . , 12 months) which are, then, aggregated using corresponding weights to build the

forecast for the IPCA inflation.

PC-hybrid: This approach considers a hybrid (New Keynesian) version of the Phillips curve,

which includes backward and forward looking terms, imported inflation and output gap; see

conditions. According to Minella et al. (2003), the dynamics of such prices differ from the market prices in three
ways: (i) dependence on international prices in the case of refined petroleum products; (ii) greater pass-through
from the exchange rate; and (iii) stronger backward-looking behavior.
19Defined as the sum of the nominal exchange rate (R$/US$) monthly percentage variation and the U.S.

inflation (assumed to be 2.0% per year or, equivalently, 0.165% per month).
20The output gap is based on the seasonally adjusted IBC-BR index of economic activity. The Hodrick-

Prescott (HP) filter is employed to generate the output gap in a recursive estimation scheme, that is, we
re-construct the entire output gap series for each new observation added to the estimation sample along the
out-of-sample exercise (and, then, re-estimate the Phillips curve to construct new h−step ahead forecasts).
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Arruda et al. (2011) and Gaglianone, Issler and Matos (2017). The hybrid-version of the

Phillips curve for inflation of market prices is given by:

πmarkett+h = α0 + α1π
market
t + α2π

exp
t+h|t + α3π

imp
t + α4gt + εt+h, (27)

where the additional term πexpt+h|t denotes the h−step ahead expected inflation (Focus survey).21

We impose the coeffi cient restriction: α1+α2+α3 = 1, to guarantee a vertical long-run Phillips

curve. The inflation forecasts for the administered price inflation and the IPCA follow the same

procedures described in the previous approach.

Factor model 1 (direct forecast): The idea that time variations in a large number of

variables can be summarized by a small number of factors is empirically attractive and it is

employed in a large number of studies in economics and finance; see Forni et al. (2000) and

Stock and Watson (2002). Let xi,t be the observed data for the i−th cross-section unit at time

t, for i = 1, ..., N and t = 1, ..., T1, and consider the following factor representation of the data:

xi,t = λ′iFt + ei,t, (28)

where Ft is a vector of common factors, λi is a vector of factor loadings associated with Ft and

ei,t is the idiosyncratic component of xi,t. Note that λi, Ft and ei,t are unknown since only xi,t

is observable. Here, we estimate the factors and respective loadings using principal components

analysis (PCA), which is a well-established technique for dimension reduction in time series.

The number of components is determined by the Bai and Ng (2002) criterion. After the PCA

estimation of the common factors Ft, we employ the direct forecast approach, to model the

inflation rate at time t+ h, as follows:

yt+h = βhFt + εt+h. (29)

Therefore, the inflation forecast from the direct factor model approach, f fm−directyT1+h
, using a

sample of t = 1, ..., T1 observations, is given by:

f fm−directyT1+h
= β̂hF̂T1 , for h = 1, ..., H. (30)

Factor model 2 (iterated forecast): This approach is a variant of the previous one, but
21Median of survey forecasts, collected every 15th day (or the next available workday) of the month m. For

h = 1, ..., 12, it is the median forecast for month m+ 1,m+ 2, ...,m+ 13.
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using an iterated forecast method instead of the direct forecast approach. The idea is again to

employ common factors, but to model the inflation rate in a contemporaneous way in respect

to the factors, that is:

yt = γFt + vt. (31)

Following the literature (e.g., Bańbura et al., 2013), we specify the factors as following a

VAR process, that is, Ft = Φ(L)Ft + ut. Thus, the inflation forecast from the iterated factor

model approach, f fm−iteratedyT1+h
, using a sample of t = 1, ..., T1 observations, is given by:

f fm−iteratedyT1+h
= γ̂F̂T1+h|T1 , for h = 1, ..., H, (32)

where F̂T1+h|T1 are the h−step ahead (out-of-sample) forecasts of the common factors, using

the VAR model estimated in a recursive scheme.

Factor models 3 and 4 (with targeted predictors, direct or iterated): These are the

same previous factor model forecasts, but based on a subset of predictors that are selected by

taking into account that our variable of interest is the inflation rate. Here, we follow the idea of

Bai and Ng (2008), who showed that the factor model out-of-sample forecasting performance

could be improved by previously selecting (or targeting) the predictors.

The core idea is that irrelevant predictors employed to build a factor model only add noise

into the analysis, and thus produce factors with a poor predictive performance. In this sense,

we use a pre-selection of variables to be included in the factor analysis, as follows:

(i) in the direct forecast case, we first regress the inflation rate yt+h (or yt in the iterated

case) on the intercept and the candidate variable x̃′i,t ∈ x̃′t, for all i = 1, ..., q.

(ii) calculate the t−statistics for the coeffi cient associated to x̃′i,t.

(iii) include x̃′i,t in the set of predictors (used to extract the factors) only if it is statistically

significant at a 5% level.

(iv) proceed as before, in the direct or iterated factor model cases, to build the respective

inflation forecasts.
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3 Empirical Exercise

3.1 Data

We focus the analysis on the Brazilian IPCA monthly inflation, which is a consumer price index,

measured by the Brazilian Institute of Geography and Statistics (IBGE), used to compute the

offi cial inflation target. Also, the main inflation-linked federal government bond in Brazil (NTN-

B) use the IPCA as their reference.22 The sample period spans 15 years of data, from January

2004 to December 2018 (180 observations).23 Figure 3 shows the IPCA inflation in our sample

period, which starts a decade after the Brazilian monetary stabilization plan in mid-1994. Note

that the inflation level is similar to the ones from other inflation-targeting emerging countries.

Figure 3 - IPCA inflation rate (% per month)

We also use a quite diverse set of macroeconomic and financial variables drawn from a

number of categories.24 Our dataset consists of n = 120 monthly variables, including: price

indexes, interest rates, financial markets, economic activity, labor market, government debt,

import and export of goods and services, and international variables that are potentially related

to the Brazilian economy. The data sources are the Banco Central do Brasil, FGV, IBGE,

IpeaData and Reuters. Appendix C presents the full list of variables used as potential predictors

for inflation.
22NTN-B is the acronym for Nota do Tesouro Nacional, type B, which is the equivalent to the Treasury

Inflation-Protected Securities (TIPS) in the U.S.
23According to Machado and Portugal (2014), the limited sample problem is a well-known constraint for

inference in Brazilian studies, particularly in inflation dynamics where different policy regimes have been the
case. In this sense, selecting the sample from 2004 to 2018 helps us avoid large structural regime breaks.
24In the search for models and variables to forecast and explain inflation, besides the usual macroeconomic

variables, we included many financial variables, which are shown in the literature (Forni et al., 2003) to be
significant predictors that can help forecasting inflation. For instance, financial market-based implied inflation
(i.e., breakeven inflation rate), besides providing a closer monitoring of inflation expectations (since they can be
updated on a continuously intra-day basis), are also competitive in terms of short-run predictive ability when
compared to survey-based expectations (Araujo and Vicente, 2017).
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All variables are automatically tested for unit-root using the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test and first-differentiated when necessary. In all five machine learning ap-

proaches, we use s = 12 lags of the n candidate regressors in equation (1), besides including

an intercept and seasonal dummies as additional possible predictors of inflation. This way,

dim (x̃′t) = 1, 452 variables.

We use data over the period from January 2004 to January 2011 (T1 = 85 observations)

for model estimation (training set) and reserve the remaining data (test set) for the forecast

comparison using P = T − T1 = 95 observations. The first part of the sample is used to

estimate the econometric models and train the machine learning approaches (cross-validation

and selection of the tuning parameters), whereas the remaining observations are used for out-

of-sample forecast comparison for horizons h = 1, ..., 12 months.

All models are recursively estimated by using a growing window (increasing sample size),

as we incorporate every new time-series observation, one at a time. In this context, each model

is initially estimated using the first T1 observations and the out-of-sample point forecasts are

generated. We, then, add an additional observation at the end of the training set, re-estimate

the models and generate again out-of-sample forecasts. This process is repeated along the

remaining data (test set). See Morales-Arias and Moura (2013) for a detailed discussion about

recursive versus rolling window forecasting.25 The evaluation period for h = 1 ranges from

February 2011 to December 2018 (95 forecasts), whereas for h = 12 ranges from January 2012

to December 2018 (84 forecasts).26

The empirical exercise is implemented using the R software (version 3.5.1, i386). The ridge

regression, lasso and elastic net models are estimated using the R package glmnet (version

2.0-16), which fits a generalized linear model via penalized maximum likelihood. The adalasso

model is implemented using the R package HDeconometrics (version of January 26, 2018),

available at: https://github.com/gabrielrvsc/HDeconometrics. The same R package is used to

compute the BIC information criterion and choose the tuning parameters λ and α. In turn, in

order to implement the random forest and the quantile regression forest methods, we use the

R package ranger (version 0.11.1).

25As a robustness check, we could employ a rolling window estimation (fixed sample size), which is usually
more suitable in the presence of structural breaks. We leave this exercise for future extensions of this paper.
26To avoid extra (and unnecessary) complications in the implementation of the forecasting exercise, we refrain

to do a real-time analysis. Thus, a note of caution regarding the interpretation of results applies, mainly due
to two concerns: (i) not all useful predictors may be available to the forecaster in real time; and (ii) several
predictors are subject to data revisions (e.g., the CPI data become available only with a one-month delay).
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3.2 Results

Our empirical exercise entails the following sixteen inflation forecasting methods: random walk;

random walk (Atkeson-Ohanian); ARMA; VAR; Phillips curve (backward-looking or hybrid);

factor model27 (direct or iterated forecast; with or without targeted predictors); ridge regression;

lasso; elastic net; random forest; quantile regression forest;28 and the Focus survey (included as

a benchmark).29

Since the traditional models used to forecast inflation are vastly discussed and documented

in the literature, we focus on the estimation of the machine learning approaches.

Figure 4 shows how the lasso and the elastic net works in practice: the value of log (λ) is

shown on the horizontal axis, and the vertical axis presents the regularization path, that is, the

coeffi cient estimates βj (each line represents a different variable).

The number of selected variables for each value of λ is presented on top of each graph in

Figure 4. Note that the amount of selected variables, as well as the size of the coeffi cients,

decrease towards zero as long as the shrinkage parameter λ augments. The vertical gray dotted

line indicates the value of λ chosen from cross-validation. In the lasso and the elastic net final

estimation (h = 1, full sample), there are only 29 and 48 non-zero coeffi cients, respectively, out

of the total amount of 1, 452 potential predictors; thus confirming the parsimonious outcomes

in both methods.30

Figure 5 shows how the proposed selection procedures works over time. The horizontal

axis represents the end of the estimation sample, along the out-of-sample forecasting exercise,

and the vertical axis denotes all the 1, 452 regressors. A blue dot indicates that variable i has

a non-zero coeffi cient in the lasso estimation (a red dot, in the elastic net case) with sample

ending at period t, used to build forecasts for yt+h. In other words, Figure 5 shows that the

statistical significance of the coeffi cients vary considerably over time for some variables, while

staying relatively stable for others. Examining such coeffi cient estimates allows us to discover

how the learned models change in response to different economic conditions over time. See the

Appendix D for results with h > 1.31

27For h = 1, we extract seven factors, which jointly account for 55% of the total variance in the data.
28We used an amount of 10, 000 trees in both the random forest and the quantile regression forest. In the

latter method, we adopted the following grid of quantile levels: τ ∈ (0.05, 0.10, 0.15, ..., 0.95) .
29The Focus survey is organized by the Banco Central do Brasil and started in 1999 with the implementation

of the inflation-targeting regime. It contains daily forecasts from more than 100 institutions (financial or non-
financial), for different horizons and a large number of economic variables. It also has a Top5 ranking contest
built to improve forecasting expertise.
30By using regularization to control the size of the model, LASSO and elastic net can set many coeffi cients

to zero and, this way, deliver a more parsimonious model compared to an unregularized linear model.
31Figure D2 in Appendix shows the average number of variables selected by lasso and elastic net. The elastic
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Figure 4 - Elastic Net coeffi cients (h = 1)

Notes: Full sample estimation for h=1 (Jan2004-Nov2018). The vertical axis shows the estimates for each log(lambda). The

number of selected variables is shown on top of each graph. The vertical dotted line indicates the choice from cross-validation.

Figure 5 - Elastic Net variable selection (h = 1)

Another analysis that we find interesting is the identification of which variables are chosen

by the machine learning methods to predict inflation. Although we do not attempt to eco-

nomically interpret the driving-forces behind the machine learning forecasts, further inspecting

these models, to better understand how they are making forecasts, may reveal new statistical

relationships in the data previously overlooked by standard linear models.

In this sense, Figure 6 shows the word clouds containing the most frequent variables selected

by lasso and elastic net in all horizons. To do so, we compute the frequency of non-zero

coeffi cients of a given variable, taking into account all out-of-sample observations and forecast

horizons h = 1, ..., 12. Then, we rank these frequencies in order to create a list with the most

frequent variables; shown in Figure 6 with a larger font size. Variables with the same frequency

are depicted with the same size and color.

net selects more variables than the lasso does, probably owing to the grouping effect, as discussed in Zou and
Hastie (2005). Also, the models for shorter horizons are, usually, more parsimonious.
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Figure 6 - Elastic Net word clouds for all horizons

The variables identified by lasso and elastic net include mostly past inflation (probably due

to the decades of inertial inflationary dynamics in Brazil); industrial production (in particular,

consumer and intermediate goods, besides passenger cars and light vehicles); labor market

(wholesale and retail trade); exterior sector (linked to commodity exports); and public sector

(especially, public debt and primary result).

Appendix D provides additional word clouds built for selected horizons. Overall, variable

selection seems to be quite different across distinct horizons, indicating that the best predictors

for short-run forecasting are not very useful for medium or long-term forecasting (and vice

versa). Besides, despite the usual suspects (e.g., past inflation), it is interesting to find novel

predictors to help forecast the Brazilian inflation; such as the commercial electricity consump-

tion, in the short-run forecast, and the initial public offers (IPOs), in the long-run forecast.

Figure 7 - Inflation and forecasts (h = 1)

Figure 7 shows the observed inflation rate and the out-of-sample forecasts of the sixteen

approaches covered in this paper for h = 1. The individual forecast errors for each horizon are

squared and averaged to derive an overall MSE for the out-of-sample evaluation period. We

also show the p-value of the Diebold and Mariano (1995) test,32 using the Focus survey forecast

32The null hypothesis assumes equal forecasting accuracy of two competing forecasts. The variances entering
the test statistics use here the Newey and West (1987) HAC covariance estimator.
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as benchmark. Figure 8 and Table 1 present the results.

Figure 8 - Mean Squared Error (MSE)

Note: MSEs are shown in the vertical axis and the forecast horizon (in months) are in the horizontal axis.

The Focus survey is chosen as benchmark.33 Regarding the shortest horizon (h = 1), the

best model is the factor model with iterated forecast, closely followed by the Focus survey.

The hybrid Phillips curve and the VAR34 are, respectively, in the third and fourth places.

According to the Diebold-Mariano test, both the factor model and the hybrid PC exhibits the

same forecasting accuracy when compared to the Focus survey.

For longer horizons, the Focus survey dominates the competition, in terms of MSE, although

quite often presents an equal predictive ability in comparison to the second and/or third places

(factor model, random forest or quantile regression forest).

Among the five machine learning (ML) techniques, the random forest is the best one, in

all horizons, closely followed by the quantile regression forest (QRF) and, later on, by the

ridge regression. In addition, the ML forecasts showed superior predictive power and usually

dominate the inflation forecasts of traditional approaches.

33In our exercise, we select the cross-section median (of the panel of survey forecasts) on the 15th calendar day
of each month. The inflation rate of a given month is publicly released by IBGE around the 8th calendar day of
the following month. This way, the Focus forecast for h = 1 month represents (in fact) an inflation expectation
formed approximately 23 days before the realization of the target variable; which is clearly a shorter horizon
when compared to the other forecasting methods considered in this paper.
34The VAR performs slightly better compared to the AR(1) in shorter horizons, possibly due to its enlarged

information set and the choice of separately modeling the disaggregate inflation indexes (market price inflation
and administered price inflation).
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Table 1 - Mean Squared Error (MSE)

Notes: Full sample from January 2004 to December 2018 (180 observations). Shaded cells indicate the Top3 models

(lowest MSEs) for each horizon. The p-value of the Diebold and Mariano (1995) test is shown in parentheses, considering the

Focus survey as the benchmark. The null hypothesis assumes equal predictive ability. *, **, and *** indicate rejection of the null

at 10%, 5% and 1% levels, respectively. Last line shows the number of out-of-sample observations used to compute the MSEs.

Next, we investigate the trade-off between variance and bias of each forecasting method.

Following Lima and Meng (2017), we decompose the MSE into two parts: the forecast vari-

ance and the squared forecast bias. To do so, we calculate the MSE of any forecast f̂yt+h as
1
T ∗

∑
t

(
yt+h − f̂yt+h

)2
and the unconditional forecast variance as 1

T ∗

∑
t

(
f̂yt+h − 1

T ∗

∑
t f̂yt+h

)2
,

where T ∗ is the total number of out-of-sample forecasts. The squared forecast bias is, then,

computed as the difference between MSE and forecast variance.

Figure 9 shows the relative forecast variance and squared forecast bias of all forecasting

methods. The relative forecast variance (squared bias) is calculated as the difference between

the forecast variance (squared bias) of the i − th model and the forecast variance (squared
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bias) of the moving-average approach RW-AO. Thus, the value of relative forecast variance

(squared bias) for the RW-AO is necessarily equal to zero. Moreover, each point on the red

dotted line represents a forecast with the same MSE as the RW-AO. Points to the right of the

line are forecasts outperformed by the RW-AO, and points to the left represent forecasts that

outperform the RW-AO. Since the RW-AO is a simple moving average of inflation, it will have

a very low variance but will likely be biased.

Figure 9 - Scatterplot of relative forecast variance and squared forecast bias (h = 1)

Notes: The y-axis and x-axis represent relative forecast variance and squared forecast bias, computed as the difference between

the forecast variance (squared bias) of the considered approach and the forecast variance (squared bias) of the RW-AO.

Each point on the red dotted line represents a forecast with the same MSE as the RW-AO; points to the right are

forecasts outperformed by the RW-AO, and points to the left represent forecasts that outperform the RW-AO.

Note that for h = 1 all forecasts outperformed the RW-AO. Combining this result with

the empirical observation that the variances of forecasts are not lower than the variance of

the RW-AO (i.e., all the blue dots fall above the horizontal zero line), we conclude that such

performance relies almost exclusively on a predictor’s ability to lower forecast bias relative to

that of RW-AO.

Overall, the success of the factor model 2 in the short-run can be explained by its ability

to substantially reduce the forecast bias at the expense of a moderate increase in forecast

variance. This trade-off delivered the lowest MSE for h = 1. On the other hand, the relatively

weak performance of lasso and elastic net, among the ML methods, seems to be mainly driven

by a substantial squared bias.
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The main message is that the forecasting methods that yield a sizeable reduction in the

forecast bias, while keeping variance under control, are able to improve forecasting accuracy

over the lowest-variance approach (RW-AO). This explains the superior performance of the

one-month ahead forecasts of the factor model 2.

The MSE decomposition for other horizons are presented in the Appendix E. Note that

the random forest forecasts achieve a middle ground in terms of variance versus bias whereas

the other methods that reduce forecast variance significantly are unable to lower bias by a

large extent. For this reason, excepting the Focus survey, the random forest forecast often

outperforms the other existing forecasting methods by meaningful margins.

4 Conclusions

The purpose of this article is to study the inflation forecast accuracy of sixteen competing

methods; including traditional econometric models (ARMA, VAR), reduced-form structural

models (Phillips curve), factor models, survey-based forecasts, regularization procedures (ridge,

lasso and elastic net) and more recent machine learning techniques (random forest and quantile

regression forest). The variable of interest is the Brazilian inflation as measured by the IPCA.

In order to evaluate the predictive power of each method, we conduct a truly out-of-sample

empirical exercise, where each method produces point forecasts for horizons h = 1, ..., 12months

ahead.

The results indicate that some machine learning algorithms are able to consistently outper-

form traditional econometric models in terms of MSE, thereby offering a relevant addition to

the field of economic forecasting. Thus, the non-linear machine learning algorithms, applied

here to solve an economic forecasting problem, can offer a valuable contribution to usual statis-

tical models, quite often based on a linear approach. According to Hall (2018), the key to this

result is to control the model complexity by using an algorithm that yields a model complex

enough to avoid underfitting the data but not so complex as to overfit it.

The findings documented in this paper represent a valuable input to policymakers, acad-

emics and practitioners interested in better forecasting inflation in Brazil and, more broadly,

improving the ability of macroeconomic models to fit the Brazilian data.

Possible extensions of this paper include: (i) adding other machine learning and artificial in-

telligence methods in the set of forecasting methods (e.g., neural network or ensemble learning);

(ii) forecast combination techniques, such as the OLS regression of Granger and Ramanathan
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(1984), the consensus regression of Capistrán and Timmermann (2009), the bias-corrected aver-

age forecasts of Issler and Lima (2009) and Gaglianone and Issler (2015); and (iii) disaggregate

forecasting, by separately modeling selected inflation components (e.g., administered price in-

flation, tradables and non-tradables).
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Appendix A: Further details on random forest

In this section, we represent mathematically the random forest model, following the discussion
in Meinshausen (2006): consider n independent observations (Yi, Xi), for i = 1, ..., n, and let θ
be the random parameter vector that determines how a tree T (θ) is grown, that is, characterizes
the tree in terms of split variables, cut-points at each node, and terminal-node values. Also,
let = be the space in which X lives, that is X : Ω → =, where = ⊆ Rp and p ∈ N+ is the
dimensionality of the set of covariates X.
Every leaf of a tree (terminal node) l = 1, ..., L corresponds to a subspace of =, that is

Rl ⊆ =. For every x ∈ =, there is one (and only one) leaf l such that x ∈ Rl (corresponding to
the leaf that is obtained when dropping x down the tree). Denote this leaf by l(x, θ) for tree
T (θ). The prediction of a single tree T (θ) conditioned on X = x is obtained by averaging over
the observed values in leaf l(x, θ). Let the weight vector wi(x, θ) be given by a positive constant
if observation Xi is part of leaf l(x, θ) and 0 if it is not. The weights sum to one, such that:

wi(x, θ) =
1{Xi∈Rl(x,θ)}
n∑
j=1

1{Xj∈Rl(x,θ)}

. (33)

The forecasting model based on a single regression tree, conditioned on a covariate X = x,
is then the weighted average of the original observations Yi, for all i = 1, ..., n, that is:

Eregression tree (Y | X = x) =
n∑
i=1

wi(x, θ)Yi. (34)

Note that conditional on the knowledge of the subregions Rl, for l = 1, ..., L, the relationship
between inflation Y and the set of covariates X in equation (1) is approximated here by a
piecewise constant model, where each leaf represents a distinct regime (see Garcia et al., 2017).
Now, using random forests, the conditional mean above is approximated by the averaged

prediction of K single trees, each constructed with a parameter vector θk, k = 1, ..., K. Let
wi(x) be the average of wi(x, θk) over this collection of trees, as follows:

wi(x) =
1

K

K∑
k=1

wi(x, θk). (35)

The prediction of random forests is, thus, the averaged response of all trees, as follows:

Erandom forest (Y | X = x) =

n∑
i=1

wi(x)Yi. (36)

Note that the approximation of the conditional mean of Y given X = x is given by a
weighted sum over all observations. The weights vary with the covariate and tend to be large
for those observations i ∈ {1, ..., n} where the conditional distribution of Y , given X = Xi, is
similar to the conditional distribution of Y given X = x.

Random Forest and Variable Importance

Random forests are among the most popular machine learning methods due to their rela-
tively good forecasting accuracy, robustness and ease of use. In contrast to parametric meth-
ods, random forests are fully non-parametric and can deal with nonlinear effects, thus offering
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a great model flexibility in practical applications. Furthermore, RF can even be applied in the
statistically challenging setting in which the number of variables is higher than the number
of observations. This makes random forests especially attractive for complex high-dimensional
data applications; see Janitza et al. (2018).
Nonetheless, a suitable understanding of the black box mechanism behind the random forest

method is of greatest importance. Nowadays, machine-learning models are often deployed to
production without a proper understanding of why exactly the algorithms make the decisions
they do. As these new tools become more relevant in everyday life, model interpretability
becomes one of the most important problems in machine learning these days. In particular,
regarding the use of RF as a forecasting device, it is critical to comprehend the key variable
interactions that are providing the predictive accuracy.
One attempt to tackle this issue is to compute the so-called “variable importance measures”,

by attributing scores to the variables, which reflect their relative importance in the overall model
accuracy. Such measures can be used to identify relevant features, perform variable selection and
quantify the prediction strength of each variable, allowing one to rank the variables according
to their predictive abilities. See Hastie et al. (2009, chapter 15) for further details.35

In this paper, we provide a global insight into the random forest’s behavior by computing
two variable importance measures, based on the “permutation” approach of Altmann et al.
(2010) and on the “impurity-corrected”method of Nembrini et al. (2018). Moreover, we carry
out the Janitza et al. (2018) hypothesis test of no association between the predictor and the
dependent variable for both measures. As result, for each forecast horizon, we build variable
importance graphs (showing the top 20 most important variables) as well as word clouds for
random forests.
The permutation method, also known as the mean decrease in accuracy, is one of the

most common variable importance measures, and it is computed from the change in prediction
accuracy when removing any association between the dependent variable (response) and a
given regressor (i.e., feature or predictor), with large changes indicating that the predictor
is important.36 One disadvantage of the permutation approach is to produce biased outcomes
when predictors are highly correlated. In addition, adding a correlated variable to the RF model
can decrease the importance of another variable. Furthermore, the permutation importance is
very computationally intensive in the case of high dimensional data.
Alternative importance measures based on impurity (i.e., how well the regression trees split

the variables) are popular because they are simple, fast to compute and can be more robust
to data perturbations compared with those based on permutation.37 However, the impurity
importance is known to be biased towards variables with more categories or more possible split

35There are many other ways on the lookout for opening the ML black box. Just to mention a few examples:
(i) Partial Dependence Plots (PDP), which show the marginal effect of a given predictor on the outcome of a
ML model; and (ii) Surrogate Models (SM), which are auxiliary interpretable models (e.g., linear regression),
built to approximate the predictions of a ML model in order to understand the black box outcomes by analyzing
(and interpreting) the surrogate model’s responses.
36According to Nembrini et al. (2018): “To calculate the permutation importance of the variable xi, its original

association with the response y is broken by randomly permuting the values of all individuals for xi. With this
permuted data, the tree-wise out-of-bag (OOB) estimate of the prediction error is computed. The difference
between this estimate and the OOB error without permutation, averaged over all trees, is the permutation
importance of the variable xi. This procedures is repeated for all variables of interest x1,. . . ,xp. The larger the
permutation importance of a variable, the more relevant the variable is for the overall prediction accuracy.”
37Recall that random forest consists of a number of decision trees. Every node in the trees is a condition on

a given variable, and it is designed to optimally split the dataset into two parts so that overall model accuracy
can be improved. The measure based on which the (locally) optimal condition is chosen is called impurity (or
variance, in the case of the regression trees). This way, one can compute how much each variable reduces the
weighted impurity in a tree. For a forest, the impurity reduction from each variable can be averaged and a
ranking of variables can be constructed according to this importance measure.
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points. Also, when the dataset has two (or more) correlated variables, any of them can be
selected as predictor. Nevertheless, once one of these (correlated) variables is used as predictor,
the importance of others is significantly reduced, since the impurity these other variables can
decrease is already reduced by the first selected variable.38 In this sense, Nembrini et al.(2018)
propose the “corrected impurity”importance measure, which is unbiased in terms of the number
of categories and category frequencies and is computationally effi cient (i.e., almost as fast as
the standard impurity importance and much faster than the permutation importance).
Besides building a ranking of importance, it is also crucial to statistically check whether

a given predictor is important (or not) in respect to the depend variable of the RF model.
According to Janitza et al. (2018), the variable importance depends on many different factors,
including aspects related to the data (e.g., correlations, signal-to-noise ratio or the total number
of variables) as well as on the random forest specific factors (such as the choice of the number of
randomly drawn candidate predictor variables for each split node). Therefore, there is no uni-
versally applicable threshold that can be used to statistically discriminate between important
and non-important variables. Nonetheless, several hypothesis-testing approaches have been
developed. The permutation-based tests entail the repeated computation of random forests.
While for low-dimensional settings those approaches might be computationally tractable, for
high-dimensional models (e.g., including thousands of predictors), computing time might be-
come enormous. In this sense, Janitza et al. (2018) propose a variable importance test that
is appropriate for high-dimensional data where many variables do not carry any information
related to the dependent variable. According to the authors, the testing approach, based on
cross-validation procedures, shows at least comparable power at a substantially smaller com-
putation time.

Appendix B: Further details on quantile regression forest

The QRF algorithm, proposed by Meinshausen (2006), for computing the estimate of the con-
ditional distribution function, can be summarized as follows:

(a) grow trees T (θk), for k = 1, ..., K , as in random forests. However, for every leaf (on
each tree) consider all observations in the leaf, not just their average.

(b) for a given X = x, drop x down all trees. Compute the weight wi(x, θk) of observation
i ∈ {1, ..., n} for every tree as in (33). Compute weight wi(x) for every observation i ∈ {1, ..., n}
as an average over wi(x, θk), for all k = 1, ..., K, as in (35).

(c) compute the estimate of the distribution function as in (16) for all y ∈ R, using the
weights from the previous step (b).

38This is not an issue in respect to model forecasting, but regarding model interpretation, it can lead to the
incorrect conclusion that one of the variables is a strong predictor while the others (correlated variables) are
not important, while, in reality, they are all close in respect to their statistical relationship with the dependent
variable. This effect can be attenuated by using random variable selection at each node (instead of using all
possible variables) when growing a tree within the random forest setup.
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Appendix C: Data

Table C1 - List of macroeconomic and financial variables

Series Category Name So urc e Or ig ina l

1 Inflation IPCA (consumer price index) IBGE % p.m.

2 Inflation IPCA (consumer price index, market prices) IBGE % p.m.

3 Inflation IPCA (consumer price index, regulated and monitored prices) IBGE % p.m.

4 Inflation IPCA (consumer price index, tradables) BCB % p.m.

5 Inflation IPCA (consumer price index, nontradables) BCB % p.m.

6 Inflation IPC­Fipe (consumer price index) Fipe % p.m.

7 Inflation IPC­Br (consumer price index) FGV % p.m.

8 Inflation IPA­DI (w holesale price index) FGV % p.m.

9 Inflation IGP­DI (general price index) FGV % p.m.

10 Inflation IGP­M (general price index) FGV % p.m.

11 Inflation IGP­10 (general price index) FGV % p.m.

12 Inflation INCC (national index of building costs) FGV % p.m.

13 Inflation Core IPC­Br (core inflation) FGV % p.m.

14 Inflation Core IPCA ­ Exclusion EX0 (core inflation) BCB % p.m.

15 Inflation Core IPCA ­ Exclusion EX1 (core inflation) BCB % p.m.

16 Inflation Core IPCA ­ Double Weight (core inflation) BCB % p.m.

17 Inflation Core IPCA ­ Trimmed Means Smoothed (core inflation) BCB % p.m.

18 Inflation Break Even Inflation (IPCA, 1 year) Anbima % p.a.

19 Inflation Break Even Inflation (IPCA, 2 years) Anbima % p.a.

20 Inflation Break Even Inflation (IPCA, 5 years) Anbima % p.a.

21 Interest rates Nominal policy interest rate (Selic) BCB % p.a.

22 Interest rates Nominal policy interest rate (long­term interest rate, TJLP) BCB % p.a.

23 Interest rates Nominal market interest rate (prefixed, 1 year) Anbima % p.a.

24 Interest rates Nominal market interest rate (prefixed, 2 years) Anbima % p.a.

25 Interest rates Nominal market interest rate (prefixed, 5 years) Anbima % p.a.

26 Interest rates Nominal market interest rate (Sw ap Pré­DI, 1 year) Reuters % p.a.

27 Interest rates Real market interest rate (Sw ap Pré­DI, 1 year, deflator: Focus 12m infl.expect.) Reuters, BCB % p.a.

28 Interest rates Real market interest rate (indexed IPCA, 1 year) Anbima % p.a.

29 Interest rates Real market interest rate (indexed IPCA, 2 years) Anbima % p.a.

30 Interest rates Real market interest rate (indexed IPCA, 5 years) Anbima % p.a.

31 Money Monetary base BCB R$ thousand

32 Money Money supply (currency outside banks) BCB R$ thousand

33 Money Demand deposits BCB R$ thousand

34 Money Savings deposits BCB R$ thousand

35 Money M1 BCB R$ thousand

36 Money M2 BCB R$ thousand

37 Money M3 BCB R$ thousand

38 Money M4 BCB R$ thousand

39 Banking sector Credit spread (nonearmarked credit rate ­ Selic rate) BCB basis po ints

40 Banking sector Non­Performing Loans (NPL) of total credit BCB %

41 Banking sector Loan­to­Deposit ratio (LTD) BCB Units

42 Banking sector Reserve requirements ratio (f inancial inst. reserve requirements / total deposits) BCB Units

43 Banking sector Real grow th of nonearmarked credit operations outstanding BCB R$ million

44 Capital markets Initial Public Offers (IPOs) accumulated in 12 months (Brazil) BCB R$ million

45 Capital markets Net equity of stock funds (Brazil) BCB R$ million

46 Capital markets Net equity of f inancial investment funds (Brazil) BCB R$ million

47 Capital markets Ibovespa (Brazil) Reuters Index

48 Capital markets MSCI emerging countries (EM, US$) Reuters Index

49 Capital markets MSCI developed countries (World, US$) Reuters Index

50 Risk premium Embi+Br (Emerging Markets Bond Index Plus Brazil, spread) Reuters basis po ints

51 Risk premium Embi+composite (average spread of 16 emerging countries) Reuters basis po ints

52 Risk premium CDS (Credit Default Sw ap, Brazil 5 years) Reuters basis po ints

53 Exchange rates FX­rate (nominal exchange rate, R$/US$) BCB Units

54 Exchange rates REER (Real effective exchange rate, IPA­13 currencies) Funcex Index

55 Global Economy U.S. dollar index (DXY, geometric average of 6 currencies in respect to US$) Reuters Index

56 Global Economy U.S. Treasury 2 years (Treasury nominal interest rates) Reuters % p.a.

57 Global Economy U.S. Treasury 10 years (Treasury nominal interest rates) Reuters % p.a.

58 Global Economy U.S. Treasury 5 years TIPS (Treasury Inflation­Protected Securities) Reuters % p.a.

59 Global Economy CRB all commodities index Reuters Index

60 Global Economy Oil price (WTI, Oklahoma­USA) Reuters US$/barrel

61 Global Economy VIX CBOE volatility index (30­day expected volatility of the S&P500) Reuters Index
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Table C1 - List of macroeconomic and financial variables (cont.)

Series Category Name So urc e Or ig ina l

62 Exterior Import price index Funcex Index

63 Exterior Import quantum index Funcex Index

64 Exterior Export price index Funcex Index

65 Exterior Export quantum index Funcex Index

66 Exterior Imports (FOB, total) M DIC/Secex US$

67 Exterior Exports (FOB, total) M DIC/Secex US$

68 Exterior Exports (FOB, primary goods) M DIC/Secex US$

69 Exterior International reserves (total) BCB US$ million

70 Exterior Current account (monthly, net) BCB US$ million

71 Exterior Current account (accumulated in 12 months, in relation to GDP) BCB %

72 Exterior FDI (Foreign Direct Investment, accumulated in 12 months) BCB US$ million

73 Exterior FPI (Foreign Portfolio Investment, accumulated in 12 months) BCB US$ million

74 Economic activity IBC­BR (central bank economic activity index) BCB Index

75 Economic activity GDP (accumulated in the last 12 months, current prices) BCB R$ million

76 Economic activity Consumer confidence index Fecomercio Index

77 Labor Unemployment rate (open) IBGE %

78 Labor Registered employees index (w holesale and retail trade) M TE Index

79 Labor Registered employees index (construction sector) M TE Index

80 Labor Hours w orked in production (São Paulo) Fiesp Index

81 Labor Real overall w ages (industry, São Paulo) Fiesp Index

82 Industry Industrial production (total) IBGE Index

83 Industry Industrial production (mineral extraction) IBGE Index

84 Industry Industrial production (manufacturing industry) IBGE Index

85 Industry Industrial production (capital goods) IBGE Index

86 Industry Industrial production (intermediate goods) IBGE Index

87 Industry Industrial production (consumer goods) IBGE Index

88 Industry Industrial production (durable goods) IBGE Index

89 Industry Industrial production (semidurable and nondurable goods) IBGE Index

90 Industry Installed capacity utilization (São Paulo) Fiesp %

91 Industry Capacity utilization (manufacturing industry, FGV) FGV %

92 Industry Steel production BCB Index

93 Industry Vehicles production (total) Anfavea Units

94 Industry Passenger cars and light commercial vehicles production Anfavea Units

95 Industry Truck production Anfavea Units

96 Industry Bus production Anfavea Units

97 Industry Production of agricultural machinery (total) Anfavea Units

98 Sales Sales volume index in the retail sector (total) IBGE Index

99 Sales Sales volume index in the retail sector (fuel and lubricants) IBGE Index

100 Sales Sales volume index in the retail sector (hyperm., superm., food, bever. and tobacco) IBGE Index

101 Sales Sales volume index in the retail sector (textiles, clothing and footw ear) IBGE Index

102 Sales Sales volume index in the retail sector (furniture and w hite goods) IBGE Index

103 Sales Sales volume index in the retail sector (vehicles and motorcycles, spare parts) IBGE Index

104 Sales Sales volume index in the retail sector (hyperm. and supermarkets) IBGE Index

105 Sales Vehicle sales (total) Anfavea Units

106 Sales Domestic vehicle sales Anfavea Units

107 Energy Electric energy consumption (commercial) Eletrobras GWh

108 Energy Electric energy consumption (residential) Eletrobras GWh

109 Energy Electric energy consumption (industrial) Eletrobras GWh

110 Energy Electric energy consumption (other) Eletrobras GWh

111 Energy Electric energy consumption (total) Eletrobras GWh

112 Public sector Primary result of  consolidated public sector (current monthly f low s) BCB R$ (million)

113 Public sector Primary result of  consolidated public sector (f low s accum. in 12 months) BCB R$ (million)

114 Public sector Primary result of  consolidated public sector (f low  accum. in 12 months, % GDP) BCB %

115 Public sector Net public debt (total, federal government and central bank, % GDP) BCB %

116 Public sector Net public debt (internal, federal government and central bank, % GDP) BCB %

117 Public sector Net public debt (external, federal government and central bank, % GDP) BCB %

118 Public sector Net public debt (total, consolidated public sector, balances in reais) BCB R$ (million)

119 Public sector Net public debt (internal, consolidated public sector, balances in reais) BCB R$ (million)

120 Public sector Net public debt (external, consolidated public sector, balances in reais) BCB R$ (million)
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Appendix D: Results for Lasso and Elastic Net

Figure D1 - Lasso and Elastic Net variable selection (h = 3, 12)

Figure D2 - Average number of variables selected by lasso and elastic net
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Figure D3 - Lasso (left) and Elastic Net (right) word clouds for h = 1, 2, 3

Appendix E: Results for selected horizons

Figure E1 - Inflation and forecasts for selected horizons (h = 3, 12)

Figure E2 - Scatterplot of relative forecast variance and squared forecast bias (h = 3, 12)

Notes: The y-axis and x-axis represent relative forecast variance and squared forecast bias, computed as the difference between

the forecast variance (squared bias) of the considered approach and the forecast variance (squared bias) of the RW-AO.

Each point on the red dotted line represents a forecast with the same MSE as the RW-AO; points to the right are

forecasts outperformed by the RW-AO, and points to the left represent forecasts that outperform the RW-AO.
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