Shadow Interest Rate

Jing Cynthia Wu

Notre Dame and NBER

Coauthors: Dora Xia (BIS) and Ji Zhang (Tsinghua)
ZLB: monetary policy

Before ZLB, policy rates are the tool for monetary policy and its research

- Central banks lower policy rates to stimulate aggregate demand
- Economists rely on them to study monetary policy

Policy rates at ZLB

- Japan, US, Europe
- Unconventional policy tools
 - large-scale asset purchases (QE)
 - lending facilities
 - forward guidance
 - negative interest rate policy
ZLB: economic models

Term structure models

- Benchmark Gaussian ATSM
 - ZLB: Yields are unconstrained in the model, but constrained in the data
- My papers: Wu and Xia (JMCB 2016), Wu and Xia (JAE forthcoming)
 - respect the ZLB
ZLB: economic models

Term structure models

- Benchmark Gaussian ATSM
 - ZLB: Yields are unconstrained in the model, but constrained in the data
- My papers: Wu and Xia (JMCB 2016), Wu and Xia (JAE forthcoming)
 - respect the ZLB

New Keynesian models

- Benchmark models: no unconventional monetary policy
- My papers: Wu and Zhang (JEDC 2019), Wu and Zhang (JIE 2019)
 - incorporate unconventional monetary policy
 - Key feature: tractable
Common theme: shadow rate

Black (1995)

\[r_t = \max(s_t, r) \]

Sources: Board of Governors of the Federal Reserve System and Wu and Xia (2015)
Wu and Xia (JMCB 2016) shadow rate

Wu-Xia shadow rates for US, Euro area, and UK are available at
- Atlanta Fed
- Haver Analytics
- Thomson Reuters
- Bloomberg

Wu-Xia shadow rate has been discussed by
- **Policy makers:** then Governor Powell (2013), Altig (2014) of the Atlanta Fed, Hakkio and Kahn (2014) of the Kansas City Fed
Outline

1. Wu-Xia shadow rate: Wu and Xia (JMCB 2016)

2. Empirical evidence: Wu and Xia (JMCB 2016), Wu and Zhang (JEDC 2019)

Shadow rate

Black (1995):

\[r_t = \max(s_t, r) \]

The shadow rate is affine

\[s_t = \delta_0 + \delta_1' X_t \]

- \(X_t \): 3 factors
Bond pricing

Physical dynamics:

\[X_{t+1} = \mu + \rho X_t + \sum \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim N(0, I). \]

Risk-neutral \(Q \) dynamics:

\[X_{t+1} = \mu^Q + \rho^Q X_t + \sum \varepsilon^Q_{t+1}, \quad \varepsilon^Q_{t+1} \sim N(0, I). \]

Pricing equation

\[P_{nt} = \mathbb{E}^Q_t [\exp(-r_t)P_{n-1,t+1}] \]

Yield

\[y_{nt} = -\frac{1}{n} \log(P_{nt}) \]

Forward rate from \(t + n \) to \(t + n + 1 \)

\[f_{nt} = (n + 1)y_{n+1,t} - ny_{nt} \]
Forward rates

Our approximation

\[f_{nt} \approx r + \bar{\sigma}_n \Phi \left(\frac{a_n + b'_n X_t - r}{\bar{\sigma}_n} \right) \]

where \(g(z) = z\Phi(z) + \phi(z) \).

Forward rate in GATSM

\[f_{nt} = a_n + b'_n X_t. \]
Property of \(g(.) \)

\[
\begin{align*}
f_{nt}^{SR} &\approx r, \text{ at the ZLB} \\
&\approx a_n + b'_n X_t = f^{G}_{nt}, \text{ when interest rates are high}
\end{align*}
\]
State space form

State equation

\[X_{t+1} = \mu + \rho X_t + \sum \varepsilon_{t+1}, \varepsilon_{t+1} \sim N(0, I) \]

Observation equation

\[f_{nt}^o = r + \sigma_n^Q g \left(\frac{a_n + b'_n X_t - r}{\sigma_n^Q} \right) + \eta_{nt}, \eta_{nt} \sim N(0, \omega) \]

We apply extended Kalman filter for estimation
Model fit

Figure: Average forward curve in 2012

Log likelihood values

- SRTSM: 850; GATSM: 750
Approximation error

Average absolute approximation error between 1990M1 and 2013M1 (in basis points)

<table>
<thead>
<tr>
<th></th>
<th>3M</th>
<th>6M</th>
<th>1Y</th>
<th>2Y</th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>forward rate error</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.13</td>
<td>0.69</td>
<td>1.14</td>
<td>2.29</td>
</tr>
<tr>
<td>forward rate level</td>
<td>346</td>
<td>357</td>
<td>384</td>
<td>435</td>
<td>551</td>
<td>600</td>
<td>636</td>
</tr>
<tr>
<td>yield error</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.24</td>
<td>0.42</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Outline

1. Wu-Xia shadow rate: Wu and Xia (JMCB 2016)

2. Empirical evidence: Wu and Xia (JMCB 2016), Wu and Zhang (JEDC 2019)

Evidence 1: taper tantrum

- May 22, 2013: Bernanke told Congress Fed may decrease the size of QE

Shift in shadow rate summarizes this effect
Evidence 2: shadow rate and Fed’s balance sheet

Correlation

▶ QE1 - QE3: -0.94
Evidence 3: structural break test in VAR

Wu and Xia (JMCB 2016): structural break test

- $p = 0.29$ for s_t
- $p = 0.0007$ for EFFR
Evidence 4: shadow rate Taylor rule

$$s_t = \beta_0 + \beta_1 s_{t-1} + \beta_2 (y_t - y_t^n) + \beta_3 \pi_t + \varepsilon_t$$

Full sample

![Graph showing fed funds rate and shadow rate for the full sample with Taylor rule implied.]

Post-85 sample

![Graph showing fed funds rate and shadow rate for the post-85 sample with Taylor rule implied.]

No structural break

- F statistics: 0.48 & 1.42
- Critical values: 2.64 & 2.68
Evidence 5: shadow rate and private rates

- private rates are the relevant rates for agents and the economy
- correlation with SR: 0.8
- private rate = $s_t + rp$
Summary

Shadow rate summarizes unconventional monetary policy
 ▶ Taper tantrum
 ▶ Fed’s balance sheet

There is no structural break in
 ▶ VAR
 ▶ shadow rate Taylor rule

Private rates
 ▶ are the relevant interest rates for economic agents
 ▶ respond to unconventional monetary policy
 ▶ the shadow rate is a sensible summary
Outline

1. Wu-Xia shadow rate: Wu and Xia (JMCB 2016)

2. Empirical evidence: Wu and Xia (JMCB 2016), Wu and Zhang (JEDC 2019)

Shadow rate New Keynesian model

Definition 1

The shadow rate New Keynesian model consists of the shadow rate IS curve

\[y_t = -\frac{1}{\sigma} (s_t - \mathbb{E}_t \pi_{t+1} - s) + \mathbb{E}_t y_{t+1}, \]

New Keynesian Phillips curve

\[\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa (y_t - y^n_t), \]

and shadow rate Taylor rule

\[s_t = \phi_s s_{t-1} + (1 - \phi_s) [\phi_y (y_t - y^n_t) + \phi_\pi \pi_t + s]. \]
Outline

1. Wu-Xia shadow rate: Wu and Xia (JMCB 2016)
2. Empirical evidence: Wu and Xia (JMCB 2016), Wu and Zhang (JEDC 2019)
Taylor rule

Definition

- r_t: observed policy rate
- s_t: Taylor rule implied

Cases

- Normal times: $r_t = s_t$
- ELB:
 \[r_t = \lambda s_t \]

 - $\lambda = 0$: Standard model
 - $\lambda = 1$: UMP behaves the same as normal times; Wu and Zhang (2017)
 - $0 < \lambda < 1$: partially active UMP
 - $\lambda > 1$: hyper active UMP
VAR: how large is \(\lambda \)?

Model implication for a negative TFP shock

![Graph showing the impact of ELB and ELB + UMP on output after a negative TFP shock. The graph illustrates the response of output (y) in percentage terms to different monetary policy regimes over time.]
VAR: how large is λ?

- 2 variables: growth rate of labor productivity and per-capita hours similar to Debortoli, Galí, and Gambetti (2016)
- Identification: Cholesky decomposition
- quarterly VAR(1)

Benefits of the VAR

- Simple and robust
- Does not depend on any one shadow rate
IRF of output to a productivity shock: US

Conclusion: $\lambda \approx 1$
IRF of output to a productivity shock: Euro area

Conclusion: $0 < \lambda < 1$
IRF of output to a productivity shock: UK

Conclusion: $\lambda_{US} \approx 1 > \lambda_{Euro} > \lambda_{UK} > 0$
Taylor rule: quantify λ

Why Taylor rule? It gives us a quantitative value of λ

Basic idea: compare what has been done at the ELB with the interest rate implied by the historical Taylor rule
United States

- pre-ELB: 1985Q2 - 2007Q4, ELB: 2009Q1 - 2015Q4
- Simple method: 1.02
- Iterative method: 1.12

Vary pre-ELB sample: \(t_0 \in \{1982Q1 : 1990Q1\}, \ t_1 \in \{2003Q1 : 2008Q4\} \)

Median (std): simple 1.03 (0.065), iterative 1.19 (0.45)
Euro area and UK

- Euro area: simple 0.998(0.031), iterative 0.63(1.07)
- UK: simple 0.98(0.10), iterative 0.39(4.10)

Again, we conclude $\lambda_{US} \approx 1 > \lambda_{Euro} > \lambda_{UK} > 0$
Empirically, we find

\[\lambda_{US} \approx 1 > \lambda_{Euro} > \lambda_{UK} > 0 \]
\[b_t^G = b^G - \frac{S_t}{\pi} \]

THE FED'S BOND HOLDINGS AT THE TIME IN QUESTION

THE FED'S BOND HOLDINGS DURING NORMAL TIMES

CALCULATION OF HOW THE SHADOW RATE RESPONDS WHEN THE FED ADJUSTS ITS HOLDINGS

SHADOW FED FUNDS RATE

FED FUNDS RATE MONITOR 5000

FED FUNDS RATE MONITOR 5000

THE ECONOMY

WORKING JUST FINE

OUT OF ORDER

INSERT SHADOW RATE

THE FED'S BOND HOLDINGS

THE TIME IN QUESTION

NORMAL TIMES

ADJUSTS ITS HOLDINGS

SHADOW FED FUNDS RATE

FED FUNDS RATE MONITOR 5000

FED FUNDS RATE MONITOR 5000

THE ECONOMY

WORKING JUST FINE

OUT OF ORDER

INSERT SHADOW RATE
Shadow rate

FAVAR

Replace the fed funds rate with s_t in Bernanke, Boivin, and Eliasz (2005)

$$Y_t^m = a_m + b_x x_t^m + b_s s_t + \eta_t^m, \quad \eta_t^m \sim N(0, \Omega)$$

Y_t^m: 97 economic variables from 1960 to 2013

x_t^m: 3 underlying macro factors

Factor dynamics:

$$x_t^m = \mu^x + \rho^{xx} X_{t-1}^m + u_t^x$$

$$+ \mathbb{1}_{(t<\text{December 2007})} \rho_1^{xs} S_{t-1} + \mathbb{1}_{(\text{December 2007} \leq t \leq \text{June 2009})} \rho_2^{xs} S_{t-1} + \mathbb{1}_{(t>\text{June 2009})} \rho_3^{xs} S_{t-1}$$

$\mathbb{1}$: monthly VAR(13)

Null hypothesis

$$H_0: \rho_1^{xs} = \rho_3^{xs}$$
Robustness

<table>
<thead>
<tr>
<th>Method</th>
<th>p-value for $\rho_1^{xs} = \rho_3^{xs}$</th>
<th>p-value for $\rho_1^{sx} = \rho_3^{sx}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.29</td>
<td>1.00</td>
</tr>
<tr>
<td>A1 estimate r</td>
<td>0.18</td>
<td>1.00</td>
</tr>
<tr>
<td>A2 2-factor SRTSM</td>
<td>0.13</td>
<td>0.97</td>
</tr>
<tr>
<td>A3 Fama-Bliss</td>
<td>0.38</td>
<td>1.00</td>
</tr>
<tr>
<td>A4 5-factor FAVAR</td>
<td>0.70</td>
<td>1.00</td>
</tr>
<tr>
<td>A5 6-lag FAVAR</td>
<td>0.09</td>
<td>0.98</td>
</tr>
<tr>
<td>A5 7-lag FAVAR</td>
<td>0.19</td>
<td>0.97</td>
</tr>
<tr>
<td>A5 12-lag FAVAR</td>
<td>0.22</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Samples

pre-ELB and ELB samples

- US: 1985Q2 - 2007Q4 and 2009Q1 - 2015Q4
- Euro area: 1999Q1 - 2009Q1 and 2009Q2 - 2017Q4
- UK: 1993Q1 - 2009Q1 and 2009Q2 - 2017Q4