Debt sustainability and fiscal space in a heterogeneous Monetary Union: normal times vs the ZLB

Javier Andrés, Pablo Burriel and Wenyi Shen

Universidad de Valencia, Banco de España and Oklahoma State University

CEMLA (online), 7-08-2020
High gov. debt/GDP in EMU members raise concerns about debt sustainability:

- Is debt sustainability different for a EMU member? Normal times vs ZLB
- Are there spillover effects on debt sustainability within EMU?
- Are effects of fiscal consolidation & coordination different within EMU?
Structure of presentation

1. Introduction
2. Preview of results
3. Model
4. Fiscal limit
5. Long-run fiscal consolidation
6. Short-run discretionary fiscal policy
7. Conclusions
- **Standard Monetary union DSGEs** assessing policy effects do not account for default risks: Gali & Monacelli (2008), Ferrero (2009).

- **Debt sustainability** literature use DSGEs with exogenous risk premia: Mendoza and Oviedo (2004), Corsetti et al. (2013).

- **Default in EMU** is more likely the result of accidents, than strategic.
• **Normal times:** Risk channel matters significantly when debt is >90%.
 - Makes long run consolidation to 60% costly, with spillovers to EMU.
 - Reduces significantly multiplier of discretionary fiscal policy.
 - Endogenous risk premium explains 40% of that reduction.

• **ZLB:** Risk channel becomes muted
 - Consolidation generates deflation expectations ⇒ ↑ real int. rate
 - Policy coordination favors expansion in EMU.
Model highlights

Two-country New Keynesian model (Benigno & Benigno (2005)), modified for:

1. Periphery’s High debt is subject to default risk, Core with low debt.
2. Endogenous debt sustainability risk: distance to fiscal limit (Bi (2012))

Other characteristics:

- Total home bias in debt & gov spending.
- Distortionary taxes on income.
- Calibration: Periphery (Spain) & Core (Germany).
Main Mechanism:
1) RISKY PERIPHERY’S GOVERNMENT DEBT

- Periphery’s government debt \((b_{t-1}) \) is subject to default risk, with haircut \(\delta \) (\(= 0.3 \) annually, Bi (2012)) and risky yield \(R_t \)

\[
\delta_t = \begin{cases}
0 & \text{if } b_{t-1} < B(S_t) \\
\delta & \text{if } b_{t-1} \geq B(S_t)
\end{cases}
\]

where \(B(S_t) \) is a random draw from fiscal limit distribution
Main Mechanism:
1) RISKY PERIPHERY’S GOVERNMENT DEBT

- Periphery’s government debt \((b_{t-1})\) is subject to default risk, with haircut \(\delta (= 0.3 \text{ annually, Bi (2012)})\) and risky yield \(R_t\)

\[
\delta_t = \begin{cases}
0 & \text{if } b_{t-1} < \mathcal{B}(S_t) \\
\delta & \text{if } b_{t-1} \geq \mathcal{B}(S_t)
\end{cases}
\]

where \(\mathcal{B}(S_t)\) is a random draw from fiscal limit distribution

- Periphery household’s Euler eq includes risky yield & expected haircut:

\[
\lambda_t = \beta E_t \frac{R_t(1 - \delta_{t+1})\lambda_{t+1}}{\pi_{t+1}}
\]
Main Mechanism:

1) RISKY PERIPHERY’S GOVERNMENT DEBT

- Periphery’s government debt \((b_{t-1})\) is subject to default risk, with haircut \(\delta = 0.3\) annually, \(Bi (2012)\) and risky yield \(R_t\)

\[
\delta_t = \begin{cases}
0 & \text{if } b_{t-1} < \mathcal{B}(S_t) \\
\delta & \text{if } b_{t-1} \geq \mathcal{B}(S_t)
\end{cases}
\]

where \(\mathcal{B}(S_t)\) is a random draw from fiscal limit distribution

- Periphery household’s Euler eq includes risky yield & expected haircut:

\[
\lambda_t = \beta E_t \frac{R_t (1 - \delta_{t+1}) \lambda_{t+1}}{\pi_{t+1}}
\]

- Core gov debt is NOT risky: \(\delta^* = 0, R^* = R_t^{ECB}\)
Main Mechanism:

2) PERIPHERY’S DEBT SUSTAINABILITY RISK = FISCAL LIMIT

Debt sustainability defined as distance to stochastic Fiscal Limit ($\mathcal{B}(S_t)$)

- Fiscal limit is max debt that can be supported without default.
- Iterate on the gov. budget constraint, assuming no default & tax rate $\tau^{\text{max}} = 0.435$ (Spain’s marginal rate)

\[
\mathcal{B}(S_t) = \beta_t^p \pi(S_t) \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j \frac{\lambda(S_{t+j})}{\lambda(S_t)} \frac{\tau^{\text{max}} y(S_{t+j}) - g_{t+j}}{\text{tot}(S_{t+j})^{1-\eta}}
\]

where state of the economy $S_t = \{g_t, g^*_t, \text{tot}_{t-1}\}$
Main Mechanism:

2) PERIPHERY'S DEBT SUSTAINABILITY RISK = FISCAL LIMIT

\[\mathcal{B}(S_t) = \beta_p^t \pi(S_t) E_t \sum_{j=0}^{\infty} \beta^j \frac{\lambda(S_{t+j})}{\lambda(S_t)} \frac{\tau^{\text{max}} y(S_{t+j}) - g_{t+j}}{\text{tot}(S_{t+j})^{1-\eta}} \]

- **Endogenous**: depends on state of economy \((S_t = \{g_t, g_t^*, \text{tot}_{t-1}\})\).
- **Captures private sector's perception**: HH's discount factor.
- **\(\beta_p^t\)** = **stochastic political risk** → brings risk premium closer to evidence (in 2018 Spain had debt/y=97% & spread≈100bp).
- **FL distribution** simulated using Markov Chain Monte Carlo method.
Periphery’s Fiscal Limit:
DISTRIBUTION COMPUTED USING B(St)

- FL approx symmetric with mean = 125\%, sd = 24
- Prob of default = 0 for B/Y < 80\% & = 1 for B/Y > 200\%
- Between 80-180\%: ↑B/Y → ↑default Prob
Periphery’s FL MP or ZLB.

10% CHANGE IN \(g \) OR \(g^* \)

NORMAL MP: \(\uparrow \) deficit, \(Y \), \(\pi \) \(\rightarrow \) \(\downarrow \) FL (shift UP/LEFT)

MP channel weak: small \(\uparrow \) \(Y^{EA} \), \(\pi^{EA} \) \(\rightarrow \) small \(\uparrow \) \(R^{ECB} \) \(\rightarrow \) \(\downarrow \) FL

\(\Rightarrow \) Both \(\downarrow \) FL (shift UP/LEFT) \(\rightarrow \) \(\uparrow \) default prob (3% B/Y=125%)

ZLB: NO MP channel \(\Rightarrow \) SMALLER effect of \(\Delta g \), \(g^* \) on FL
Fiscal policy exercises.

1. Peripheries’ long-run consolidation from B/Y=100 to 60%
2. Discretionary short-run fiscal policy (transitory $\Delta g, g^*$)

- Under two regimes for Monetary Policy:
 - Normal times
 - Zero lower bound
Policy scenario 1:

Peripherys’ long-run consolidation from B/Y=100 to 60%

What we do: set Periphery’s debt at 100% & let fiscal/monetary rules bring economy back to 60%
Periphery’s long-run Consolidation:
B/Y FROM 100 TO 60%

- High debt requires significant ↑ tax, ↓ B/Y slowly, with high risk premium
- Long and costly process (↓ Y, C & L), spillover to Core (↓ Y*).
- With NO default lower cost of financing. → smaller Y loss
Frontloaded ↓ risk premium & long-run cost.

Initial greater ↓Y due to flex wages: stronger ↑tax→↑W→↑R^ECB

GDP loss from frontloading is lower when FL is Endogenous.
Policy scenario 2:

Discretionary short-run fiscal policy (transitory Δg, g^*)

Monetary Policy in **normal times regime**

IRFs show marginal effects with respect to long-run consolidation.
Discretionary fiscal policy: 1% rise in g

- With high debt, $g \uparrow \rightarrow \downarrow FL, \uparrow \text{risk premium} \rightarrow \uparrow R/\pi$
- Initial rise in Y, but falls after 10q
- MP channel weak: $\uparrow \pi^{EA} \rightarrow \text{small} \uparrow R^{ECB} \rightarrow \downarrow FL$
Risk premium channel becomes relevant for debt > 90%
Below 90% periphery is closer to low-debt Core
When FL is Exogenous RP does not jump↑, rises only as ↑debt
When debt is not risky, RP is constant, Y doesn’t fall.
Policy scenario 2:

Discretionary short-run fiscal policy (transitory Δg, g^*)

Monetary Policy in **Zero Lower Bound** regime
ZLB, Discretionary FP: 1% rise in g

Under ZLB the RP channel is muted:

- $\uparrow g \rightarrow \downarrow FL \rightarrow \uparrow RP \rightarrow \text{initially } \uparrow Y, \inf$
- ZLB \rightarrow constant R, $\uparrow \inf \rightarrow \downarrow \frac{R}{P} \rightarrow \uparrow FL \rightarrow \downarrow RP$

\implies net effect \rightarrowconstant RP \rightarrow multiplier \approx No default case
At ZLB \rightarrow NO MP channel \rightarrow RP constant \rightarrow best is $\uparrow g^*, g$.
Risk premium reduces multiplier by 76bp, 29bp due to endo FL
Spillover to EMU reduces multiplier by 35bp, 13bp due to endo FL.
ZLB kills RP channel \rightarrow multiplier \approx No default case
Conclusions:

- **Normal times:** Risk channel matters significantly when debt is $>90\%$.
 - Makes long run consolidation to 60% costly, with spillovers to EMU.
 - Reduces significantly multiplier of discretionary fiscal policy.
 - Endogenous risk premium explains 40% of that reduction.

- **ZLB:** Risk channel becomes muted
 - Consolidation generates deflation expectations $\Rightarrow \uparrow$ real int. rate
 - Policy coordination favors expansion in EMU.
Further work

- Calibrate impact of Covid-crisis on Fiscal limit
- Effect of productive government spending
- Effect of structural reforms.
Further work: Impact of Covid on FL

Cumulative density function (cdf) 10% Δ Periphery’s g

According to pre-crisis FL (movement along the curve). The increase in public debt (ES: 95%->120%) augments prob of default by 30bp. But the increase in gov spending (by 4% of GDP) also shifts FL to the LHS. Increasing prob of default for all debt levels.
An increase of g by 4% of GDP increases risk premium by 100bp under a Taylor rule, but leaves it unchanged under the ZLB
Further work: Gov Productive spending

- If part of G is productive, $y = Af(G)L$, an increase in G augments productivity, increasing y and FL.
- EU plans to finance national governments investments may help high debt countries.
Further work: Structural reforms

Impact of change in prod

Structural reforms help fiscal sustainability in 2 ways:
- Increase productivity A in $y = Af(G)L$, increasing y and FL.
- Fiscal reforms may push up the max tax rate and increase FL

$$B(S_t) = \beta^p_t \pi(S_t) E_t \sum_{j=0}^{\infty} \beta^j \frac{\lambda(S_{t+j})}{\lambda(S_t)} \frac{\tau_{max} y(S_{t+j}) - g_{t+j}}{\text{tot}(S_{t+j})^{1-\eta}}$$
Conclusions:

- **Normal times:** Risk channel matters significantly when debt is >90%.
 - Makes long run consolidation to 60% costly, with spillovers to EMU.
 - Reduces significantly multiplier of discretionary fiscal policy.
 - Endogenous risk premium explains 40% of that reduction.

- **ZLB:** Risk channel becomes muted
 - Consolidation generates deflation expectations $\Rightarrow \uparrow$ real int. rate
 - Policy coordination favors expansion in EMU.
THANK YOU FOR YOUR ATTENTION
Calibration:

Periphery = Spain, Core = Germany

<table>
<thead>
<tr>
<th>parameters</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.99</td>
</tr>
<tr>
<td>θ</td>
<td>11</td>
</tr>
<tr>
<td>ψ</td>
<td>116.5</td>
</tr>
<tr>
<td>α_π</td>
<td>2.5</td>
</tr>
<tr>
<td>γ_b</td>
<td>0.3</td>
</tr>
<tr>
<td>b/y</td>
<td>0.6</td>
</tr>
<tr>
<td>$b^/b^$</td>
<td>0.6</td>
</tr>
<tr>
<td>g/y</td>
<td>0.183</td>
</tr>
<tr>
<td>$g^/y^$</td>
<td>0.187</td>
</tr>
<tr>
<td>τ</td>
<td>0.3005</td>
</tr>
<tr>
<td>τ^*</td>
<td>0.3425</td>
</tr>
<tr>
<td>a, a^*</td>
<td>1</td>
</tr>
<tr>
<td>ρ^a, ρ^{a*}</td>
<td>0.9</td>
</tr>
<tr>
<td>σ_g, σ_{g^*}</td>
<td>0.01</td>
</tr>
<tr>
<td>s</td>
<td>0.36</td>
</tr>
<tr>
<td>η</td>
<td>0.63</td>
</tr>
<tr>
<td>η^*</td>
<td>0.37</td>
</tr>
<tr>
<td>δ</td>
<td>0.07</td>
</tr>
</tbody>
</table>

- β: the discount factor
- θ: elasticity of substitution
- ψ: Rotemberg adjustment parameter
- α_π: Taylor rule parameter to inflation
- γ_b: tax response parameter to changes in debt
- b/y: steady state debt to output ratio (home)
- b^*/b^*: steady state debt to output ratio (foreign)
- g/y: steady state gov spending to output ratio (home)
- g^*/y^*: steady state gov spending to output ratio (foreign)
- τ: steady state income tax rate (home)
- τ^*: steady state income tax rate (foreign)
- a, a^*: steady state technology
- ρ^a, ρ^{a*}: AR(1) coefficient in government spending rules
- σ_g, σ_{g^*}: standard deviation of government spending shock
- s: share of home country
- η: home country bias in home goods
- η^*: foreign country bias in home goods
- δ: quarterly haircut on debt if default occurs
Standard Fiscal/Monetary Policy:

- **Fiscal policy rule** in each country:
 \[\tau_t = \tau + \gamma_b (b_{t-1} - 0.6) \]

- **Monetary policy**
 \[
 R_{t}^{ECB} = \begin{cases}
 R_{t}^{ECB} + \alpha \pi (\pi_{MU,t} - \pi_{MU}) & \text{if } s_{t}^{R} = 1 \\
 1 & \text{if } s_{t}^{R} = 2
 \end{cases}
 \]

MP regime evolves exogenously according to
\[
\begin{pmatrix}
 p_1 & 1 - p_1 \\
 1 - p_2 & p_2
\end{pmatrix}
\]
prob to stay in regime \(p_1 = .99, \ p_2 = .65. \)
10% ↑g:

- ↑deficit, Y, π → ↓FL (shift UP/LEFT)
- MP channel weak: small ↑YEₐ, πEₐ → small ↑Rₑcb → ↓FL

⇒ Both ↓FL (shift UP/LEFT) → ↑ default prob (3% B/Y=125%)
10% $\uparrow g^* \rightarrow \uparrow \text{deficit}^*, Y^*, \pi^* \rightarrow \underline{\text{spillover}} \text{ to Periphery due to:}$

- **MP channel:** $\uparrow R^{ECB} \rightarrow \uparrow \text{financing costs of debt} \rightarrow \downarrow \text{FL}$
- **Trade channel:** $\uparrow M^*=X \rightarrow \uparrow \text{FL (shift DOWN/RIGHT)}$

\Rightarrow Net effect $\downarrow \text{FL (shift UP/LEFT)} \rightarrow \uparrow \text{default prob (1.5% B/Y=125%)}$
Spillover is 50% of own effect (3% vs 1.5%).
Fiscal coordination in EMU:
JOINT CONSOLIDATION IS BEST POLICY

- $\uparrow g^* \rightarrow$ strong MP channel: $\uparrow R^{ECB} >$ Trade channel
- Thus, best coordination policy is joint consolidation.