Systemic Stress Testing and Central Clearing Interdependencies

Kimmo Soramaki

Fifth Annual Risk Management Conference: Examining Regulatory Initiatives

Chicago, 16 October 2018
Motivation

The **New Systemic Risk**

Three CCP failures in the past (Paris, Kuala Lumpur and Hong Kong)

Interest by regulators, CCPs and members.

Especially with tie in to Cyber, IT and other operational risks.

"They [CCPs] are not equipped, however, to test the impact of their failure on the financial system as a whole nor are they equipped to assess the potential contagion effect on other members of a given member’s failure."

Cox & Steigerwald (2018)
Agenda

1) Interconnectedness **across** CCPs
2) Interconnectedness **within** a CCP
3) Simulation & Stress Testing
Interconnectedness in the Global System of CCPs
Comparison with BIS "Analysis of Central Clearing Interdependencies" (2018)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CCPs</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>Clearing Members</td>
<td>n/a</td>
<td>813</td>
</tr>
<tr>
<td>Parent Organizations</td>
<td>306</td>
<td>495</td>
</tr>
<tr>
<td>Roles</td>
<td>7 (member, settlement, LOC, ...)</td>
<td>1 (member)</td>
</tr>
</tbody>
</table>
CCP Interconnectedness - Subsidiary Level

We see CCPs (diamonds) and their members (circles) from different regions:

- North America (blue)
- Europe and Middle East (orange)
- Asia and Pacific (green)
- Latin America (light blue)
- Africa (red)

On subsidiary level, we see a tight core with peripheral CCPs and a number of completely disconnected CCPs from Latin America and Middle East.
210 Banking Groups

Largest (# of entities):

1. Citigroup (18)
2. Morgan Stanley (13)
3. Goldman Sachs (12)
4. JPMorgan Chase (12)
5. Bank of America (12)
6. HSBC (11)
7. UBS (11)
8. Deutsche Bank (10)
9. Credit Suisse (10)
10. Nomura Holdings (9)
CCP Interconnectedness on Parent Level

We see CCPs (diamonds) and their members (circles) from different regions:

- North America (blue)
- Europe and Middle East (orange)
- Asia and Pacific (green)
- Latin America (light blue)
- Africa (red)

On parent level we see a completely connected network dominated by a core consisting of CCPs from North America and Europe and global banks.
CCP Interconnectedness on Parent Level

We see CCPs (diamonds) and their members (circles) from different regions:

- North America (blue)
- Europe and Middle East (orange)
- Asia and Pacific (green)
- Latin America (light blue)
- Africa (red)

On parent level we see a completely connected network dominated by a core consisting of CCPs from North America and Europe and global banks.
CCP Interconnectedness on Subsidiary vs Parent Level - Example

Subsidiary Level
(Connected to 3 CCPs)

Parent Level
(Connected to 25 CCPs)
CCP Interconnectedness on GSIB Level

<table>
<thead>
<tr>
<th>Bank (Parent)</th>
<th># of CCPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citigroup</td>
<td>22</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>21</td>
</tr>
<tr>
<td>JPMorgan Chase & Co.</td>
<td>20</td>
</tr>
<tr>
<td>BNP Paribas</td>
<td>19</td>
</tr>
<tr>
<td>Bank of America</td>
<td>18</td>
</tr>
<tr>
<td>HSBC</td>
<td>17</td>
</tr>
<tr>
<td>Societe Generale</td>
<td>17</td>
</tr>
<tr>
<td>UBS</td>
<td>16</td>
</tr>
<tr>
<td>Morgan Stanley</td>
<td>16</td>
</tr>
<tr>
<td>Credit Suisse</td>
<td>15</td>
</tr>
</tbody>
</table>
Contagion - CCP Disruption

A disruption in a CCP would affect all of that CCP’s clearing members, thereby affecting the other CCP’s to which the affected CCP’s members belong, possibly creating a cascading cycle as disruption is propagated across members and CCPs.
Footprint of CCPs - OCC

OCC's 79 members are connected to 27 other CCPs.

The membership is mostly US with a significant EU base.

The most connected CCP's are DTCC and CME.
CME’s 58 members are connected to 27 other CCPs

The membership is mostly US with few entries from Europe and Asia

The most connected CCP are ICE US, ICE Europe, LCH Ltd. and OCC
ICE’s 36 members are connected to 27 other CCPs.

The membership is mostly US with a significant European base.

The most connected CCPs are CME, ICE EUROPE and OCC.
A member disruption could be felt by up to 448 banking groups or banks (of total of 495, or 90%) that are members of the same CCP as the stricken group.
Deutsche Bank Group participates in 21 CCPs (of 29 mapped).

392 other banking groups or banks are members of these CCPs.
Morgan Stanley participates in 16 CCPs (of 29 mapped).

378 other banking groups or banks are members of these CCPs.
Objective: Develop a global database and the methods to measure risk concentrations and simulate failures and stress scenarios of interconnected FMIs and markets. This will allow regulators, FMIs and members develop risk mitigation strategies to address this new and global systemic risk.

- **Data Collection:** Collect data on CCPs/FMIs from quantitative disclosures and other public data sources.
- **Data Augmentation:** Fill missing pieces. Use CCP/FMI specific data & new statistical techniques to estimate missing data.
- **Analysis & Visualization:** See patterns. Identify unexpected patterns. Build intuition. Identify risk concentrations.
- **Simulation:** Test hypothesis. Carry out ‘what if’ scenarios.
- **Monitoring:** Monitor risk. Ongoing update of database & facilities to monitor risks.
Short History of Payment System Simulations

1997 : Bank of Finland
Evaluate liquidity needs of banks when Finland’s RTGS system was joining TARGET
First general purpose payment systems simulator

2000 : Bank of Japan and FRBNY
Test liquidity saving mechanisms (LSM) for BoJ-Net & Fedwire

2001 - : CLS approval process and ongoing oversight
Test CLS risk management
Evaluate settlement’ members capacity for pay-ins
Understand how the system works

Since then: Bank of Canada, Banque de France, Nederlandsche Bank, Norges Bank, TARGET2, and many others

2018 : Exact replicas of LVTS, CHAPS and 4 other FMIs in FNA

Three main use cases:
- Liquidity optimization
- Liquidity stress testing
- What-if Analysis
Interconnectedness within a CCP
Mapping
This network shows settlement relationships between the:
- CCP (center)
- Settlement members (inner circle) and
- Clearing members (outer circle)

Note: Data is representative, not real

Size of node shows value of multilateral position

Width of lines shows value of bilateral positions

Question
What would happen if member 4 had an operational failure?
Backup Relationships

Map

Shows Clearing Members on the left, and Settlement Members on the right.

The lines denote which settlement member the clearing member can use for settlement (ie its main and its backups)
Concept: Operational Failure of a Settlement Member

Mapping
This network shows settlement relationships between the:
- CCP (center)
- Settlement members (inner circle) and
- Clearing members (outer circle)

Note: Data is representative, not real

Size of node shows value of multilateral position

Width of lines shows value of bilateral positions

Question
What would happen if member 4 had an operational failure?
Rewiring for Maximum Concentration

Each clearing member using Bank 4 must now effect settlement through one of its backup relationships.

Findings
Simulation shows that settlement flows could be concentrated on a few participants, e.g. causing operational challenges for Bank 11.

Insight
Bank 11 was not among the most active settlement members on a normal day, but might need to build operational capacity to cover for rare failure days.
Rewiring for Minimum Concentration

Findings
... or clearing members might use different settlement members resulting in a much higher number (18 instead of 10) of settlement members for the day.

Insight
The CCP may need to build operational capacity to be able to complete settlement.
The Vision - Simulate System of FMIs

Stress testing in practice means simulation.

For realistic scenarios, we need to understand how everything is interconnected within and across FMIs.

This means CCPs, Payment Systems, CLS, ICSDs, etc.

FMI Simulators are valuable alone, and more valuable when connected.
The visualizations were created for FIA MarketVoice article:

"Mapping Clearing Interdependencies and Systemic Risk: How network theory can illuminate the topography of clearing risk"

Links to interactive versions are available on FNA Website and in the following slides.
Dr. Kimmo Soramäki
Founder & CEO
FNA - Financial Network Analysis Ltd.

kimmo@fna.fi
tel. +44 203 538 6505

Address
4-8 Crown Place
London EC2A 4BT
United Kingdom