Resilience against cyber attacks
Components of Cyber Resilience

1. Preventing
Ensuring that cyber attacks don’t access internal systems, red team testing, etc.

2. Detecting
Monitoring and alerting about possible intrusions, and investigating incidents.

3. Recovering
Methods and processes to ensure recovery from successful attacks and improving resilience towards them.
Cyber Attackers are Penetrating the Financial Sector Core

Credit Institutions

FMIs

SIPS, CSPs, DFMUs, ICSDs, NCBs

Customers

Systematically approaching the core of the industry

Credit: Wiebe Ruttenberg (ECB)
Increasing number of Cybersecurity Breaches

$81M "Bangladesh Bank Heist" at FRBNY, 2016

$6M Theft at Russian Central Bank, 2018

$15M Cyber incident in SPEI, Mexico, 2018

Bank Negara Malaysia detected unauthorised fund transfers, 2018
Cyber attacks are often state sponsored

APT38
(Advanced Persistent Threat)

"APT38 is a financially motivated North Korean regime-backed group responsible for conducting destructive attacks against financial institutions, as well as some of the world's largest cyber heists"

- FireEye Report
“FMIs should immediately take necessary steps (....) to improve their cyber resilience, taking into account this Guidance.”

“FMIs should also, within 12 months of the publication of this Guidance, have developed concrete plans to improve their capabilities in order to meet the two-hour RTO.”

“Testing is an integral component of any cyber resilience framework.”

CPMI-IOSCO Guidance on Cyber Resilience for FMIs (June 2016)
Monitoring DDoS attacks
Detect Anomalies in Cyber Networks in Real-time
Identify Patterns of DDoS attacks
FNA

Mapping Financial Networks

www.fna.fi
Fedwire Interbank Payment Network (Fall 2001) was one of the first network views into any financial system.

Of a total of around 8000 banks, the 66 banks shown comprise 75% of total value. Of these, 25 banks completely connected

The research was subsequently used e.g. in congressional hearings to showcase the type of information that should be collected by financial institutions after the financial crisis.

Impact of 9/11 Terrorist Attacks on the Network

Note: 100 = September 10th, 2001.
"The next crisis might not come from a financial shock at all. The more likely culprit: a cyber attack that causes disruptions to financial services capabilities, especially payments systems, around the world."

- "How a Cyber Attack Could Cause the Next Financial Crisis" by Paul Mee & Til Schuermann, HBR 2018
FNA

Interconnectedness in the Global System of CCPs

www.fna.fi
Motivation

The **New Systemic Risk**

Three CCP failures in the past (Paris, Kuala Lumpur and Hong Kong)

Interest by regulators, CCPs and members.

Especially with tie in to Cyber, IT and other operational risks.

"They [CCPs] are not equipped, however, to test the impact of their failure on the financial system as a whole nor are they equipped to assess the potential contagion effect on other members of a given member’s failure."

Cox & Steigerwald (2018)
Comparison with BIS "Analysis of Central Clearing Interdependencies" (2018)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CCPs</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>Clearing Members</td>
<td>n/a</td>
<td>813</td>
</tr>
<tr>
<td>Parent Organizations</td>
<td>306</td>
<td>495</td>
</tr>
<tr>
<td>Roles</td>
<td>7 (member, settlement, LOC, ...)</td>
<td>1 (member)</td>
</tr>
</tbody>
</table>
We see CCPs (diamonds) and their members (circles) from different regions:

- North America (blue)
- Europe and Middle East (orange)
- Asia and Pacific (green)
- Latin America (light blue)
- Africa (red)

On subsidiary level, we see a tight core with peripheral CCPs and a number of completely disconnected CCPs from Latin America and Middle East.
210 Banking Groups

Largest (# of entities):

1. Citigroup (18)
2. Morgan Stanley (13)
3. Goldman Sachs (12)
4. JPMorgan Chase (12)
5. Bank of America (12)
6. HSBC (11)
7. UBS (11)
8. Deutsche Bank (10)
9. Credit Suisse (10)
10. Nomura Holdings (9)
LEI level 2 data

Automatic generation of complex bank structures / beneficial ownership structures.

Exploration through "Knowledge graphs"
We see CCPs (diamonds) and their members (circles) from different regions:

- North America (blue)
- Europe and Middle East (orange)
- Asia and Pacific (green)
- Latin America (light blue)
- Africa (red)

On parent level we see a completely connected network dominated by a core consisting of CCPs from North America and Europe and global banks.
We see CCPs (diamonds) and their members (circles) from different regions:

- North America (blue)
- Europe and Middle East (orange)
- Asia and Pacific (green)
- Latin America (light blue)
- Africa (red)

On parent level we see a completely connected network dominated by a core consisting of CCPs from North America and Europe and global banks.
CCP Interconnectedness on Subsidiary vs Parent Level - Example

Subsidiary Level (Connected to 3 CCPs)

Parent Level (Connected to 25 CCPs)
CCP Interconnectedness on GSIB Level

<table>
<thead>
<tr>
<th>Bank (Parent)</th>
<th># of CCPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citigroup</td>
<td>22</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>21</td>
</tr>
<tr>
<td>JPMorgan Chase & Co.</td>
<td>20</td>
</tr>
<tr>
<td>BNP Paribas</td>
<td>19</td>
</tr>
<tr>
<td>Bank of America</td>
<td>18</td>
</tr>
<tr>
<td>HSBC</td>
<td>17</td>
</tr>
<tr>
<td>Societe Generale</td>
<td>17</td>
</tr>
<tr>
<td>UBS</td>
<td>16</td>
</tr>
<tr>
<td>Morgan Stanley</td>
<td>16</td>
</tr>
<tr>
<td>Credit Suisse</td>
<td>15</td>
</tr>
</tbody>
</table>
Contagion - CCP Disruption

A disruption in a CCP would affect all of that CCP’s clearing members, thereby affecting the other CCP’s to which the affected CCP’s members belong, possibly creating a cascading cycle as disruption is propagated across members and CCPs.
Footprint of CCPs - OCC

OCC's 79 members are connected to 27 other CCPs.

The membership is mostly US with a significant EU base.

The most connected CCP's are DTCC and CME.
Footprint of CCPs - CME

CME’s 58 members are connected to 27 other CCPs.

The membership is mostly US with few entries from Europe and Asia.

The most connected CCP are ICE US, ICE Europe, LCH Ltd. and OCC.
ICE’s 36 members are connected to 27 other CCPs.

The membership is mostly US with a significant European base.

The most connected CCPs are CME, ICE EUROPE and OCC.
A member disruption could be felt by up to **448** banking groups or banks (of total of 495, or 90%) that are members of the same CCP as the stricken group.

<table>
<thead>
<tr>
<th>Banking Group</th>
<th># banking groups connected via a CCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citigroup</td>
<td>448</td>
</tr>
<tr>
<td>BNP Paribas</td>
<td>426</td>
</tr>
<tr>
<td>JPMorgan Chase</td>
<td>396</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>392</td>
</tr>
<tr>
<td>Bank of America</td>
<td>391</td>
</tr>
<tr>
<td>Morgan Stanley</td>
<td>378</td>
</tr>
<tr>
<td>Credit Suisse</td>
<td>357</td>
</tr>
<tr>
<td>Société Générale</td>
<td>351</td>
</tr>
<tr>
<td>Goldman Sachs</td>
<td>349</td>
</tr>
<tr>
<td>HSBC Holdings</td>
<td>339</td>
</tr>
</tbody>
</table>
Deutsche Bank Group participates in 21 CCPs (of 29 mapped).

392 other banking groups or banks are members of these CCPs.
Morgan Stanley participates in 16 CCPs (of 29 mapped).

378 other banking groups or banks are members of these CCPs.
Objective: Develop a global database and the methods to measure risk concentrations and simulate failures and stress scenarios of interconnected FMIs and markets. This will allow regulators, FMIs and members develop risk mitigation strategies to address this new and global systemic risk.

Data Collection
- Collect data on CCPs/FMIs from quantitative disclosures and other public data sources

Data augmentation
- Fill missing pieces. Use CCP/FMI specific data & new statistical techniques to estimate missing data.

Analysis & Visualization

Simulation
- Test hypothesis. Carry out ‘what if’ scenarios.

Monitoring
Simulating Failures
Short History of Payment System Simulations

1997 : **Bank of Finland**
Evaluate liquidity needs of banks when Finland’s RTGS system was joining TARGET
First general purpose payment systems simulator

2000 : **Bank of Japan and FRBNY**
Test liquidity saving mechanisms (LSM) for BoJ-Net & Fedwire

2001 - : **CLS approval process and ongoing oversight**
Test CLS risk management
Evaluate settlement' members capacity for pay-ins
Understand how the system works

Since then: Bank of Canada, Banque de France, Nederlandsche Bank, Norges Bank, TARGET2, and many others

2018 : **Exact replicas of LVTS, CHAPS and 4 other FMIs in FNA**

Three main use cases:

- Liquidity optimization
- Liquidity stress testing
- What-if Analysis
Concept: Operational Failure of a Settlement Member

Mapping
This network shows settlement relationships between the:
- CCP (center)
- Settlement members (inner circle) and
- Clearing members (outer circle)

Note: Data is representative, not real

Size of node shows value of multilateral position

Width of lines shows value of bilateral positions

Question
What would happen if member 4 had an operational failure?
Backup Relationships

Map

Shows Clearing Members on the left, and Settlement Members on the right.

The lines denote which settlement member the clearing member can use for settlement (ie its main and its backups)
Concept: Operational Failure of a Settlement Member

Mapping
This network shows settlement relationships between the:
- CCP (center)
- Settlement members (inner circle) and
- Clearing members (outer circle)

Note: Data is representative, not real

Size of node shows value of multilateral position

Width of lines shows value of bilateral positions

Question
What would happen if member 4 had an operational failure?
Each clearing member using Bank 4 must now effect settlement through one of its backup relationships.

Findings
Simulation shows that settlement flows could be concentrated on a few participants, e.g., causing operational challenges for Bank 11.

Insight
Bank 11 was not among the most active settlement members on a normal day, but might need to build operational capacity to cover for rare failure days.
Rewiring for Minimum Concentration

Findings
... or clearing members might use different settlement members resulting in a much higher number (18 instead of 10) of settlement members for the day.

Insight
The CCP may need to build operational capacity to be able to complete settlement.
The Vision - Simulate System of FMIs

Stress testing in practice means simulation.

For realistic scenarios, we need to understand how everything is interconnected within and across FMIs.

This means CCPs, Payment Systems, CLS, ICSDs, etc.

FMI Simulators are valuable alone, and more valuable when connected.
The visualizations were created for FIA MarketVoice article:

"Mapping Clearing Interdependencies and Systemic Risk: How network theory can illuminate the topography of clearing risk"

Links to interactive versions are available on FNA Website and in the following slides.
Measuring Technological Interdependence

Bank projection

Network of banks’ system interdependencies

IT Systems

System projection
How might cyber risks and financial risks interact to cause systemic crises?

Is there anything fundamentally new or different about cyber risks?

How should economists, regulators, policymakers, and central bankers focused on financial stability incorporate cyber risks into their models and thinking?

- "The Future of Financial Stability and Cyber Risk" by Jason Healey, Patricia Mosser, Katheryn Rosen, and Adriana Tache, Brookings Institute 2018
Scenario Types

<table>
<thead>
<tr>
<th>Source of stress</th>
<th>How it manifests</th>
<th>How is it modeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ Bankruptcy</td>
<td>○ Outage</td>
<td>○ Historical</td>
</tr>
<tr>
<td>○ Liquidity event</td>
<td>○ Triggers failure</td>
<td>○ Probabilistic</td>
</tr>
<tr>
<td>○ Cyber attack</td>
<td></td>
<td>○ Extreme but plausible</td>
</tr>
<tr>
<td>○ Technical failure</td>
<td>○ Change in parameters</td>
<td>○ Worst-case</td>
</tr>
<tr>
<td>○ Change in environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>○ Incremental system change (model validation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use Case: Simulating Complex Financial Systems

Background
Interbank payments are settled in Norges Bank’s settlement system (NBO), a real time gross settlement (RTGS) system. Such payments are often time-critical and of high value. Operational disruptions that impair the ability of participants to execute payments may therefore pose a threat to financial stability.

Objective
Analyse the robustness of the settlement process in the Norges Bank settlement system (NBO) to operational problems in one of its participating banks using a large number of days with actual payments data.

Outcome
Only four banks are of systemic importance and that the systemic effects can be significantly reduced if banks react quickly by postponing their outgoing payments to the stricken bank.

Use Case: Complying with PFMI.s

“The FNA software platform has helped the bank improve its ongoing risk management processes [...] reducing the time it takes to run analysis from weeks to only a few minutes.”

Mr. Fabio Ortega
Project Manager
Central Bank of Colombia

Central Bank of Colombia simulates failures of two largest participants on a daily basis

Background
The globally agreed Principles for Financial Market Infrastructures stipulate that FMIs must be able to withstand the failure of their two largest members, and complete settlement by the end of the day of the disruption, even in case of extreme circumstances.

Objective
Ability to measure and monitor the impact of the failure of two largest participants.

Outcomes
Automated daily stress tests where simulations of failing the two largest participants in the network are carried out.

BIS: Principles for financial market infrastructures
Current State Observations - **Cyber Resilience**

Financial Institutions

- Historic focus predominantly on cyber-security rather than resilience
- Cyber-resilience responsibility increasingly much broader than technology/CISO functions
- Group Risk functions increasingly involved
- Need for data/information from outside the individual FI >> industry collaboration

Central Banks / Supervisors

- Increasingly playing lead or key role in:
 - Industry collaboration
 - Cross-jurisdiction regulatory collaboration
- Initiating industry mapping exercises
- Driving FMIs, G-SIFIs and D-SIFIs to take on greater systemic cyber-resilience responsibilities
Dr. Kimmo Soramäki
Founder, CEO
FNA Financial Network Analysis Ltd.

kimmo@fna.fi
tel. +44 20 3286 1111

Address
4-8 Crown Place
London EC2A 4BT
United Kingdom