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Network Science and Graphs Analytics

Is already powering the best known Al applications
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Machine Learning vs Artificial Intelligence

Difference between machine learning
and Al:

If It Is written In Python, it's probably
machine learning

If It IS written In PowerPoint, it's probably
Al

Al In nutshell



Network Theory is about

New Way of Looking at Data

e How is data connected with other data?
e How do these connections matter?
e How do complex systems move in time?

For the first time we are able to measure and model this!



Complex Systems

'Systems with rich interactions between the
components of the system”

eg. financial markets, payment systems, road systems,
friendship networks, ... almost every socio-economic .-/
system.



Three Main Modes of Analysis

e Top down analysis

e Bottom up analysis

e Features of Data



Top down
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e Clustering/Classification
— = e Early warning
e Anomaly detection
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This sprawling tree shows housing prices in U.S. markets moving with little correlation in 2000.
The tree has gotten shorter and shorter since, indicating higher correlation between markets.
PHOTO: FINANCIAL NETWORK ANALYTICS




Bottom Up
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Typical use cases:

e Criminal investigation

e Terrorist networks

e Money laundering

e KYC & KYCC

e Fundamental investment
analysis

e Supply chain analysis



Network Features of Data

Typical use cases:

o AI/ML

e Fraud algorithms

e Recommendation engines
e Algorithmic investment

FNA Research: Comparison of Graph
Computing Platform Performance



https://docs.google.com/document/d/1V91FjJKkPvf5gXtasCt2J_O2mIPEddnf_0QIGLgBJ6E/edit

Types of Networks



Network Concepts

Constituents

e Networks (graphs)
e Nodes (vertices)

e Links (ties, edges or arcs)
Links can be

e Directed (arcs) vs undirected (edges, ties)

e \Weighed vs unweighted

Graph + properties = Network



Some Graph Types

Trivial Graph
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Empty Graph

Complete graph

Directed Graph

Multigraph



Some Graph Types
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Random Graphs
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Centrality

Centrality measures importance of nodes (or links) in a network.
Depends on process that takes place in the network!

Trajectory Transmission

e Geodesic paths (shortest paths) e Parallel duplication
e Any path (visit no node twice) e Serial duplication
e Trails (visit no link twice) e Transfer

e Walks (free movement)

DHL Package = Transfer via shortest path
Money = Transfer via random walks
Virus = Serial duplication via paths

etc. Borgatti (1998) "



Common Centrality Metrics

Closeness o\

Betweenness i\

PageRank e
within Cluster






Community Detection

If networks are large and complex and we want
to simplify, categorize and label nodes into
meaningful groups or communities.

Community detection is carried out by ek
maximizing modularity

"Modularity is the fraction of the links that fall
within the given groups minus the expected
fraction if links were distributed at random"




Community Detection

Community detection is an unsupervised machine learning
way of doing this, and there are numerous methods available.

e How do we know result is correct. What is correct? -

|
e Which algorithm to choose? .\40
e Some algorithms detect well large, but not small @
communities

e Is it a community or a cluster of several?
e \What about overlapping communities?

Still more an art than a science. Try what works?

FNA Research: Overview and Comparison of Community Detection
Algorithms



https://docs.google.com/document/d/1qDEKEm3Ilz-sp-JcIZPHxvm0FiiPA7L0xK1wVFqPm-o/edit




Information visualisation

Our goal is to transmit relevant information
Anscombe’s quartet

- Humans find statistical thinking and
abstraction very challenging and require
significant training S e

- We depend on statistics that summarise ———————— e
properties of data ) "

- Human visual processing system is
developed to spot interesting patterns
and its use is natural
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Network visualisation basics

For any given network, there exists an infinite number of network diagrams. For example,

below is a networks visualized with two different /ayout algorithms.

Force-Directed Circle
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