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Motivation

= Protect financial stabllity is the goal from the Central Bank.

= Develop tools to identify potential risks.

= In particular, develop a model that could calculate the probability of default for
each loan and then to the entire system.

= Our goal is to use the information contained in such a network to develop
metrics of financial stability and to build predictive models.




Overview of the data

 All loans in the Colombian economy over the past 3 years on a quarterly time
scale
« Commercial
« Consumer
* Housing
« Microcredit

 Details provided include (anonymised) identities of lenders and borrowers, the
amount of capital, and the rating of the loan (5 classes)

« Goal: to identify risks / instabilities / anomalies in the credit system, in particular
to determine the large-scale consequences of non-payment
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Overview of all loans

* |n the following: commercial loans
only (other types to be investigated in
the future)

» Account for more than 50% of all
loan volume

« Concentrated in relatively low
amount of debtors (500K vs millions in
other loan types)

« Real growth has been declining over
last couple years, with a oL |
corresponding increase in credit risk q)@b» ~

% of NPLs




Overview of the plan

« Describe the Colombian credit system as a
bipartite network of lenders and borrowers

« Perform network validation to identify a
backbone of links that are statistically
significant due to their size (capital) and the
characteristics of the lenders and borrowers
involved

« Use the information contained in these links s b H o i o
to perform a prediction exercise (to be - - W_w O 0V
completed)

« WHY: validated backbones typically contain
most of the information in a network (i.e., no
noise) and are rather stable over time

Set A




Bipartite Network

For the sample analyzed, the credit firm bank bipartite network shows around 9
subgroups, where 2 subgroups presented more concentration compared with

the rest of the banks.

« Around 14 subgroups have a less connections among them.
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« Example of
network
validated by
Pdlya filter for
Q1 of 2018,
commercial
loans

Validated networks




Concentration
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» Over 6 quarters: Total num. of banks = 27; Total num. of firms = 1315
(Polya filter maximum likelihood parameter roughly stable around 3.35)



Stability over time
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Looking for similar profiles: Projected networks

 How often do banks lend to
the same borrowers? And how
much?
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Looking for similar profiles: Projected networks
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Looking for similar profiles: Projected networks

 How often do firms borrow
from the same banks?




Projected networks

2018 Q1 (a = 3.40)

2018 Q2 (a = 3.35)

2018 Q4 (a = 3.30)

2018 @3 (a = 3.30)

1%,

s8]\ /|
025 /810 w0
AN

A\
/ &7+ 3

W\
o2 16

oz
26 cs/"‘

8
25 A

®25




Stability over time

0.95 ‘Jaccard S‘lmﬂamty‘ * Very strong persistence in the
-+ Banks overlap structure both between
097 |-+ Firms Ptiae banks and between firms
0.85¢ - ____ PPt al s « Very strong persistence in the
centrality of both banks and
0.8 firms
0.75 i « The same 3 banks are the
b---"77 “... Pt most central ones in all
0.77 e, b quarters
0.65 ‘ * The same firm is the most
¥ QP ol > QY central one in all quarters (with
q)s\oo %Q\?o qg\foo q)Q\?) %Q\9> little variation behind it)



(Very preliminary) Conclusions

» The Pdlya filter produces very stable network backbones over the 6
available quarters

« Such a stability is reflected both by
1. very similar values of the maximum likelihood parameter of the filter
2. strong link persistence in the bipartite bank-firms loan network
3. strong link persistence in the projected overlap networks between banks
and firms

 Overall, this suggests that validated links belonging to the network backbones
yield a large predictive power

* Next steps: including information about ratings of the loans
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