Price rigidity with microeconomic data

Fernando Borraz1 Giacomo Livan2 Pablo Picardo1 Anahí Rodríguez3

1Banco Central del Uruguay 2University College London 3CEMLA

Financial Technologies and Central Banking
Mexico City, November 12-14, 2019

The opinions expressed here are those of the authors and do not reflect the views of CEMLA, University College London or the Central Bank of Uruguay.
Summary

- Understand price rigidity
- Characterize sales and explore its role in price flexibility
- Relate sales and retail price changes with unemployment and other macroeconomic variables
- Dataset: + 2.5 million observations
 1. +20,000 retail product prices
 2. Weekly basis
 3. Macroeconomic data
 4. From 2014 to now
Structure

1. Motivation
2. Literature review
3. Data
4. PCA
5. Forthcoming
Why retail data?

- Price forecasting, e.g.: fruits and vegetables
- Study price flexibility \rightarrow PM models and analysis
- Possibility to manage and process big databases with a panel structure
Why retail data?
- Price forecasting, e.g.: fruits and vegetables
- Study price flexibility \rightarrow PM models and analysis
- Possibility to manage and process big databases with a panel structure

Why sales?
- Mechanism of price rigidity
- Correlation with local business cycle
Why retail data?
- Price forecasting, e.g.: fruits and vegetables
- Study price flexibility \rightarrow PM models and analysis
- Possibility to manage and process big databases with a panel structure

Why sales?
- Mechanism of price rigidity
- Correlation with local business cycle

Why Uruguay?
- Small and open country
- Rich dataset to exploit
Literature review
Literature review

- **Nakamura and Steinsson (2006).** *Five facts about prices: a reevaluation of menu cost models.*

- **Nakamura and Steinsson (2013).** *Informational rigidities and the stickiness of temporary sales.*

- **Eichenbaum and Jaimovich (2011).** *Reference prices, costs and nominal rigidities.*

- **Coibion, Gorodichenko and Hee Hong (2013).** *The cyclicality of sales, regular and effective prices: business cycle and policy implications.*

- **Glandon (2018).** *Sales and the (mis)measurement of price level fluctuations.*
Data description
Data

- Retail prices: **weekly** from August 2014 to **now** (October 2019)
 - Classification by **sectors**:
 1. Drinks
 2. Alcoholic drinks
 3. Food (sample)
 4. Fruit and vegetables
 5. Tobacco
 6. Personal care
 7. Other (stationery, pet food, toys, etc.)
 - Dummy variable for **sales** (1 on sale, 0 normal price)
 - Currency (Uruguayan pesos)

- Macrodata: **monthly** from May 2013 to September 2019
 - Cpi index
 - Employment rate
 - Unemployment rate
Data cleaning for the PCA

- Few constant prices were removed
- Missing values were filled by assuming the last previous observation
- Few multiple price cases, where a product reported multiple prices in the same week, we took the minimum price observed

Softwares: MATLAB + R
How many products changed its price?

Source: Banco Central del Uruguay from supermarket data
Price reductions and sales

Share of product on sales and price reductions by month

Source: Banco Central del Uruguay from supermarket data
Seasonality of price changes and sales

Share of products that change its price and sales by month

Source: Banco Central del Uruguay from supermarket data
Product sectors

Source: Banco Central del Uruguay from supermarket data
Price variation: all sectors

Source: Banco Central del Uruguay from supermarket data
Price variation: retail data vs. official CPI

Source: Banco Central del Uruguay from supermarket data and National Institute of Statistics
Price variation: food and drinks

Source: Banco Central del Uruguay from supermarket data and National Institute of Statistics
Price change probability

Source: Banco Central del Uruguay from supermarket data
Price change probability: **upward**

Source: Banco Central del Uruguay from supermarket data
Price change probability: **downward**

Source: Banco Central del Uruguay from supermarket data
Duration

Duration in weeks = \(-\frac{1}{1 - \log(\text{prob}(\text{price change}))}\)

Source: Banco Central del Uruguay from supermarket data
Duration by quantiles

Source: Banco Central del Uruguay from supermarket data
Unemployment variation, price reduction and sales

Source: Banco Central del Uruguay from supermarket data and National Institute of Statistics
Principal Component Analysis
Data and PCs

- January - October 2019 (41 weeks)
- Sectors:

 - Drinks
 - $N = 132; \frac{\lambda_1}{N} = 34.8\%; \frac{\lambda_2}{N} = 14.0\%$
 - Alc. drinks
 - $N = 608; \frac{\lambda_1}{N} = 53.6\%; \frac{\lambda_2}{N} = 12.5\%$
 - Food
 - $N = 896; \frac{\lambda_1}{N} = 49.4\%; \frac{\lambda_2}{N} = 10.7\%$
 - Fruit
 - $N = 140; \frac{\lambda_1}{N} = 38.1\%; \frac{\lambda_2}{N} = 16.9\%$
 - Other
 - $N = 317; \frac{\lambda_1}{N} = 61.0\%; \frac{\lambda_2}{N} = 12.8\%$
 - Personal
 - $N = 1601; \frac{\lambda_1}{N} = 45.9\%; \frac{\lambda_2}{N} = 14.3\%$
1st and 2nd PCs

![Graph showing the first and second principal components over time from January 2019 to October 2019 for various categories such as Drinks, Alc. Drinks, Food, Fruit & veg., Other, and Personal care.](image-url)
PCs and employment
Correlations

• Highest correlation and significance is achieved between employment and PCs in 2nd week of the following month (especially with 2nd PC)

<table>
<thead>
<tr>
<th></th>
<th>1st PC</th>
<th>2nd PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinks</td>
<td>0.74*</td>
<td>0.17</td>
</tr>
<tr>
<td>Alc. drinks</td>
<td>0.69*</td>
<td>0.60*</td>
</tr>
<tr>
<td>Food</td>
<td>0.64*</td>
<td>0.92***</td>
</tr>
<tr>
<td>Fruit & veg.</td>
<td>0.67*</td>
<td>0.82**</td>
</tr>
<tr>
<td>Other</td>
<td>0.60*</td>
<td>0.79*</td>
</tr>
<tr>
<td>Personal care</td>
<td>0.75*</td>
<td>0.75**</td>
</tr>
</tbody>
</table>

• Much lower correlation and significance in the case of unemployment
Granger causality

- Granger causality (at 5% significance level, 1 time lag) of PCs by employment

<table>
<thead>
<tr>
<th></th>
<th>1st PC</th>
<th>2nd PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinks</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Alc. drinks</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Food</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fruit & veg.</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Other</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Personal care</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
In 4 out of 5 cases, there is a clear interpretation of 1st PC as a source of positive correlation between products, driven by employment ("sector mode" / "employment mode").
2nd eigenvectors

Roughly 50-50 splits in 4 out of 5 sectors: possible interpretation as a source of negative correlation between groups of products w.r.t. 1st PC (different responses w.r.t. changes in employment)
(Very preliminary) Conclusions

- All sectors share a **common correlation structure** as revealed by PCA.
- 1st PC: “**employment mode**”
- 2nd PC: correlations with respect to employment mode, describing different product sensitivity
- Some **causality** (especially in the case of **food**).
Forthcoming
Forthcoming

- PCA with all the data
- More MACRO variables
- More MICRO variables
- Seasonality
- Price forecasting
 - Nowcasting
 - Martingale prediction market methodology
¡Gracias! / Thanks!
Price rigidity with microeconomic data

Fernando Borraz1 \quad Giacomo Livan2 \quad Pablo Picardo1 \quad Anahí Rodríguez3

1Banco Central del Uruguay \quad 2University College London \quad 3CEMLA

Financial Technologies and Central Banking
Mexico City, November 12-14, 2019

The opinions expressed here are those of the authors and do not reflect the views of CEMLA, University College London or the Central Bank of Uruguay.