

Price rigidity with microeconomic data

Fernando Borraz¹ Giacomo Livan² Pablo Picardo¹ Anahí Rodríguez³

¹Banco Central del Uruguay

 2 University College London

 $^3\mathrm{CEMLA}$

Financial Technologies and Central Banking Mexico City, November 12-14, 2019

The opinions expressed here are those of the authors and do not reflect the views of CEMLA, University College London or the Central Bank of Uruguay.

Summary

- Understand price rigidity
- Characterize sales and explore its role in price flexibility
- Relate sales and retail price changes with unemployment and other macroeconomic variables
- Dataset: + 2.5 million observations
 - \bullet +20,0000 retail product prices
 - 2 Weekly basis
 - Macroeconomic data
 - From 2014 to *now*

Structure

- Motivation
- 2 Literature review
- Data
- 4 PCA
- 5 Forthcoming

Why retail data?

- Price forecasting, e.g.: fruits and vegetables
- Study price flexibility \rightarrow PM models and analysis
- Possibility to manage and process big databases with a panel structure

Why retail data?

- Price forecasting, e.g.: fruits and vegetables
- Study price flexibility \rightarrow PM models and analysis
- Possibility to manage and process big databases with a panel structure

Why sales?

- Mechanism of price rigidity
- Correlation with local business cycle

Why retail data?

- Price forecasting, e.g.: fruits and vegetables
- Study price flexibility \rightarrow PM models and analysis
- Possibility to manage and process big databases with a panel structure

Why sales?

- Mechanism of price rigidity
- Correlation with local business cycle

Why Uruguay?

- Small and open country
- Rich dataset to exploit

Literature review

Literature review

- Nakamura and Steinsson (2006). Five facts about prices: a reevaluation of menu cost models.
- Nakamura and Steinsson (2013). Informational rigidities and the stickiness of temporary sales.
- Eichenbaum and Jaimovich (2011). Reference prices, costs and nominal rigidities.
- Coibion, Gorodichenko and Hee Hong (2013). The cyclicality of sales, regular and effective prices: business cycle and policy implications.
 - ► Gagnon, López-Salido, Sockin (2017). Comment.
- Glandon (2018). Sales and the (mis)measurement of price level fluctuations.

Data description

Data

- Retail prices: weekly from August 2014 to now (October 2019)
 - ▶ Classification by *sectors*:
 - Orinks
 - 2 Alcoholic drinks
 - Food (sample)

- Fruit and vegetables
- 5 Tobacco
- 6 Personal care

Other (stationery, pet food, toys, etc.)

- ▶ Dummy variable for sales (1 on sale, 0 normal price).
- Currency (Uruguayan pesos)
- Macrodata: monthly from May 2013 to September 2019
 - Cpi index
 - ► Employment rate
 - Unemployment rate

Data

- Data cleaning for the PCA
 - ▶ Few constant prices were removed
 - Missing values were filled by assuming the last previous observation
 - ► Few multiple price cases, where a product reported multiple prices in the same week, we took the minimum price observated
- \bullet Softwares: MATLAB + R

How many products changed its price?

Price reductions and sales

Seasonality of price changes and sales

Product sectors

Price variation: all sectors

Price variation: retail data vs. official CPI

Source: Banco Central del Uruguay from supermarket data and National Institute of Statistics

Price variation: food and drinks

Source: Banco Central del Uruguay from supermarket data and National Institute of Statistics

Price change probability

Price change probability: upward

Price change probability: downward

Duration

Duration in weeks = $\frac{-1}{1-log(prob(price_change))}$ Source: Banco Central del Uruguay from supermarket data

Duration by quantiles

Source: Banco Central del Uruguay from supermarket data

Unemployment variation, price reduction and sales

Product on sale or price reduction & Unemployment(lagged)

Source: Banco Central del Uruguay from supermarket data and National Institute of Statistics

Principal Component Analysis

Data and PCs

- January October 2019 (41 weeks)
- Sectors:

Drinks	N =	$132; \lambda_1/\Lambda$	I = 34.	$8\%; \lambda$	$N_2/N = 1$	14.0%
 A 1 1 1 1			_	- 0 1		

$$N = 608; \lambda_1/N = 53.6\%; \lambda_2/N = 12.5\%$$

$$N = 896; \lambda_1/N = 49.4\%; \lambda_2/N = 10.7\%$$

$$N = 140; \lambda_1/N = 38.1\%; \lambda_2/N = 16.9\%$$

Other
$$N = 317; \lambda_1/N = 61.0\%; \lambda_2/N = 12.8\%$$

☐ Personal
$$N = 1601; \lambda_1/N = 45.9\%; \lambda_2/N = 14.3\%$$

1st and 2nd PCs

PCs and employment

Correlations

 Highest correlation and significance is achieved between employment and PCs in 2nd week of the following month (especially with 2nd PC)

	1st PC	2nd PC
Drinks	0.74^{*}	0.17
Alc. drinks	0.69*	0.60*
Food	0.64*	0.92***
Fruit & veg.	0.67^{*}	0.82**
Other	0.60*	0.79^{*}
Personal care	0.75*	0.75**

Much lower correlation and significance in the case of unemployment

Granger causality

• Granger causality (at 5% significance level, 1 time lag) of PCs by employment

	1st PC	2nd PC
Drinks	×	×
Alc. drinks	\checkmark	×
Food	\checkmark	\checkmark
Fruit & veg.	×	×
Other	×	×
Personal care	×	×

1st eigenvectors

0.04

0.05

0.1

-0.05

0

-0.1

In 4 out of 5 cases there is a clear interpretation of 1st PC as a source of positive correlation between products, driven by employment ("sector mode" / "employment mode")

2nd eigenvectors

Roughly 50-50 splits in 4 out of 5 sectors: possible interpretation as a source of negative correlation between groups of products w.r.t. 1st PC (different responses w.r.t. changes in employment)

(Very preliminary) Conclusions

- All sectors share a common correlation structure as revealed by PCA
- 1st PC: "employment mode"
- 2nd PC: correlations with respect to employment mode, describing different product sensitivity
- Some causality (especially in the case of food)

Forthcoming

Forthcoming

- PCA with all the data
- More MACRO variables
- More MICRO variables
- Seasonality
- Price forecasting
 - ► Nowcasting
 - Martingale prediction market methodology

¡Gracias! / Thanks!

Price rigidity with microeconomic data

Fernando Borraz¹ Giacomo Livan² Pablo Picardo¹ Anahí Rodríguez³

¹Banco Central del Uruguay

²University College London

³CEMLA

Financial Technologies and Central Banking Mexico City, November 12-14, 2019

The opinions expressed here are those of the authors and do not reflect the views of CEMLA, University College London or the Central Bank of Uruguay.