XIII Meeting on International Reserves Management

The Strategic Asset Allocation Process

Vahe Sahakyan
Senior Asset Management Specialist
Reserve Management Advisory Services
Lima, 13 September 2019

The views expressed in these slides are those of the presenter and do not necessarily reflect those of the BIS.
The Strategic Asset Allocation Process

1. Reserve manager returns

2. Elements of a sound asset allocation framework
 a. Factor-based approach
 b. Macro foundation

3. BIS Asset Allocation Module (BAAM)
 a. Sound portfolio construction approaches
A history of reserve manager returns

- Historically, reserve managers have reaped the benefits of diversification, term premiums and spread returns.

Historical risk and return relationship of selected asset classes

Percentage

<table>
<thead>
<tr>
<th>Annual return (%)</th>
<th>Volatility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>8%</td>
<td>9%</td>
</tr>
<tr>
<td>9%</td>
<td>10%</td>
</tr>
</tbody>
</table>

*Yearly average returns on common history from 1953 to 2018. All returns in local currency.
Source: BIS Asset Management Asset Allocation Module (BAAM).
The future of reserve manager returns

- However, under several forward-looking scenarios, the traditional relationships that we know start to breakdown.

"Increasing yields" and "Unchanged yields" are forward-looking regimes with annualised returns over a five-year projection horizon.

Source: BIS Asset Management Asset Allocation Module (BAAM).
The future of reserve manager returns

- However, under several forward-looking scenarios, the traditional relationships that we know start to breakdown.

Projected risk and return relationship of selected asset classes under different scenarios

Percentage

Increasing yields and *Unchanged yields* are forward-looking regimes with annualised returns over a five-year projection horizon.

Source: BIS Asset Management Asset Allocation Module (BAAM).
The future of reserve managers’ investment strategies

- A more systematic look at these relationships renders the reserve manager with distinct investment strategies.

Projected risk and return relationship of selected asset classes under different scenarios*

*"Increasing yields" and "Unchanged yields" are forward-looking regimes with annualised returns over a five-year projection horizon.

Source: BIS Asset Management Asset Allocation Module (BAAM).
The future of reserve managers’ investment strategies

- A more systematic look at these relationships renders the reserve manager with distinct investment strategies.

Projected risk and return relationship of selected asset classes under different scenarios*

Percentage

Expected annual return (%)

Volatility (%)

- Unchanged yields
- Increasing yields

*"Increasing yields" and "Unchanged yields" are forward-looking regimes with annualised returns over a five-year projection horizon.

Source: BIS Asset Management Asset Allocation Module (BAAM).
How can we tell in which regime we will be?
The Strategic Asset Allocation Process

1. Reserve manager returns

2. Elements of a sound asset allocation framework
 a. Factor-based approach
 b. Macro foundation

3. BIS Asset Allocation Module (BAAM)
 a. Sound portfolio construction approaches
Reserve management framework

- We need a framework and a process.

Schema of a model reserve management process*

- Policy objectives and constraints
- Investment preferences
- Risk and return expectations

Strategic Asset Allocation

- Strategic benchmark
- Risk budget for active management

Tactical Asset Allocation

- Tactical benchmark
- Risk budget for implementation

Implementation
Elements of a Sound Asset Allocation Framework

1. A careful assessment of **objectives and constraints**
 - Policy objectives & constraints
 - Investment preferences

2. A **comprehensive assessment** of risks (interest rate, credit and currency and other market risks)

3. Forward looking analysis of **risk factors** instead of historical returns

4. Analysis of alternative views of the world based on a **macro foundation**

5. **Careful application** of quantitative portfolio construction tools
The Strategic Asset Allocation Process

1. Reserve manager returns

2. Elements of a sound asset allocation framework
 a. Factor-based approach
 b. Macro foundation

3. BIS Asset Allocation Module (BAAM)
 a. Sound portfolio construction approaches
The factor-based approach: summary

Schematic representation of a factor-based approach to portfolio construction

Factor projection
- Identification
- Modelling
- Estimation
- Projection

Market data → Yield curve valuation and models → Historical factors

Views → Time series modelling → Projected factors

Return projection
- Approximation
- Factor translation

Asset pricing → Forward-looking return distributions

Portfolio construction
- Objective definition
- Optimisation
- Decision

Portfolio optimisation → Asset class weights
The Strategic Asset Allocation Process

1. Reserve manager returns

2. Elements of a sound asset allocation framework
 a. Factor-based approach
 b. **Macro foundation**

3. BIS Asset Allocation Module (BAAM)
 a. Sound portfolio construction approaches
The link between macro and financial variables

- We must start by establishing a link between macroeconomic and financial variables.

Evolution of the United States output gap
Percentage points

Source: BIS Asset Management Asset Allocation Module (BAAM).

Evolution of the United States PCE inflation
Yearly percent change

Source: BIS Asset Management Asset Allocation Module (BAAM).

Evolution of the US Federal Funds Rate
Percentage

Source: BIS Asset Management Asset Allocation Module (BAAM).
Fixing the broken link

- We propose three steps to rebuild the relationship between macro and financial variables.

Extending the dynamic Nelson-Siegel term structure model (Diebold and Li, 2006)

- The extension allows to move away from abstract definitions of the “level” factor
- Integrating large scale factor models
- Rotated version with short rate, slope and curvature (Nyholm, 2015)

\[
y_t(\tau) = \beta_1 + \beta_2 \left(1 - \frac{1 - e^{-\lambda \tau}}{\lambda \tau}\right) + \beta_3 \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau}\right)
\]
Fixing the broken link

- We propose three steps to rebuild the relationship between macro and financial variables.

2 Modelling the short rate in its shadow version

- The shadow yield curve is a hypothetical yield curve that would exist if Physical currency were not available
- Co-operation with ECB’s Capital Markets Division

Evolution of the short rate and the shadow short rate

Percentage

Source: BIS Asset Management Asset Allocation Module (BAAM).
Fixing the broken link

- The shadow short rate captures the full yield curve dynamics in one single number.

US government yield curve as of the end of November 2010

Percentage

- Steeper curve
- Higher curvature

Evolution of the short rate and the shadow short rate

Percentage

US government yield curve as of the end of November 2010

Percentage

- Flatter curve
- Lower curvature

Source: BIS Asset Management Asset Allocation Module (BAAM).
Fixing the broken link: does it work?

- We propose three steps to rebuild the relationship between macro and financial variables.

Modelling the short rate in its shadow version

- The shadow yield curve is a hypothetical yield curve that would exist if Physical currency were not available
- Co-operation with ECB’s Capital Markets Division

Evolution of the shadow short rate and Consensus Expectations for the Federal Funds Rate

Percentage

Sources: BIS Asset Management Asset Allocation Module (BAAM), Consensus Expectations.
Fixing the broken link: does it work?

- We propose three steps to rebuild the relationship between macro and financial variables.

Modelling the short rate in its shadow version

- The shadow yield curve is a hypothetical yield curve that would exist if Physical currency were not available
- Co-operation with ECB’s Capital Markets Division

![Graph of Evolution of the shadow short rate and Federal Funds Rate futures prices](image-url)
Fixing the broken link

- We propose three steps to rebuild the relationship between macro and financial variables.

3 Form a Taylor-rule based projection of the shadow short rate

- Directly modelling the short rate allows to easily integrate assumptions on the policy rate setting into the yield curve modelling.
- Specification with output gap and inflation
- Policy inertia incorporated

Taylor rule under the rotated Nelson-Siegel model

\[s_t = \alpha + \beta (E_t[\pi_{t+1}] - \pi^*) + \gamma x_t + \delta s_{t-1} + \epsilon_t \]

- \(s_t \): Short rate factor in the rotated NS model
- \(E_t[\pi_{t+1}] \): Expected inflation
- \(\pi^* \): Inflation target
- \(x_t \): Output gap
Macro-based yield curve factor projections

- We are now in a position to ground our forecasts of yield curve factors in macroeconomic foundations.
- We can rely on a mean-reverting approach to projecting GDP growth and expected inflation, or specify views.
- In either case, our yield curve factors will be a function of the trajectory of macro variables.

Note: Factors estimated using data since 1953
Macro-based yield curve factor projections

- We are now in a position to ground our forecasts of yield curve factors in macroeconomic foundations.
- We can rely on a mean-reverting approach to projecting GDP growth and expected inflation, or specify views.
- In either case, our yield curve factors will be a function of the trajectory of macro variables.

First yield curve factor (shadow short rate) for the US
Percentage points

Second yield curve factor (slope) for the US
Percentage points

Note: Factors estimated using data since 1953
The Strategic Asset Allocation Process

1. Reserve manager returns

2. Elements of a sound asset allocation framework
 a. Factor-based approach
 b. Macro foundation

3. BIS Asset Allocation Module (BAAM)
 a. Sound portfolio construction approaches
BAAM

- A comprehensive, collaboratively developed software solution that provides forward-looking perspective on asset returns and allocations to aid the investment decision-making process of official-sector investors.

- As part of BIS Innovation 2025, the Banking Department will institutionalize BAAM to make it a more effective means of supporting internal decision-making and delivering on its collaborative mandate.
How is BAAM used?

- BAAM has multiple use cases supporting both internal portfolios and the Banking customer community.
- For example, BAAM was the analytical foundation of the studies supporting Innovation 2025.
- It is also routinely used to support customer requests for advisory services.

Internally focused

- Banking strategy for Innovation 2025
- Gold policy
- Strategic asset allocation proposals for the Own Funds
- Second opinion for ALM studies of the Pension Fund
- Tactical strategy formulation

Customer focused

- Knowledge-sharing tool at Banking seminars
- Customised studies
- Peer reviews for key Banking customers
- Quantitative studies for new BISIPs or other candidate products
- Support collaborative research projects
A brief history

- BAAM began as an entrepreneurial effort over 10 years ago to support internal asset allocation studies and serve as a tool for knowledge-sharing at BIS seminars.
- Since that time, it has grown in sophistication with an expanded set of analytical functionality and a growing number of internal and external use cases.
- Central bank collaboration has been an indispensable feature of BAAM development.

A brief development timeline

- **Prior to 2008**: Loose collection of yield curve and asset allocation tools (mostly implemented in Excel).
- **2008 - 2011**: Collaboration with Banco Central do Brasil (BCB) to develop an asset allocation system, resulting in coverage of core fixed income markets, including G4 governments, corporates, Agency MBS.
- **2012**: Coverage of all developed economy government bond markets.
- **2013**: Coverage of nearly all emerging economy government bond markets.
- **2014**: Macro based yield curves, equities and other diversifying assets (collaboration with the ECB).
- **2016**: Empirical factor construction (e.g. carry) and back-testing functionality (collaboration with Banco de Mexico).
- **2018**: External manager evaluation functionality, with a deployment of several Machine Learning techniques.
The Strategic Asset Allocation Process

1. Reserve manager returns

2. Elements of a sound asset allocation framework
 a. Factor-based approach
 b. Macro foundation

3. BIS Asset Allocation Module (BAAM)
 a. Sound portfolio construction approaches
Current projects

- From both practical and technical standpoints however, reserve managers still face **important challenges** at the portfolio optimization stage.
- **In progress:** Bayesian optimization (collaboration with Banco Central de Reserva del Peru) and Near-optimal portfolio construction (collaboration with the Bank of Israel).

Some challenges for asset allocation

- Portfolio construction algorithms are well known for being **sensitive** to input parameters.
- Reserve managers may also want to **incorporate their views** or priors into the allocation process.
- In practice, portfolio optimisation **supports but seldom replaces** the final investment decision.

Note: Diagrams are used for illustrative purposes only.
Your questions?
Annex
International reserves’ policy objectives

- The objectives for the management of the international reserves should first and foremost stem from the economic function of the FX reserves\(^1\).

- The potential use of foreign exchange reserves can be classified as follows:
 1. Intervention in the FX market, with a view to influencing the exchange rate and/or maintaining orderly market conditions
 2. Execution of payments for goods and services for the country, particularly assuming difficulties in obtaining external finance
 3. Granting of emergency liquidity assistance to sectors of the economy, typically the banking sector
 4. Underpinning of investor confidence in the country’s ability to meet its FX commitments
 5. Execution of payments for the government (possibly within the context of broader debt management operations)
 6. Support of domestic monetary policy liquidity management operations (eg through FX swaps, effectively using FX claims as collateral)
 7. Investment of excess reserves

Reserve management objectives

- The balance between these will depend on country-specific factors. Invariably however, central banks can map them into the desirable characteristics of the structure of the portfolio: capital preservation (or “safety”), liquidity and return.

Economic uses of reserves

Reserve management objectives

Source: Self-elaboration, for illustrative purposes.
Reserve management policy objectives

- Liquidity’s definition is clear: the ability to raise sufficient funds to meet the corresponding demands.
- On the other hand, though “safety” and “return” may not appear as straightforward concepts, their precise definition depends on a number of choices.

Reserve management objectives: definitions

<table>
<thead>
<tr>
<th>Liquidity</th>
<th>Safety</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refers to funding and market liquidity.</td>
<td>A precise definition is rarely straightforward. However, typically refers to having low tolerance for risk as a means to achieve value storage.</td>
<td>Naturally linked to the concept of safety, it refers to the generation of investment returns.</td>
</tr>
<tr>
<td>This can be defined as the ability to raise funds at short notice, through either the sale of an asset with low price impact, or access to external funding.</td>
<td>Often, risk tolerance is not explicitly articulated.</td>
<td>A return target may or may not be specified by the reserve manager.</td>
</tr>
</tbody>
</table>

Source: Self-elaboration, for illustrative purposes.
Reserve management policy objectives

- This is usually represented as a trade-off through a hierarchical approach.

Hierarchical approach: model 1

1. Liquidity requirements are specified.
2. Safety requirements are defined.
3. A strategy to maximise return is chosen.

Hierarchical approach: model 2

1. Liquidity requirements are specified.
2. An explicit trade-off between safety and return is attempted.
3. Source: Self-elaboration, for illustrative purposes.
Reserve management policy objectives

- In practice, liquidity is typically the dominating requirement for foreign reserves management.

Source: BIS Reserve Management Survey 2016. 120 respondents in total.
In reaching any solution to the portfolio optimisation problem, central banks are inevitably subject to a series of institutional and environmental constraints that will influence their final choice.

Four of these constraints deserve mention:

A map of constraints for reserve management

<table>
<thead>
<tr>
<th>Nature</th>
<th>Posed question</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primacy of monetary policy and financial stability</td>
<td>Whether reserve management operations interfere with primary goals?</td>
<td>Inhibition from investing in certain asset classes or engaging in active asset management.</td>
</tr>
<tr>
<td>Domestic governance</td>
<td>Are reserve management operations subject to rules for the distribution of profits?</td>
<td>Definition of a lower level of risk tolerance.</td>
</tr>
<tr>
<td>International environment</td>
<td>Do reserve managers have the potential to disrupt financial activity in the markets they operate?</td>
<td>Inhibition from engaging in certain assets, currencies or rebalancing practices.</td>
</tr>
<tr>
<td>Internal factors</td>
<td>Are the human and technological resources ample enough to achieve the desired objectives?</td>
<td>Restriction from entering complex markets or instruments.</td>
</tr>
</tbody>
</table>

Source: Self-elaboration, for illustrative purposes.
1. Numeraire

- The first choice a reserve manager must make is the **unit** in which returns and their variability are ultimately measured for allocation purposes. Different choices imply different definitions of returns and risk (and of course, of “safety” and “return”).
- The numeraire can be set in nominal or real terms and is tied to the **policy objectives** of the FX reserves.

Examples of numeraire choices

<table>
<thead>
<tr>
<th>Policy objective / intended use of reserves*</th>
<th>Portfolio numeraire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure access to imports under stressed conditions</td>
<td>The basket of imports in real terms</td>
</tr>
<tr>
<td>Hedge the value of the country’s liabilities</td>
<td>Currency composition of the liabilities</td>
</tr>
<tr>
<td>Influence the value of the domestic currency</td>
<td>Currency most effective for intervention purposes</td>
</tr>
<tr>
<td>Protecting the central bank’s capital position</td>
<td>Domestic currency</td>
</tr>
</tbody>
</table>

Source: Self-elaboration, for illustrative purposes.

*Policy objectives are not mutually exclusive. This highlights the complexity of the numeraire choice.
2. Investment horizon

- When contemplating the portfolio optimisation problem, a reserve manager must define its investment horizon.
- We define this horizon with two dimensions. First, a projection horizon, τ which depends on the investment philosophy and the information sets used to forecast returns.

Note: Diagrams are used for illustrative purposes.
2. Investment horizon

- **Second**, a measurement period, k, referring to the period over which returns are computed in the portfolio construction process.
- It depends crucially on the period considered most relevant for measuring the performance of the portfolio.

\[
r_{t+3k} = \frac{P_{t+3k} - P_{t+2k}}{P_{t+2k}}
\]

Note: Diagrams are used for illustrative purposes.
2. Investment horizon

- By answering these two questions and contemplating their determinants a reserve manager can successfully define their investment horizon and then successfully incorporate it into his or her definition of risk tolerance, and subsequently, into the portfolio construction problem.

<table>
<thead>
<tr>
<th>Taxonomy of the investment horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determinant</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Policy objectives</td>
</tr>
<tr>
<td>Performance objective</td>
</tr>
<tr>
<td>Organisational influences</td>
</tr>
<tr>
<td>Investment philosophy</td>
</tr>
<tr>
<td>Information sets</td>
</tr>
</tbody>
</table>

Note: Diagrams are used for illustrative purposes.
3. Risk tolerance measure

- The risk tolerance measure is a reflection of an institution’s ability and willingness to accept risks.
- When setting the strategic asset allocation, we are particularly interested in comprehensive measures of risk.
- Note that it is not only the frequency of adverse outcomes that counts, but also their severity.

Examples of risk measures

- **Comprehensive measures of risk**
 - Volatility
 - Semi-variance
 - Value-at-risk
 - Expected shortfall
 - Short-fall probability

- **Individual risk measures**
 - Duration
 - Spread duration
 - Probability of default
 - Issuer exposure
 - Counterparty exposure
 - Country exposure

Source: Self-elaboration.
4. Eligible asset class universe

- Reserve managers must also have a **universe** of eligible asset classes.
- The suitability of an asset classes might be examined from a **risk factor** perspective to understand its degree of safety.
- One would also want to be aware of the **market liquidity** properties as well as the potential contribution to portfolio **return**. Additional questions would be asked about whether investment is operationally feasible for a given central bank.

<table>
<thead>
<tr>
<th>Asset Class</th>
<th>Interest rate risk</th>
<th>Realized inflation risk</th>
<th>Prepayment risk</th>
<th>Corporate credit risk</th>
<th>DM currency risk</th>
<th>EM currency risk</th>
<th>Dividend growth risk</th>
<th>Liquidity risk</th>
<th>Other risk factors*</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasury securities</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIPS</td>
<td>✓✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSAs</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US agency MBS</td>
<td>✓✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate bonds</td>
<td>✓✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM sovereign bonds in foreign currency</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-USD DM government securities in local currency</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-USD DM inflation-linked securities in local currency</td>
<td>✓✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM sovereign securities in local currency</td>
<td>✓✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US equities</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global equities</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>