Strategic Asset Allocation Models
Peering into the future with the help of market prices
XIII Meeting on International Reserves Management, CEMLA
• Introduction

• Strategic Asset Allocation
 Building the strategic portfolio with the help of market prices

• Active Management
 The fallacy of the long-term investor
 Absolute return strategies

• In the pursuit of a global portfolio
 Understanding the relative attractiveness of Mexican financial assets
Introduction

- Banco de México maintains an international reserve portfolio of **180 billion US dollars**.
- The primary objective of our reserve management is the **preservation of capital**.
- Our asset allocation is based on the following principles:
 - **The numeraire of the reserve portfolio is the U.S. dollar.** The selection of the numeraire is the most important decision in regards to currency allocation.
 - **The allocation to non-USD assets is based purely on the financial benefits of each asset class** (diversification and risk-return properties). In other words, Banco de México does not follow:
 - Asset-Liability Management approach
 - Balance of payments approach
 - The determination of the optimal portfolio follows a holistic view to harvest the maximum possible benefits of diversification. Hence, **Banco de México does not tranche its reserve portfolio**.
 - The investment horizon of the portfolio is **one year**.
Index

- Introduction

- Strategic Asset Allocation
 Building the strategic portfolio with the help of market prices

- Active Management
 The fallacy of the long-term investor
 Absolute return strategies

- In the pursuit of a global portfolio
 Understanding the relative attractiveness of Mexican financial assets
In the last few years, Banco de México has been working on enhancing its SAA framework, so that it can become more robust, forward-looking, and more aligned to the objective of capital preservation.

The core of such methodology is to rely on market-based information to extract the inputs to our SAA models.
The composition of the international reserve portfolio is determined using an optimization methodology that minimizes CVaR for a given level of expected return, using market prices as the main source of information.

Model inputs

- **Expected returns**
 - Fixed income: Actual structure of yield curve (Ho-Lee Model)
 - FX: Option pricing (Breeden Litzenberger)

Dependency Relation

- Historical: Spearman Correlation Matrix

Forward looking

- Total return marginal distribution

- Total return joint distribution
Example: Distribution of returns of Mexican assets

Source: Bank of Mexico with data from Bloomberg. * The implied distribution functions for FX, Fixed Income and Total Return securities are obtained using the Breeden-Litzenberger methodology, the Ho-Lee model, and a Copula model that combines the first two, respectively.
How do the Expected Returns Distributions of Eligible Assets Look Like?

- Expected return distributions for US dollar fixed income assets have improved significantly when compared to previous years, due to the higher level of interest rates and the reduction in market volatility.

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg. Non-overlapping returns.
How do the Expected Returns Distributions of Eligible Assets Look Like?

- Expected return distributions for US dollar fixed income assets have improved significantly when compared to previous years, due to the higher level of interest rates and the reduction in market volatility.

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg. Non-overlapping returns.
How do the Expected Returns Distributions of Eligible Assets Look Like?

- Expected return distributions for US dollar fixed income assets have improved significantly when compared to previous years, due to the higher level of interest rates and the reduction in market volatility.

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg. Non-overlapping returns.
Moreover, the distribution of US dollar fixed income returns is statistically more efficient than that of fixed income assets denominated in other currencies by showing higher expected returns (due to relatively higher yields in the US), and a lower variance (due to the high volatility associated with FX exposures).

Distribution of Annual Returns of 3-5 Year Government Bonds in Selected Currencies

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.
Note: the annual return for currencies includes both government bonds income and FX returns measured in USD terms. In the particular case of CNH, the 3 month local rate return is used.
Moreover, the distribution of US dollar fixed income returns is statistically more efficient than that of fixed income assets denominated in other currencies by showing higher expected returns (due to relatively higher yields in the US), and a lower variance (due to the high volatility associated with FX exposures).

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.
Note: the annual return for currencies includes both government bonds income and FX returns measured in USD terms. In the particular case of CNH, the 3 month local rate return is used.
Moreover, the distribution of US dollar fixed income returns is statistically more efficient than that of fixed income assets denominated in other currencies by showing higher expected returns (due to relatively higher yields in the US), and a lower variance (due to the high volatility associated with FX exposures).

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.

Note: the annual return for currencies includes both government bonds income and FX returns measured in USD terms. In the particular case of CNH, the 3 month local rate return is used.
Moreover, the distribution of US dollar fixed income returns is statistically more efficient than that of fixed income assets denominated in other currencies by showing higher expected returns (due to relatively higher yields in the US), and a lower variance (due to the high volatility associated with FX exposures).

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.

Note: the annual return for currencies includes both government bonds income and FX returns measured in USD terms. In the particular case of CNH, the 3 month local rate return is used.
How do the Expected Returns Distributions of Eligible Assets Look Like?

• Moreover, the distribution of US dollar fixed income returns is statistically more efficient than that of fixed income assets denominated in other currencies by showing higher expected returns (due to relatively higher yields in the US), and a lower variance (due to the high volatility associated with FX exposures).

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.

Note: the annual return for currencies includes both government bonds income and FX returns measured in USD terms. In the particular case of CNH, the 3 month local rate return is used.
How do the Historical Relationships Between Assets are Incorporated?

- Correlation matrices confirm that currencies offer diversification benefits, though these are more prominent for non-traditional reserve currencies.

Correlation Matrix Between UST at Different Maturities and Selected Currencies

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.

Note: Spearman Correlation calculated using non-overlapping annual returns with data from 2013 to 2017

3 Non-traditional reserve currencies dominate traditional reserve currencies.
How Are the Restrictions to the Model Determined?

- To have educated restrictions set on our models, we run the optimization process under different historical scenarios (e.g. global financial crisis, European debt crisis), and see what would have been the optimal allocation under these circumstances. We then determine the minimum and maximum allocation for each asset class to be used in the new asset allocation analysis.

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.

New Mindset

What is the result?

Non-normal distribution of returns → codependence

Optimization model

Educated constraints ← prospective returns ← new

Between assets
The portfolio’s expected distribution of returns has an attractive risk-return profile when compared to that of a UST 3-5 years exposure. In fact, the distribution is farther right in terms of expected return, and it is also narrower (measured in terms of volatility or other left tail measures).

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.
What is the Result?

- The portfolio’s expected distribution of returns has an attractive risk-return profile when compared to that of a UST 3-5 years exposure. In fact, the distribution is farther right in terms of expected return, and it is also narrower (measured in terms of volatility or other left tail measures).

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.
• The portfolio’s expected distribution of returns has an attractive risk-return profile when compared to that of a UST 3-5 years exposure. In fact, the distribution is farther right in terms of expected return, and it is also narrower (measured in terms of volatility or other left tail measures).

• Moreover, given the aforementioned arguments, the bulk of our risk exposure lies within the US fixed income markets.

Source: Bank of Mexico with data from Bank of America / Merrill Lynch and Bloomberg.
In 2019, we chose a portfolio that had a very similar left tail distribution to that of 2018’s benchmark but that was tilted to the right. This was achieved by increasing the duration of the portfolio, by reducing gold exposure, and by reallocating risk between our basket of eligible currencies (similar USD exposure overall). We believe that the portfolio is better suited to weather the U.S. economy’s late cycle environment.
New Findings: A new Understanding of FX and FI risk Combined

- Our traditional approach to investing in a new currency included the use of short-term securities. Nevertheless, this year we learned that there is a powerful diversification benefit of using as an investment vehicle the long end of sovereign yield curves. Intuitively, this is attained due to the fact that - excluding a credit event - yields and FX returns are negatively correlated.

- Therefore, this year we incorporated new fixed income yield curves and reassigned our non-USD investments from the short to the long end of the curve.
• Introduction

• Strategic Asset Allocation
 Building the strategic portfolio with the help of market prices

• Active Management
 The fallacy of the long-term investor
 Absolute return strategies

• In the pursuit of a global portfolio
 Understanding the relative attractiveness of Mexican financial assets
Some of the traditional SAA premises (including having a long-term approach to SAA) might not be optimal and may only be the consequence of legacy. In this regard, we replicated our approach at different frequencies in order to gauge the impact of the investment horizon decision.

Our finding suggests that increasing the frequency of the optimization procedure generates a strategy with a better risk-return profile. However, given practical issues such as transaction costs, we believe 3 months is the right spot and we are now using this tool to guide our tactical decisions.

Distribution of Realized Weekly Returns of Optimization Strategies at Different Frequencies

<table>
<thead>
<tr>
<th>Metric</th>
<th>1M</th>
<th>3M</th>
<th>6M</th>
<th>9M</th>
<th>1Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (A)</td>
<td>0.04%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>CVaR 95%</td>
<td>-0.22%</td>
<td>-0.26%</td>
<td>-0.36%</td>
<td>-0.41%</td>
<td>-0.57%</td>
</tr>
<tr>
<td>Volatility (B)</td>
<td>0.11%</td>
<td>0.14%</td>
<td>0.18%</td>
<td>0.21%</td>
<td>0.26%</td>
</tr>
<tr>
<td>Efficiency (A/B)</td>
<td>0.32</td>
<td>0.32</td>
<td>0.25</td>
<td>0.25</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Source: Central Bank of Mexico with data from Bloomberg indices. To analyze the investment horizon we used non-overlapping weekly returns from 2006 and assuming independence we accumulated for 3, 6, 9 and 12 months. For each iteration, given a fixed date starting in 2006, we used 5 years of historical returns to adjust the marginal probability density of each asset and to determine the maximum likelihood parameters of a t-student copula. Given the t copula parameters, we simulated 10,000 realizations of the percentiles of each asset, which were then transformed into returns with the help of each marginal density. Once we get the compounded returns for each horizon, we defined individual and group boundaries for the allocation and implement the optimization by maximizing the excess returns for a fixed level of risk defined as the 95% CVaR. Finally, we evaluated the portfolio returns using the weights obtained from the optimization for the different horizons. This process was implemented for each week between 2006 and 2018.
With time, we also realized that the use of benchmark portfolios to frame investment decisions could expose us to risks that we may not always want to bear. For instance, a sudden increase of interest rates (normalization of term-premium).

As such, having alternative investment portfolios – not subject to a benchmark – could allow portfolio managers to focus in those strategies in which they have their highest conviction. In fact, they could even benefit from the normalization of interest rates through carrying negative duration in their portfolios.

With said objective in mind, we launched a pilot program of **absolute return portfolios** through our External Asset Management Program.

Strategy Diversification

<table>
<thead>
<tr>
<th>Benchmarked Strategies</th>
<th>Non-Benchmarked Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td></td>
</tr>
<tr>
<td>• Portfolio's return highly correlated to the benchmark's return</td>
<td></td>
</tr>
<tr>
<td>• Higher flexibility. The investment decisions depend solely on the degree of conviction and downside-risk management considerations</td>
<td></td>
</tr>
<tr>
<td>• Ability to adopt long and short positions</td>
<td></td>
</tr>
<tr>
<td>• Capital preservation in an environment of higher interest rates (particularly in United States)</td>
<td></td>
</tr>
<tr>
<td>• Higher returns through active management</td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td></td>
</tr>
<tr>
<td>• Exposure to risk factors inherent to the benchmark</td>
<td></td>
</tr>
<tr>
<td>• Dynamically allocate risk to maximize risk-adjusted return opportunities</td>
<td></td>
</tr>
</tbody>
</table>

Correlation Matrix of the Assets in the International Reserves Portfolio

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>MBS</th>
<th>Gold</th>
<th>Cash</th>
<th>Manager 1</th>
<th>Manager 2</th>
<th>Manager 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>MBS</td>
<td>68%</td>
<td>100%</td>
<td></td>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Gold</td>
<td>60%</td>
<td>28%</td>
<td>100%</td>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Cash</td>
<td>3%</td>
<td>-2%</td>
<td>-2%</td>
<td>-2%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

• Introduction

• Strategic Asset Allocation
 Building the strategic portfolio with the help of market prices

• Active Management
 The fallacy of the long-term investor
 Absolute return strategies

• In the pursuit of a global portfolio
 Understanding the relative attractiveness of Mexican financial assets
• We have also used these forward-looking methodologies to enhance our market intelligence activities. In particular, to analyze our own country’s assets, to understand the perspective of international investors in Mexican securities; and to analyze the structure of the market and identify potential opportunities and vulnerabilities.

Implied* Distribution of Mexican Peso Annual Returns

Density

<table>
<thead>
<tr>
<th>Date</th>
<th>Mean</th>
<th>Volatility</th>
<th>CVaR 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 15</td>
<td>-2.0%</td>
<td>9.0%</td>
<td>23.4%</td>
</tr>
<tr>
<td>Dec 16</td>
<td>-1.8%</td>
<td>9.3%</td>
<td>24.4%</td>
</tr>
<tr>
<td>Jun 16</td>
<td>-3.9%</td>
<td>9.1%</td>
<td>26.0%</td>
</tr>
<tr>
<td>Oct 16</td>
<td>-3.2%</td>
<td>9.9%</td>
<td>24.5%</td>
</tr>
<tr>
<td>Dec 16</td>
<td>-4.9%</td>
<td>9.3%</td>
<td>26.6%</td>
</tr>
<tr>
<td>Jun 17</td>
<td>-4.8%</td>
<td>9.4%</td>
<td>26.4%</td>
</tr>
<tr>
<td>Dec 17</td>
<td>-4.8%</td>
<td>8.6%</td>
<td>25.7%</td>
</tr>
<tr>
<td>Jun 18</td>
<td>-4.8%</td>
<td>9.1%</td>
<td>26.2%</td>
</tr>
<tr>
<td>Dec 18</td>
<td>-4.3%</td>
<td>9.2%</td>
<td>26.7%</td>
</tr>
<tr>
<td>Jun 19</td>
<td>-4.9%</td>
<td>8.7%</td>
<td>25.5%</td>
</tr>
<tr>
<td>Ago 19</td>
<td>-4.8%</td>
<td>9.4%</td>
<td>26.7%</td>
</tr>
</tbody>
</table>

Source: Bank of Mexico with data from Bloomberg. * The implied distribution functions for FX, Fixed Income and Total Return securities are obtained using the Breeden-Litzenberger methodology, the Ho-Lee model, and a Copula model that combines the first two, respectively.

US presidential election
• The methodology also allows for a comparison between different countries and offers a different perspective for the understanding of their market structures.
• For example, the countries with narrower densities for FX returns are usually the ones that intervene in their currency markets more actively.

Implied* Distribution of Annual Returns for Selected Currencies as of August 29, 2019

Density

Latin America
- **Country**: Europe, Chile, Colombia, Peru, Brazil
 - **Mean**: 2.5%, -1.0%, -1.8%, -2.7%, -4.8%
 - **CVaR 95%**: 8.5%, 19.2%, 22.0%, 16.7%, 26.7%
 - **Volatility**: 5.4%, 7.9%, 8.8%, 4.9%, 9.4%
 - **Efficiency***: 2.3%, -2.4%, -2.3%, -1.4%, -5.5%

BRICS Excluding Brazil
- **Country**: Europe, China, India, Russia, South Africa, Mexico
 - **Mean**: 2.5%, -1.1%, -2.8%, -4.3%, -4.3%, -4.8%
 - **CVaR 95%**: 8.5%, 19.2%, 16.5%, 27.9%, 31.9%, 26.7%
 - **Volatility**: 5.4%, 7.9%, 5.7%, 9.2%, 12.2%, 9.4%
 - **Efficiency***: 2.3%, -1.1%, -3.0%, -4.9%, -5.2%, -5.5%

Emerging Europe
- **Country**: Europe, Hungary, Poland, Czech Republic, Mexico
 - **Mean**: 2.3%, 2.0%, 0.4%, 0.1%, -4.8%
 - **CVaR 95%**: 3.3%, 15.9%, 16.8%, 14.3%, 26.7%
 - **Volatility**: 3.3%, 7.7%, 7.5%, 6.2%, 9.4%
 - **Efficiency***: 2.3%, 1.6%, 0.1%, -0.1%, -3.5%

Emerging Asia
- **Country**: Europe, Taiwan, Korea, Thailand, Indonesia, Mexico
 - **Mean**: 2.5%, 1.0%, 1.0%, 0.0%, -3.7%, -4.8%
 - **CVaR 95%**: 8.5%, 9.2%, 14.0%, 11.3%, 18.3%, 26.7%
 - **Volatility**: 5.4%, 4.5%, 6.1%, 6.1%, 5.7%, 9.4%
 - **Efficiency***: 2.3%, 0.9%, 0.8%, 0.8%, -4.0%, -5.5%

Source: Bank of Mexico with Bloomberg data. Returns implied in one year options. Rendimientos implícitos en las opciones de mercado a un horizonte de un año* The implied distribution functions for FX, Fixed Income and Total Return securities are obtained using the Breeden-Litzenberger methodology, the Ho-Lee model, and a Copula model that combines the first two, respectively. Efficiency is measured as the expected value of the utility derived from the associated wealth at each return. The utility function is the natural log of wealth.
This process is also helpful in analyzing historical patterns, detecting regime changes, and identifying shifts in investment flows in global markets.

Source: Bank of Mexico with data from Bloomberg. * The implied distribution functions for FX, Fixed Income and Total Return securities are obtained using the Breeden-Litzenberger methodology, the Ho-Lee model, and a Copula model that combines the first two, respectively.
Local currency fixed income returns show a narrower dispersion, and are usually centered on positive levels, around each country’s reference rate.

Implied* Distribution of Annual Returns in Local Currency Fixed Income for Selected Countries as of August 29, 2019

Density

Source: Bank of Mexico with data from Bloomberg. *) The implied distribution functions for FX, Fixed Income and Total Return securities are obtained using the Breeden-Litzenberger methodology, the Ho-Lee model, and a Copula model that combines the first two, respectively.
Local currency denominated fixed income returns are dominated by India and Indonesia at the beginning of the reviewed period (2015-2017), and by Mexico from 2017 onwards.

It is also worth noting that there seems to be a positive relationship between expected return and volatility, as well as a gradual deterioration in relative efficiency in developed markets.

Source: Bank of Mexico with data from Bloomberg. * The implied distribution functions for FX, Fixed Income and Total Return securities are obtained using the Breeden-Litzenberger methodology, the Ho-Lee model, and a Copula model that combines the first two, respectively.
Unheded local currency fixed income returns

- Es útil estudiar la distribución de retornos que un inversor con un numerario en dólares estadounidenses, como un administrador de reservas, recibiría al comprar bonos en moneda local sin protegerse del riesgo de cambio.
- En el caso de México, los altos retornos que se pueden obtener del componente de renta fija y la expectativa de tasas más bajas en el futuro, están parcialmente compensados por el riesgo asociado al riesgo de cambio. Los países con una mayor eficiencia, mostrando un mayor retorno esperado y menor volatilidad relativa, son India, Corea del Sur, Tailandia, y China.

Implied* Distribution of Unhedged Annual Returns in Local Currency Fixed Income for Selected Countries as of August 29, 2019

Latinoamérica

Europa emergente

Asia emergente

BRICS excluyendo Brasil

Source: Banco de México con datos de Bloomberg. * Las funciones de distribución implícitas para FX, Renta Fija y Total Return se obtienen utilizando la metodología de Breeden-Litzenberger, el modelo de Ho-Lee y un modelo Copula que combina los dos, respectivamente.

25

Unhedged local currency fixed income returns

- Es útil estudiar la distribución de retornos que un inversor con un numerario en dólares estadounidenses, como un administrador de reservas, recibiría al comprar bonos en moneda local sin protegerse del riesgo de cambio.
- En el caso de México, los altos retornos que se pueden obtener del componente de renta fija y la expectativa de tasas más bajas en el futuro, están parcialmente compensados por el riesgo asociado al riesgo de cambio. Los países con una mayor eficiencia, mostrando un mayor retorno esperado y menor volatilidad relativa, son India, Corea del Sur, Tailandia, y China.

Implied* Distribution of Unhedged Annual Returns in Local Currency Fixed Income for Selected Countries as of August 29, 2019

Latinoamérica

Europa emergente

Asia emergente

BRICS excluyendo Brasil

Source: Banco de México con datos de Bloomberg. * Las funciones de distribución implícitas para FX, Renta Fija y Total Return se obtienen utilizando la metodología de Breeden-Litzenberger, el modelo de Ho-Lee y un modelo Copula que combina los dos, respectivamente.
Our study period shows that as the Federal Reserve started its policy normalization process, the return distribution for the US becomes noticeably dominant. All the other countries also follow the US in increasing its expected returns.

Source: Bank of Mexico with data from Bloomberg. * The implied distribution functions for FX, Fixed Income and Total Return securities are obtained using the Breeden-Litzenberger methodology, the Ho-Lee model, and a Copula model that combines the first two, respectively.
The inclusion of unhedged Emerging Market local currency fixed income assets in a global portfolio offers important diversification benefits. It is worth noting the negative correlation of UST and JGBs with the local currency markets of Mexico, Brazil, Colombia, Peru and Chile. This results in a portfolio with an overweight in emerging markets and underweight in developed markets.

Optimal portfolio: Unhedged global local currency fixed income

- Elevated correlation between the market of local currency fixed income of emerging countries and developed countries, mainly in local currency, Latin America and Asia.
- Correlation between the local currency fixed income market of Mexico, Brazil, Colombia, Peru and Chile.

Matriz de correlaciones de activos de renta fija de mercados globales seleccionados

Porcentaje

![Diagrama de correlaciones](attachment:image.png)

Fuente: Banco de México con datos de Bloomberg. *Rendimientos semanales sin traslape (non-overlapping) anualizados. Datos de 2014-2019. La correlación de Spearman está dada por $\rho_s = \frac{\text{Cov}(X_s, Y_s)}{\sqrt{\text{Var}(X_s) \cdot \text{Var}(Y_s)}}$, mientras que la correlación lineal está definida como $\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}}$.*

Renta fija global: evolución de la sobre/sub exposición del portafolio óptimo

Índice de referencia

![Gráfico de exposición](attachment:image2.png)

Fuente: Banco de México con datos de Bloomberg. Nota: se realizó una optimización de portafolios a fin de mes en un período que comprende de enero de 2015 a agosto de 2019. 1/ Se usa el portafolio de máxima razón de eficiencia, definida como el cociente del rendimiento entre el CVaR. 2/ Se utilizó el índice Barclays Global Government Index Unhedged.
• La inclusión de valores de mercado emergentes no protegidos ofrece algunos beneficios de diversificación.
• Rusia, Corea del Sur y Indonesia muestran una baja correlación con los mercados desarrollados, mientras que la de México está alrededor del 30% con los mercados desarrollados.
• La cartera deportafolio óptimo no protegido con valores de mercado emergentes tiende a sobrepasar en el mercado estadounidense, América Latina y BRICS excluyendo Brasil, y a subponderar en otras carteras de mercados desarrollados.

Fuente: Banco de México con datos de Bloomberg. *Rendimientos semanales sin traslape (non-overlapping) anualizados. Datos de 2014-2019. La correlación de Spearman está dada por $\rho_s = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$ mientras que la correlación lineal está definida como $\rho_P = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$.
The optimal global multi-asset portfolio suggests an increase to fixed income markets, specifically in EM, and a lower exposure to equities.

In the case of Mexico, the model recommends a long position of Mexican assets in 36 out of the 56 months in our study. Such exposure is concentrated in dollar denominated bonds (UMS).

• The optimal global multi-asset portfolio suggests an increase to fixed income markets, specifically in EM, and a lower exposure to equities.
• In the case of Mexico, the model recommends a long position of Mexican assets in 36 out of the 56 months in our study. Such exposure is concentrated in dollar denominated bonds (UMS).
Final Remarks

• Financial markets the last few years have posed unprecedented challenges for reserve managers, mainly because of the transition to a more normal stance of monetary policy in the US, and the zero to negative yield environment in other developed markets.

• Banco de México has approached this new economic and financial landscape with a reassessment of the reserve management priorities towards capital preservation.

• In doing so, we had to reassess the way in which we analyze asset class returns, and therefore, the steps to determine our Strategic Asset Allocation. Our models have moved away from relying on historical information, into more prospective indicators that can be extracted from market prices (options and yield curves).

• Our methodology has proven useful not only to guide our SAA, but also to enhance our active management decision process. In that regard, we have also transitioned from market-timing strategies, into more systematic trading positions.

• Finally, this methodology can also be used to assess the relative attractiveness of different assets and understand global flows from an investor perspective.

• Going forward, Banco de México will continue to evaluate and embrace methodologies that enhance the risk-return profile of its investment portfolio. It will also keep a flexible approach to adapt its investment strategies to the changing conditions of financial markets.
Appendix
METODOLOGÍA: DISTRIBUCIONES PROSPECTIVAS PARA EL RENDIMIENTO CAMBIARIO - BREEDEN LITZENBERGER

Curva de volatilidad implícita en opciones del peso mexicano (USDMXN)

<table>
<thead>
<tr>
<th>Porcentaje</th>
<th>Opciones tipo put</th>
<th>Opciones tipo call</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utilizar la metodología de Breeden-Litzenberger

a) Obtener una curva “continua” de precios de un call europeo para diferentes strikes

![Interpolación a través de un polinomio de grado 5](image)

b) Calcular la segunda derivada numérica de dicha curva respecto al strike

\[
\frac{d^2 c_0(K)}{dK^2} = c_0(K - d) + c_0(K + d) - 2c_0(K)
\]

c) Transformar a de una distribución de precios a una de rendimientos

\[x = \frac{k}{S_0} - 1 \]

Distribución de rendimientos del peso mexicano

Densidad

Fuente: Banco de México con datos de Bloomberg. *Rendimientos implícitos en las opciones de mercado a un horizonte de un año al 19 de agosto de 2019. Las distribuciones implícitas se obtienen con base en el modelo de Ho-Lee y kernels Epanechnikov.*

Deltas

<table>
<thead>
<tr>
<th>Deltas</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vola.</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Volatilidad

<table>
<thead>
<tr>
<th>Strikes (pesos por dólar)</th>
<th>Preio del Call</th>
<th>Volatilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Opciones tipo call

<table>
<thead>
<tr>
<th>Option Type</th>
<th>Strike (pesos por dólar)</th>
<th>Price of the Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Call</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Call</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Call</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Opciones tipo put

<table>
<thead>
<tr>
<th>Option Type</th>
<th>Strike (pesos por dólar)</th>
<th>Price of the Put</th>
</tr>
</thead>
<tbody>
<tr>
<td>Put</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Put</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Put</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Put</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Interpolación a través de un polinomio de grado 5

Datos de volatilidad implícita en opciones del peso mexicano (USDMXN)

<table>
<thead>
<tr>
<th>Strike (pesos por dólar)</th>
<th>Volatilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Datos de deltas

<table>
<thead>
<tr>
<th>Deltas</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vola.</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Datos de rendimientos

<table>
<thead>
<tr>
<th>Rendimiento</th>
<th>-50</th>
<th>-40</th>
<th>-30</th>
<th>-20</th>
<th>-10</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El primer paso necesario es obtener una curva cupón cero continua, para lo cual se ajusta el modelo de Nelson-Siegel-Svensson (NSS) a los datos de la curva de rendimiento de bonos cuponados observada en el mercado.

<table>
<thead>
<tr>
<th>Periodo</th>
<th>Vencimiento</th>
<th>Precio</th>
<th>Tasa spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>t=1</td>
<td>6 meses</td>
<td>pmono 6 meses</td>
<td>rmono 6 meses</td>
</tr>
<tr>
<td>t=2</td>
<td>12 meses</td>
<td>pmono 12 meses</td>
<td>rmono 12 meses</td>
</tr>
<tr>
<td>t=3</td>
<td>18 meses</td>
<td>pmono 18 meses</td>
<td>rmono 18 meses</td>
</tr>
</tbody>
</table>

Y que la volatilidad de la tasa de corto plazo se estima con un GARCH(1,1), lo que genera: \(\sigma \)

En este proceso semestral y utilizando el bono de 12 meses, se tiene que:

\[
p_{12}^{12} \text{meses} = e^{-r_{t}(\theta_{1})dt} \left[100 \times 0.5 + 100 \times 0.5 \right]
\]

Esta genera una ecuación con una incógnita a partir de la cual se obtiene \(\theta_{1} \). Así, se generan los siguientes dos elementos:

\[
p_{12}^{12} \text{meses} = e^{-r_{t}(\theta_{1})dt} \left[100 \times 0.5 + 100 \times 0.5 \right]
\]

Así, utilizando el bono de 18 meses y los resultados anteriores, se repite el proceso hasta encontrar \(\theta_{2} \) y obtener:

El primer paso necesario es obtener una curva cupón cero continua, para lo cual se ajusta el modelo de Nelson-Siegel-Svensson (NSS) a los datos de la curva de rendimiento de bonos cuponados observada en el mercado.
Posibilidades calibradas para la tasa de 1 mes dentro de 6 meses

Valor esperado en cada nivel del árbol = Forward a 1 mes estimada de la curva cero =

Fuente: Banco de México con datos al 29 de agosto de 2019.
El rendimiento cambiario implícito en opciones, cuando se excluye la apreciación/depreciación asociada al tipo de cambio forward, muestra que la relación riesgo y rendimiento tiene una pendiente cercana a cero.

Adicionalmente, sobresale que, en el caso de México, el peso muestra un rendimiento esperado cercano a cero y un CVaR elevado en comparación con otros países de mercados emergentes. En efecto, en los últimos meses, el peso muestra una de las razones de eficiencia más bajas de la muestra.

Fuente: Banco de México con datos de Bloomberg. *Rendimientos implícitos en las opciones de mercado a un horizonte de un año con base en información mensual del 30 de enero de 2015 al 29 de agosto de 2019. Las distribuciones implícitas utilizan la metodología de Breeden-Litzenberger y kernels Epanechnikov.*
La distribuciones de rendimientos totales (incluyendo FX) del mercado accionario son menos homogéneas que los otros mercados, pero resalta: 1) el elevado nivel de volatilidad (muy superior al de los otros mercados); 2) el bajo nivel de eficiencia y; 3) en muchos casos, el sesgo a observar pérdidas importantes.

En este mercado, la distribución de México es la menos atractiva en términos de eficiencia, al tener el rendimiento esperado más bajo. Lo anterior, es probablemente el resultado del elevado nivel de correlación entre el mercado de renta variable y el peso mexicano.

Distribución implícita en precios de mercado de los rendimientos anuales de renta variable sin cobertura cambiaria de países seleccionados al 29 de agosto de 2019

Densidad

Latinoamérica

<table>
<thead>
<tr>
<th>País</th>
<th>Media</th>
<th>CVaR 95%</th>
<th>Volatilidad</th>
<th>Eficiencia*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estados Unidos</td>
<td>0.3%</td>
<td>33.3%</td>
<td>14.6%</td>
<td>-0.003</td>
</tr>
<tr>
<td>Brasil</td>
<td>1.8%</td>
<td>45.6%</td>
<td>23.6%</td>
<td>-0.012</td>
</tr>
<tr>
<td>Chile</td>
<td>0.8%</td>
<td>19.5%</td>
<td>34.3%</td>
<td>-0.014</td>
</tr>
<tr>
<td>México</td>
<td>-4.8%</td>
<td>26.5%</td>
<td>9.3%</td>
<td>-0.056</td>
</tr>
</tbody>
</table>

Europa del este

<table>
<thead>
<tr>
<th>País</th>
<th>Media</th>
<th>CVaR 95%</th>
<th>Volatilidad</th>
<th>Eficiencia*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estados Unidos</td>
<td>0.3%</td>
<td>33.3%</td>
<td>14.6%</td>
<td>-0.008</td>
</tr>
<tr>
<td>Polonia</td>
<td>0.1%</td>
<td>36.5%</td>
<td>18.6%</td>
<td>-0.017</td>
</tr>
<tr>
<td>Turquía</td>
<td>1.5%</td>
<td>45.9%</td>
<td>25.8%</td>
<td>-0.020</td>
</tr>
<tr>
<td>México</td>
<td>-4.8%</td>
<td>26.5%</td>
<td>9.3%</td>
<td>-0.056</td>
</tr>
</tbody>
</table>

Asia

<table>
<thead>
<tr>
<th>País</th>
<th>Media</th>
<th>CVaR 95%</th>
<th>Volatilidad</th>
<th>Eficiencia*</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>2.4%</td>
<td>40.7%</td>
<td>22.3%</td>
<td>-0.005</td>
</tr>
<tr>
<td>Estados Unidos</td>
<td>0.3%</td>
<td>30.3%</td>
<td>14.0%</td>
<td>-0.008</td>
</tr>
<tr>
<td>Sudáfrica</td>
<td>-0.2%</td>
<td>39.2%</td>
<td>19.3%</td>
<td>-0.012</td>
</tr>
<tr>
<td>China</td>
<td>0.8%</td>
<td>48.2%</td>
<td>20.0%</td>
<td>-0.012</td>
</tr>
<tr>
<td>Rusia</td>
<td>-4.8%</td>
<td>26.5%</td>
<td>9.3%</td>
<td>-0.056</td>
</tr>
<tr>
<td>Taiwán</td>
<td>-2.8%</td>
<td>48.5%</td>
<td>24.5%</td>
<td>-0.062</td>
</tr>
</tbody>
</table>

Fuente: Banco de México con datos de Bloomberg. *Rendimientos implícitos en las opciones de mercado a un horizonte de un año. Las distribuciones implícitas se obtienen con base en el modelo de Breeden-Litzenberger y kernels Epanechnikov. La eficiencia está medida como el valor esperado de la utilidad de la riqueza asociada a cada elemento del soporte. La función de utilidad que se utiliza es el logaritmo natural de la riqueza.
UNA PERSPECTIVA HISTÓRICA DE LA EFICIENCIA RELATIVA: RENDIMIENTO DE RENTA VARIABLE LOCAL CON EXPOSICIÓN AL TIPO DE CAMBIO

- La eficiencia relativa en el mercado de renta variable es relativamente estable a lo largo de las economías y del tiempo. Asimismo, resalta que es un mercado con niveles de volatilidad muy elevados, en el que el riesgo y el rendimiento esperado muestran un alto grado de dinamismo en el tiempo.
- En el caso de México, resalta que, de mediados de 2016 a la fecha, el rendimiento esperado de la distribución se ubica en el nivel más bajo de la muestra. Por otra parte, el nivel de CVaR permanece relativamente estable en un rango de entre 25% y 30%.

Evolución de la eficiencia relativa de la distribución de los rendimientos anuales de renta variable medidos en dólares de países seleccionados

Fecha: 30 enero 2015

Porcentaje

Fuente: Banco de México con datos de Bloomberg. *Rendimientos implícitos en las opciones de mercado a un horizonte de un año con base en información mensual del 30 de enero de 2015 al 29 de agosto de 2019. Las distribuciones implícitas utilizan la metodología de Breeden-Litzenberger, el modelo Ho-Lee y kernels Epanechnikov.
This document has been prepared exclusively for its use as supporting material for the XIII Meeting on International Reserves Management in Lima, Perú, in September, 2019.

It contains confidential and privileged information that is protected by Mexican law. Partial or total reproduction, modification, use, disclosure, and/or inappropriate or unauthorized distribution of any information without the prior consent of Banco de México may be prosecuted under Mexican law. Banco de México reserves the right to pursue in any form of legal action, including any damages, that could result from the inappropriate or unauthorized use of the information contained herein.