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Financial networks and financial stability
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Part 1

* Explain 3 main channels of financial contagion:
* Default cascades,
* Funding contagion / liquidity hoarding

* Fire sales externality

* Compute by hand:

* Fictitious default algorithm of Eisenberg & Noe (2001)

* DebtRank algorithm of Bardoscia, Battiston, Cacciolli et
Cardarell1 (2015)
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Part 2

* (@uve typical characteristics of large networks

e (Construct financial network data from balance sheet
data and large exposures

* Compute measures of financial contagion:

* System level: systemic risk, expected systemic loss
* Bank level: systemic importance, vulnerability

* Explain what 1s a multilayer network and why 1t 1s
important for assessing systemic risk

* Polednaetal. (JES, 2015)
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Financial network: set of

* Nodes: financial institutions (banks)

* Links between banks: Gy, (omay sl
Financial contagion: Ccomn feansrction I%db’%

* Spread of a shock from one bank to other banks
through the financial network

Systemic risk:

 Risk that financial stress 1in one bank leads to
financial stress in the whole tfinancial sector
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Asset price approach

Publicly traded stock market
prices of banks

Network estimated from time
series dependencies

Examples: SRISK, CoVAR

Key papers:
* Diebold & Yilmaz (2009)
+ Billio et al. (2012)

* Brownlees & Engle (2016)
* Adnan-Brunnermeier (2016)
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Balance sheet approach

Private data on assets and
liabilities of banks

Network 1s (partly) known

Systemic risk 1s estimated from
assumptions on contagion
mechanism

Key papers:

* Eisenberg & Noe (2001)
* Cifuentes et al. (2005)

* Gaietal (2011)
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Assets

Outside assets

* Liquid assets
* (Cash, gov bonds

* Illiquid assets

CENTRO DE ESTUDNOS MONE TAFIOS LANINOAME FaCANOS
’ ‘ !

Liabilities
- Outside liabilities
* Deposits

In-network liabilities

e Loans to firms/consumers

In-network assets

Equity
? a ' * Capital + reserves

b.

P;

C/
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Types of contagion
* Default cascades
* Funding contagion / liquidity hoarding

* Fire sales externality
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Default cascade

Shock leads to default if w; < 0)

y




9

¥ UNIVERSITY OF AMSTERDAM
<% Amsterdam School of Economics

CENTRO DE ESTUDNOS MONE TAROS LANINDAME FaCaANCS

Shock 1s transmitted through asset side

Default cascade mechanism gets amplified by
* Bankruptcy cost

* Incorporating default risk 1n the asset values

* Fire sales externality
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Funding contagion

Shock to external funding bg
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Shock 1s transmitted through liability side
Net worth 1s not directly affected (no defaults)

But mechanism gets amplified by:

* Liquidity hoarding: Bank B converts its remaining loan to A into
cash

* Sales of 1lliquid assets (fire sales)
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Shock on asset price

Assumptions:

* Banks would like to keep their leverage ratio constant
* Bank regulation, Internal risk management

* Assets are 1lliquid: sale leads to drop 1n price

 Balance sheet assets are valued at mark-to-market

—
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Fire sales externality

Shock on asset price

Bank A Bank B Bank C
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Types of contagion

* Default cascades

* Funding contagion / liquidity hoarding
* Fire sales externality

* Other?
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DEFAULT CASCADES
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Define:

* Payment that bank i owes to J: @\)

« Payment that bank i makes to j: O:;

Similar distinction for external assets and liabilities
’\;i G L. ¢

We are interested 1n solving for: (P,.\-‘ v ; )
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Assumptions:
* External assets are always paid out: Ci =C;
* [f bank 1s solvent: (VALRE

* Bank pays what it owes 0 = 0y b =k

* If bank defaults: \w, ¢
* Bank pays out all 1ts assets Ci + Z\( Qu_;

* Assets are divided equally among all its creditors (equal
seniority)
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Define: —
» Total payment that bank i owes: p: = b + j\, GTQ
* Total payment that bank i pays: P, = 0; + Zu ?‘0
* Share of bank i’s total payments to bank j:

s Py
\/ —
Then Pry= &g P ki
ﬁ" '('(' E < E:( 1t jk P\d
P" C otleriie

+T0.
A ‘\Qu.
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Eisenberg & Noe (2001)

Payments clear if: Selw P
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Eisenberg & Noe (2001) show that there exist a

generically unique payment vector ? that clears the
system of payment equations

[T all banks default, then
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Fictitious default algorithm:

Start with everyone paying what they owe

In each period ¢

* Check which banks default
* Solvent banks pay what they owe

* Solve the system of price equations for the defaulting banks

Go back to 2 until no further banks default
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Exercise: Fictitious default algorithm

Ba%( p
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Idea:

* The market value of bank A’s interbank debt may
drop before bank A defaults.

 [f assets are value at mark-to-market, then a shock of
A leads to a loss at other banks that own debt 1ssued

by A
DebtRank:

* Market value of debt 1ssued by A decreases
proportionally to decrease 1n equity of A




¥ UNIVERSITY OF AMSTERDAM
<% Amsterdam School of Economics

CENTRO DE ESTUDICS MONE TARIOS LATINDAME FaCaANCS

Define

* fpy :the “market value” of debt 1ssued by i and
owned by j in round ¢t

+ Similarly  b;
Algorithm —
+ ¢ = 0: Initiate balance sheets Y : Ci(0)=¢: . P,, (o) =
* t = 1:Apply shocks to banks <i : S;
c;l) s =5

W () = Max (o, w;lo] - <;
fe Caul S’D\Lo{(
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e t = 0: Initiate balance sheets
 t = 1:Apply shocks to banks

* t = 2: Revalue interbank assets proportional to drop
in debt 1ssuer’s equity T OFR: (o) W, (€ ~)

v (o)
(€)= Max(O/ \,Ji(o)~S; - (‘P&@)"Pk
. ! k- '
* Update equity 4ot alt

Repeat until convergence
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Round 0: 1nitial situation

Bank A Bank B
\O b4 B\ by
PAB PAB L{ PBc
Wy Wp
Total Total Total Total
Ronnd-F==sheek-to-bamkA—
Bank A Bank B
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Two versions of DebtRank s (61
* New: Bardoscia et al. (2015) @.u (£) = @0'/0) ‘

w; (6)

* (ld: Battiston et al. (2012)
(o) w, (£-1)
o) = | el
i ('(:-—) othevive ‘1 alread 7
i

 n it for Ot e
3‘(\' \/;(S);U;(o) v s €
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Difterence between old and new version
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Comparison DebtRank vs Eisenberg-Noe

Bank A Bank B
Cp ~ SA' bA CE bB
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Standard default cascade: (Kurfine, 2003)
? b“_ - C 9

S MM imgm
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Rogers & Veraart (2013)
p = § P it P G
(5( c +T, Pui ) ot heww

Im—mg

DebtRank Eisenberg-Noe
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DebtRank Eisenberg-Noe
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DebtRank vs Furfine

Source: Battiston et al. 2012, Supplementary Information Figure 16
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DebtRank Eisenberg-Noe

* ‘Agent-based’ * Accounting identities

* Dynamic process * Fixed point clearing vector
* Upperbound on contagion * Lowerbound on contagion

* (Contagion before default * (Contagion only after default
* Always volatile * No contagion 1n quiet

periods
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Financial contagion analysis requires complete network
data on interbank exposures

Usually information on network data 1s incomplete
* Only for large exposures
* Only for certain registered type of transactions

* Only for banks within own jurisdiction
What to do then?
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Predict network using:

* Bank balance sheet reports:

* Aggregate interbank assets and liabilities often available

Ji A= 2 P 0i=Z;

* Available (incomplete) network data

* Large exposures

e (General information on financial network structure



¥ UNIVERSITY OF AMSTERDAM
<% Amsterdam School of Economics

':.:" 'ZJ_ R EST LIONOES MONE TAROS _L.'v',.; AME BnCANGS

Common characteristics of financial networks:
* Relatively few links: low density

* Large inequality in # of links among banks

* Degree distribution has a fat tail

* Short path lenghts

* (Core-periphery structure:
* Few core banks with many links and dense core

* Many peripheral banks with few links, only to core banks
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s . bo ryo
T = o
* 10 N
O

Gandy & Veraart (2017) propose a deésian approach

e Prior: information on

* Aggregate interbank assets and liabilities
* Known links

* Some random network model (Erdos-Renyi, scale-free, etc.)

* Posterior: distribution of potential networks

Networks can be sampled from the posterior using
Gibbs-sampling

* Package in R: systemicrisk
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Typical simulation

* If network data 1s incomplete, randomly draw K
financial networks from posterior distribution

For each financial network:

* For each bank i
* Let bank i default (large random shock)

* Run some contagion algorithm

* Measure contagion effect on system
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* # additional default triggered by i’s default

* Direct contagion after 1 round

* Indirect contagion in further rounds

* Weliare loss triggered by i’s default

e [ oss of total asset value

* Direct and indirect contagion
S v 30 M im p&ﬁ‘)a\ce
ol
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Suppose we have N simulations, one for each bank

* Systemic Risk at system level
~———

a el o avep B defult M stmulab

Bank level i
105y o H?(Jo. e éulf

* Systemic importance

B~ e (e 0w lae Jo i defmlt

*  Vulnerability
» # simulations in which i defaults
* Average loss incurred by i 1n simulations
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Systemic importance and vulnerability

* Most systemically important:

DD

* Most vulnerable:  /, 5°

PR

X 3T = Sﬁ(a)-%((aﬁil)

67§{em';( N> ofvets wrth
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Introduction

Data Results

The multi-layer network nature of financial
systemic risk and its implications
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19 September 2019
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Furfine (2003), Interbank Exposures:
Quantifying the Risk of Contagion,
JMCB

CRAIG H. FURFINE

This paper examines the degree to which the failure of one bank would
cause the subsequent collapse of other banks. Using unaque data on interbank

Interbank Exposures: Quantifying the Risk “This paper examines the deg ree to WhiCh
o Conaein the failure of one bank would cause the
R TS subsequent collapse of other banks.

THIS PAPER QUANTIFIES contagion risk present in the U.S.
banking system. Unlike previous studies that infer contagion indirectly by identifying
common characteristics of banks that are affected by some event (e.g.. third-world

] ] ]

debt cnisis, large bank failure), this study estimates contagion directly by examining U S I n u n I u e d ata 0 n I n te rb a n k a I I l e nt
data containing the complete universe of federal funds transactions across banks.
Using such data allows for straightforward simulation exercises that demonstrate
the degree of contagion that might arise from these exposures. . .

The cost of this direct approach to measuring contagion is clear. The data analyzed
only incorporate federal funds transactions. Because of severe data limitations, other OWS I n e - a y e I I I ag n I u e 0
exposures among banks cannot be examined on a bilateral basis. As a result of this,
an obvious criticism of the results that follow is that other exposures may actually
be much higher or may be distributed in a particularly contagion-enhancing way. . .
While it will be argued that the federal funds exposures used in this paper make up b l I ate ra I fe d e ra I fu n d S ex 0 S u re S I S
a substantial fraction of unsecured interbank credit exposures, one must realize
that the conclusions reached are conditional on the set of exposures being ex-

amined. That is, the estimates of contagion reported here are accurate, yet poten-
tally conservative.

DT s o e e gl sy e i quantified. These exposures are used to

sures bilaterally. That is, each bank’s exposure to every other bank is known. This

. . . .
The vicws expressed are those of the author and do not necessanly reflect those of the Federal Reserve
Bank of Chicago or the Federal Reserve system. The author appreciates the helpful comments of Allen
Berger (the edwtor) and two anonymous referees

Craic H. FURFINE is an Economic Advisor, Federal Reserve Bank of Chicago. E-mail:
crang furfine{@chu. frb.org

ol % BT scenarios, and the risk of contagion is
found to be economically small.”
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What was missing?

Contagion mechanism

e Eisenberg-Noe fictitious default algorithm using book value (no
behavior)

e Underestimation of contagion

e |Late developments: new mechanisms, e.g. DebtRank

Data

e Only one type of exposure: uncovered interbank loans in the U.S.

e Banks have different types of exposures: Financial multilayer
(multiplex) network

e How does the multilayer nature of financial networks matter for
estimating systemic risk?
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Introduction

In this paper we

e consider a data set of different exposures between banks in
Mexico

e analyze individual layers and the combined multilayer network
e using systemic risk measures based on DebtRank
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Introduction

We find that
e Using only the layer of interbank loans underestimates systemic

risk by 90%
e Systemic risk of the combined exposure network is higher than
the sum of the 4 layers: non-linear effect of combining layers

e Financial markets underestimates current systemic risk

e [he contribution of a credit transaction to expected systemic loss
IS up to a hundred times higher than the corresponding credit risk



Data

Data

Daily bilateral exposures on 43 banks in Mexico (from January 2, 2007
to May 30, 2013) arising from

1. Derivatives: valuation of derivatives transactions (swaps,
forwards and options), repo transactions and securities trading.

2. Securities: securities issued by one bank that are held by another
bank

3. Foreign Exchange: exposures from FX transactions

4. Deposits & Loans: Interbank deposits and loans in local and
foreign currency, credit lines extended for settlement purposes.

The combined network of exposure is obtained by aggregating the
individual layer exposures.
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Results

Data
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DebtRank

e Recursive method suggested by Battiston et al. (2012) to quantify
the systemic importance of nodes in terms of losses

e Measures the fraction of the total economic value in the financial
system that is potentially lost by the default of a single bank.

o R%is the DebtRank of bank i in layer c.
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Data

Results

DebtRank
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Systemic Risk for the Entire System
Define an SR index for the entire system: SRI*(t) = Y7, R*(1).
4

..

Of” 2

3%07 2008 2009 2010 2011 2012 2013

firm o
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Data

Results

Expected Systemic Losses

e Calculated as ELSYS! = ycomby 5 pdef geomb,

e Combines SR contributions from networks and default rates.

e Compare to measure of CDS spread on 5-year Mexican
government bond, and VIX volatility index

x 10"

Loss on denvatlves of Mexican companles

é%O? 2008 2009

I

2010

time

T

|
: _
Mexucan GDP fell by more than 10% EL™ [$lyear]

2011

2012 2013

Conclusion
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Marginal contribution of individual transactions

Consider an individual loan between bank / and j:
e Marginal contribution to systemic risk: AELSYS
Compare to
e Marginal contribution to idiosyncratic credit risk: AELCed"
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Conclusion

Conclusion

In this paper we

e consider a data set of different exposures between banks in
Mexico

e analyze individual layers and the combined multilayer network
e using systemic risk measures based on DebtRank
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Conclusion

We find that
e Using only interbank loans underestimates systemic risk by 90%

e Systemic risk of the combined exposure network is higher than
the sum of the 4 layers: non-linear effect of combining layers

e Financial markets underestimates current systemic risk

e [he contribution of a credit transaction to expected systemic loss
IS up to a hundred times higher than the corresponding credit risk
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Part 1

* Explain 3 main channels of financial contagion:
* Default cascades,
* Funding contagion / liquidity hoarding

* Fire sales externality

* Compute by hand:

* Fictitious default algorithm of Eisenberg & Noe (2001)

* DebtRank algorithm of Bardoscia, Battiston, Cacciolli et
Cardarell1 (2015)
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Part 2

* (@uve typical characteristics of large networks

e (Construct financial network data from balance sheet
data and large exposures

* Compute measures of financial contagion:

* System level: systemic risk, expected systemic loss
* Bank level: systemic importance, vulnerability

* Explain what 1s a multilayer network and why 1t 1s
important for assessing systemic risk

* Polednaetal. (JES, 2015)
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