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Abstract

This study uses the Svensson (1994) method to estimate quarterly Gov-
ernment of Jamaica (goj) zero-coupon yield curves from March 2014 to 
December 2016. The Svensson (1994) method of estimation was used 
to obtain the parsimonious yield curve. The estimated spot rate curve is 
then incorporated into an interest rates stress testing framework to as-
sess the impact on portfolio holdings of parallel and nonparallel shifts 
of the yield curve. The results of the stress testing exercise show that ex-
posure to parallel shifts of the curve was higher across the respective 
market participant groups relative to nonparallel shifts. Additionally, 
deposit-taking institutions and securities dealers were more vulnerable 
to shifts in medium-term segment of the yield curve. The life insurance 
subsector was more vulnerable to the long end of the yield curve while 
the general insurance subsector exposures were equally weighted across 
the short to medium term segment of the curve.

Keywords: yield curve, key rate duration, financial stability.
jel classification: F31, F32, F41.



2 Monetaria, January-June, 2017

1. INTRODUCTION

The yield curve depicts the relation between bond yields 
against their maturity. It can be used as a benchmark for 
pricing bonds and in value analysis more generally. In 

practice, the estimation of a yield curve is often derived from 
observations of market prices in the government debt market. 
The use of the government’s debt portfolio may be attributable 
to the fact that in most jurisdictions the government is the 
largest issuer of bonds; coupled with the perceived risk pro-
file–theoretically risk-free and practically low risk. The yield 
curve is also a useful indicator for central banks as they are able 
to capture changes in market expectations of macroeconomic 
conditions, monetary policy and investors risk preferences.

In light of the aforementioned, this study addressed two ob-
jectives. Firstly, a yield curve for the period 2014Q1 to 2016Q4 is 
estimated using Government of Jamaica (goj) domestic issued 
Jamaican dollar (jmd) denominated bonds. To accomplish this 
objective, the study used the Svensson (1994) parametric mod-
el to infer goj’s yield curve from domestic bond prices. The 
choice of Svensson model was motivated by the increased flex-
ibility of the curve while maintaining the parametric proper-
ties of the curve that provides sound economic intuition. The 
estimation of goj yield curve is motivated by Kladivko (2010) 
who uses the Nelson-Siegel model for Czech Treasury yield 
curve from 1999 to the present and Gürkaynak et al. (2006) 
who use the Svensson model to estimate the us Treasury curve 
from 1961 to the present. Further motivation for this paper 
was garnered from Langrin (2007) who estimated multifac-
tor versions of the Vašíček (1977) and the Cox, Ingersoll, and 
Ross (Cox et al., 1985) models of the term structure of interest 
rates for goj zero-coupon bond prices. The estimation by Lan-
grin (2007) was conducted via state space modeling on daily 
goj domestic bond yields from September 24, 2004, to July 
28, 2006, obtained from Bloomberg. Unlike Langrin (2007), 
which relies on an affine diffusion term structure modeling, 
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this study relies on a cross-sectional approach to estimate the 
goj domestic zero-coupon yield curve.

Secondly, since interest rate risk can be captured by chang-
es in the yield curve, this study considers estimation of the key 
rate durations of the goj’s domestic bond portfolio. The study 
further assesses the impact of shifts in the yield curve guided 
by the key rate duration model on portfolio holding of domes-
tic issues by market participant groups.

This approach adds to the existing work of Tracey (2009) 
who employs principal component analysis and key rate dura-
tions for assessing interest rate risk of holdings of both local 
and global goj bonds by Jamaica’s banking sector.

This study is organized as follows. Section 2 reviews the fun-
damental concepts of the yield curve; Section 3 presents the 
Svensson modeling framework; Section 4 provides an overview 
of the data used in model including a detailed discussion of 
inherent issues; Section 5 presents the results of the estima-
tion, including an assessment of the fit of the curve; Section 6 
demonstrates the application of the key rate duration model in 
assessing the impact of yield curve shifts on portfolio holdings 
of jmd denominated domestic government issues for existing 
market participant groups in Jamaica’s financial system; and 
Section 7 concludes.

2. YIELD CURVE BASICS

This section provides a review of the fundamental concepts of 
bond pricing and the development of a yield curve.

2.1 The Discount Function and Zero-coupon Yields

The pricing of a bond is conditional on the present value of its 
future cash flows. The interest rate or discount function used 
to calculate the present value depends on the yield offered on 
comparable securities in the market. The discount function is 
used to maintain real value across the time, that is, time value 
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of money. In theory, the application of the discount function 
to value a zero-coupon bond that pays $1 in n years can be writ-
ten as:

  1   P n et t
r n nt= = − ×δ ( ) ,( )  

where δt n( )  denotes the continuous discount function as at 
time t  and r nt ( )  is the continuously compounded rate of return 
(yield) demanded by the investor for holding such investment 
until n  periods ahead of time t  (n  denotes the time to maturity). 
The subscript t  denotes the variability of the discount function. 
From Equation 1 above, one may apply the necessary transpo-
sition to get an expression for the continuously compounded 
yield (spot rate) on the zero-coupon bond:

  2   r n
ln n

nt
t( ) .=

− ( )[ ]δ

In applying the concept of compounding to bond pricing, 
one may consider expressing yields on a coupon-equivalent 
basis. In this case, the compounding may be assumed to be 
m  times per year instead of being continuous (for example, 
semiannual compounding implies that m = 2, the payment of 
coupon is two times per year). Thus, we express the relation 
between the continuously compounded yield and the m - com-
pounded coupon-equivalent as

  3   r n m
r n

mt
t
ce

( ) = × +
( )

ln ,1

where 
r n

m
t
ce ( )

 denotes the coupon-equivalent yield compound-

ed m  times per year. Similarly, the discount function is ex-
pressed as
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  4   δt

t
ce m nn

r n
m

( ) =

+
( )

×
1

1

. 

Thus, the relation between yields and coupon-equivalent 
yields creates ease of mobility between continuously compound-
ing and its coupon equivalent counterparts. The relation be-
tween yields and maturities are captured by the yield curve.

2.2 Coupon Bond and the Par Yield Curve

Similar to zero-coupon bonds, the pricing of a coupon-bearing 
bond is conditional on the discount function; thus, the price 
is the sum of the discounted future cash flows of the bond. For 
illustration, consider the price of a coupon-bearing bond with 

a nominal value of 100 and coupon payment of $C C
c

m
=








100
 

that matures in exactly n  years from time t  as follows:

  5   P n C i m nt t t
i

m n
( ) ,= ( ) ( )

=

×

∑ δ δ + 100
1

where δt i( ),  i n=1 2, , ..., ,  are discount functions for their re-
spective maturities. Note that the yield on a coupon-bearing 
bond is dependent on the coupon rate that is assumed. One 
implication of this condition, as pointed out by Gürkaynak et 
al. (2006), is the disparity in the yields of bonds with identical 
maturities but varying coupon values.

The yields on a coupon-bearing bond can be expressed in 
terms of par yields. A par yield may be defined as the coupon 
rate at which a bond with a specific maturity would be traded 
at par; that is, the rate at which the present value of the bond is 
equivalent to its nominal value. Hence, given a coupon-bear-
ing bond with a nominal value of $100 and maturity n, the par 
yield is obtain as follows:
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  6   100
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where c nt ( )  denotes the n  year par yield. From the Equation 
6, the par yield can be expressed as

  7   c n
m n

i m
t

t

i

m n

t

( ) =
− ( )[ ]

( )
=

×

∑

1

1

δ

δ
.

The par yield serves as a proxy for the quotation of yield 
on a coupon-bearing bond by financial market participants 
(Gürkaynak et al., 2006). As discussed, the yield curve, once 
estimated, may be presented as a zero-coupon yield curve or 
a par yield curve. The curvature of the yield curve will reflect 
the sensitivity of bond prices to interest rates and is measured 
by the bonds duration and convexity.

2.3 Duration and Convexity

The duration of a bond is a measure of the sensitivity of a bond’s 
value to changes in interest rates. This measure, modified 
duration, can easily be derived from the Macaulay duration 
methodology. Frederick Macaulay (1938) defines duration 
(coined as the Macaulay duration) on coupon-bearing bond 
as the weighted average of the time (in years) that the investor 
must wait to receive their cash flows, that can be expressed as

  8   D
P n

n
i
m

c
m

i m n
t

t
i

m n

t=
( )

( )( ) +
=

×

∑1

1
δ δ ,

where 
c
m

 denotes the annual coupon payment compounded m 

times per year for a bond instrument. Bonds that pay coupon 
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has a duration that is less than its maturity while for the case of 
a zero-coupon bond, its duration is equal to its maturity. From 
Equation 8 it is observed that for constant maturity and spot 
rate, the modified duration is inversely related to the coupon 
rate, that is, higher coupon rate results in shorter duration for a 
given maturity. In the context of the application, the modified 
duration is mostly considered. Unlike the Macaulay duration, 
the modified duration primarily assumes that the expected 
cash flow of the bond does not change when the yield changes.

The modified duration can be defined in terms of the Ma-
caulay duration as the duration of the bond divided by one 
plus the yield on the bond (for a selected compounded period):

  9   D
D

r
m

M

t
ce

=

+








1

.

Duration in general captures a linear relation between 
price changes and yield change. Thus, the measure is accu-
rate for changes in bond price relative to small changes in 
yield. The nonlinearity of the relation between bond prices 
and yield to maturity impedes on the accuracy of the duration 
measure to capture effective price changes relative to large 
changes in yield. The nonlinear relation between price and 
yield to maturity is effectively accounted for in the measure 
of convexity. So, in a simplistic point of view, convexity is used 
to measure the portion of the bond price change relative to 
the change in the yield to maturity that is not accounted for 
in the duration measure. This can be depicted through the 
second-order Taylor approximation of bond price changes 
with respect to yield:

  10   
∆

∆ ∆
P n

P n
D y C yt

t

M
t t
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≈ − + ( )1
2

2 ,
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where C
P n

d P n

dyt

t

t

=
( )

( )1 2

2  is the convexity of the bond. Convex-

ity accounts for the uncertainty in yields observed at the long 

end of the yield curve which results in the yield curve depict-
ing a concave shape. An implication of this is that the capital 
gain from a decline in the yield is higher than the capital loss 
from an increase in the yield. Notably, bonds with longer ma-
turity portraying higher convexity results at times in what is 
referred to as convexity bias. The greater the convexity bias 
is, the more concave the yield curve will become. More details 
of the impact of convexity on the functional form of the yield 
curve are provided below.

3. MODEL SELECTION AND OVERVIEW

The modeling of a yield curve can be broadly categorized into 
two groups: 1) parsimonious models and 2) spline-based mod-
els (see Waggoner, 1994). Between the two groups, one has to 
decide on their preference in regard to the trade-off between 
accuracy, which is an advantage of the latter, and smoothness, 
which is an advantage of the prior.

The Bank for International Settlements (bis, 2005) reports 
that 9 out of 13 central banks which report their yield curve 
estimates to the bis use the parsimonious approach. The pop-
ularity of parsimonious models among central banks may be 
attributed to the inherent property of the parsimonious ap-
proach in providing sufficiently smooth yield curves which 
are consistent with underlying macroeconomic conditions 
and investors’ preferences. Spline-based methods on the oth-
er hand provide a richer precision in the fitting of the curve 
and is a preferred choice if one is interested in small pricing 
anomalies. However, spline-based yield curves may not be 
smooth enough and may oscillate considerably over daily in-
tervals (Kladivko, 2010).
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In this paper, the parsimonious approach to estimating the 
yield curve for Jamaica was adopted. Under this framework, the 
Nelson-Siegel (Nelson and Siegel, 1987) and Svensson (Svens-
son, 1994) models are presented throughout the remainder 
of this section.

In their seminal work on yield curves, Nelson and Siegel 
(1987) assumed that the functional form for the instantaneous 
forward rate is the solution of a second-order differential equa-
tion whose roots are equal:

  11   f e e( ) ,τ β β β λτλτ λτ = + +− −
0 1 2

where f ( )τ  is the instantaneous forward rate for the τ  periods 
ahead, θ β β β λ= ( ), , ,0 1 2    is a vector of parameters to be estimat-
ed. Equation 11 may be classified as a three-component expo-
nential function. The first component, β0, is known as the level 
and may be defined as the limit of the forward rate as τ  tends 
to infinity (that is, the asymptotic rate at which the forward 
rate and spot rate converges). The second component, β λτ

1e
− , 

controls the slope of the forward rate curve and is a monotoni-
cally decreasing term (if β1  is positive) or increasing term (if 
β1  is negative). The third component, β λτ λτ

2 e− , controls the 
location and size of the hump in the forward rate curve ( β2  
determines the magnitude and sign of the hump while λ  de-
termines the location of the hump).

Integrating Equation 11 (with respect to τ ) from 0 to τ  and 
dividing the outcome by τ  we get the continuously compound-
ed spot rate curve:

  12   i (  )
e e

ec = +
−







 +

−
−











− −
−β β

λτ
  τ β

λτ

λτ λτ
λτ

0 1 2
1 1

,

where the subscript c  denotes continuity. From Equation 12, 
one can compute the corresponding discount function by ap-
plying the established relation:
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  13   δ τ τ τ( ) .( ) = −e ic

The discount function can be used to price outstanding is-
sue with specific coupon rate and maturity dates. The asymp-
totic properties of the model provide rich economic intuition. 
The curve (forward or spot) by definition converges to finite 
limits from both ends. Note that:

  14   lim lim( ) ( ) ,
τ τ

τ τ β
→∞ →∞

≡ =f ic 0  and

  15   lim lim( ) ( ) .
τ τ

τ τ β β
→∞ →∞

≡ = +f ic 0 1

From the above limits, we observe that the instantaneous 
forward and spot rates can be approximated as the sum of the 
β0  and β1 , while β0  is an approximation of the long-run rate 
(as known as, the steady-state level). Fitting the long-end of the 
term structure of the yield curve may be difficult as the con-
vexity effects on bonds tend to pull down the yields on longer 
maturities (Gürkaynak et al., 2006). Gürkaynak et al. (2006) 
highlighted that the Nelson-Siegel specification tends to have 
forward rates asymptote too quickly to be able to capture the 
convexity effects at longer maturities.

The Nelson-Siegel model was later extended by Svensson 
(1995) through the inclusion of an additional exponential term 
which accounts for a second hump in the forward rate curve. 
The inclusion of this term increases the flexibility of the curve 
and improved the data fit. The functional form of the forward 
rate curve specified by Svensson (1995) is:

  16  f e e e( ) ,τ β β β λτ β γτλτ λτ γτ= + + +− − −
0 1 2 3  

where θ β β β β λ γ= ( ), , , , ,0 1 2 3      is a vector of parameters to be 
estimated. Similarly, the location and size of the second hump is 
governed by β3  and γ .  Note that the Svensson model collapses 
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to a Nelson-Siegel model if β3 0= .  Integrating Equation 16 (with re-
spect to τ ) from 0 to τ ,  and dividing the result by τ , the outcome is 
the continuously compounded spot rate curve:

  17    i
e e

e
e

c τ β β
λτ

β
λτ

β
λτ λτ

λτ( ) = +
−







 +

−
−
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−− −
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−e .

Similar to the Nelson-Siegel model, the Svensson model converges 
to similar limiting points at both ends of the curve. The estimation 
of the Svensson model relies on fitting data to Equation 16 to obtain 
the beta coefficients, λ  and γ  parameters.

4. DATA AND ESTIMATION ISSUES

4.1 Method of Estimation

In estimating the yield curve, the Svensson method was considered. 
The procedural method of estimation adopted in the study follows 
closely to that of Kladivko (2010).1 The estimation of the parameters 
relies on the minimization of the weighted sum of squared deviations 
between the actual and predicted bond prices of coupon bonds:

  18   arg min ,θ
θ

=
−









=
∑ P P

P D
i i

i i
M

i

N

1

2

ˆ ˆ
 

where N  is the number of observed bonds, Pi  is the observed dirty 
price of the coupon bond, θ  is the vector of parameters to be estimat-
ed, Pî  is the estimated bond price which is obtain from the model spot 
rates, Equation 1 the discount function and Equation 4 the bond price 
formula. Similar to Kladivko (2010), the inverse of the product of ob-
served bond prices and modified duration, 1 P Di i

M( ), were adopted 

1 The Matlab codes developed by Kladivko (2010) were utilized for 
this paper.



12 Monetaria, January-June, 2017

as the optimization weight. The continuously compounded 
spot rates were obtained under the day count convention of 
30/360, for interest accrued.

The implementation of Equation 16 was conducted with 
Lsqnonlin  in Matlab, a nonlinear least squares algorithm 
developed in Coleman and Li (1996). Due to its flexibility, 
Lsqnonlin  allows for setting of the lower and upper bound of pa-
rameter(s) to be optimized, hence making it ideal for estimat-
ing parametric models of the yield curve. However, a drawback 
of the optimization algorithm Lsqnonlin  is its sensitivity to the 
initial value of λ, as mentioned by Kladivko (2010). He advised 
that given the true value of λ,  the algorithm converges robustly 
to the true values of β  parameters of the parametric model of 
interest. From this, he concludes that the Lsqnonlin  algorithm 
succeeds in finding the global minima. Despite these pros and 
cons, the initialization of the parameters of the models follows 
closely to that of Kladivko (2010) and Gürkaynak et al. (2006).

The estimation of parameters of the yield curve may suffer 
from abrupt changes in their values from one period to the 
next. Such changes were referred to as catastrophic jumps by 
Cairns and Pritchard (2001). In addressing catastrophic jumps 
in the estimated level component of the yield curve, β0,  Klad-
ivko (2010) imposes a lower bound on the possible values that 
λ  and γ  may assume. Additionally, Kladivko (2010) restricted 
β0  to be positive which is in line with the theory. These con-
straints give rise to restrictions on the parametric models as 
pointed out by Kladivko (2010). He further pointed out in his 
study that the restricted Nelson-Siegel model does not perform 
much different when compared to the unrestricted Nelson-Sie-
gel model. However, unlike Kladivko (2010) who relies on daily 
data for his analysis, this study utilizes quarterly data on bond 
prices which makes it difficult to observe catastrophic jumps 
in the parameter estimates.
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4.2 Data Set

The study utilizes quarterly market values of domestic goj 
bonds reported by domestic market participants for the peri-
od 2014Q1 to 2016Q4. This sample period was chosen because 
the data that were available prior to the selected period were 
perceived to be noisy in relation to the developments that took 
place in 2010 and 2012. During the first quarter of 2010, the 
goj conducted a restructuring of their debt portfolio. The re-
structuring of the government’s portfolio was due primarily 
to the challenge in servicing the existing debts at the given ma-
turities. As such there was a shift in most maturities to longer 
tenor. Similar actions were performed by the government in 
the first quarter of 2012. Since then, the government has re-
duced its participation in the domestic market significantly.

To date, the existing domestic bond market lags behind that 
of developed and transitional states as trades in these instru-
ments are not captured in a formal trading system. In light of 
this, the market value reported by the domestic participants at 
the end of the quarters were used to extract the average bond 
prices. The data used in the study came from two primary 
sources: Financial Services Commission for information on 
nonbank financial institutions and Bank of Jamaica for infor-
mation on deposit-taking institutions.

In improving the quality of the estimation, a data filtering 
process was developed. For the period under study, the follow-
ing data cleaning was conducted:

1) Benchmark investment notes identified by the goj were 
utilized.2

2) Floating interest rate bonds were excluded since their 
use in estimating the yield curve is not straight-forward.

2 Includes domestic issued jmd denominated securities that have 
a noncallable feature.
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3) For each benchmark notes, bond prices that exceed 
two standard deviations about its mean were excluded 
from the analysis so as to minimize possible distortions 
in the data.

4) No adjustments for tax or coupon effects were made.

5) Bonds that were issued for more than one year and ma-
ture within six months are excluded as they distort the 
liquidity conditions in the market.

6) Bonds that were issued for less than six months that ma-
tures over one year were also excluded from the sample 
due to their liquidity conditions.

In total, 12 goj bonds’ data were used for the period under 
study. In fitting the short end of the curve, the one month, three 
months and six months Treasury bill rates were utilized. The 
fitting of the short end reduces the likelihood of obtaining 
negative rates or extremely high rates which is important in 
the estimation process. A key advantage of the data reported 
is the richness of information collected.

5. ESTIMATION RESULTS

Using the above methodology, the Svensson yield curve was es-
timated for the period March 2014 to December 2016. The evo-
lution of the estimated curve throughout the period was fairly 
stable as observed from the parameter estimates (see Figure 
1).3 The level parameter of the model fluctuated around a mar-
ginally improving trend within the bands of 8% and 19%. Ex-
cept the third quarter 2014, the slope parameter of the model 
posited a slightly upward trend below the zero mark. Similarly, 

3 It was noted throughout the sample period that there were quar-
ters in which the estimated results of Svensson model imply over 
parameterization (see Annex A). Alternatively, one may estimate 
a Nelson-Siegel model which was also considered by the study.
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the curvature parameters ( λ  and γ ) were slightly trending 
upward over the sample period. The interest rate spread be-
tween the 10-year and 1-year yields gently sloped upwards over 
the estimation horizon. At the long-end, the spread between 
35-year and 10-year yields fluctuated around a relative down-
ward sloping trend line. The interest rate spread between the 
1-year and 10-year yields was highest for 2015Q3 where the 
corresponding spread at the long end of the curve was low-
ered.4 This outturn to some extent reflected investors’ prefer-
ence along the maturity spectrum for the goj’s domestic jmd 
issues. At the long end of the curve, interest rate spread was 
highest for 2015Q1 which corresponded to a decrease in the 
corresponding interest rate spread for the 1- to 10-years yields 
when compared to 2014Q4.5 For the period 2014Q4, interest 
rate spreads for 1- to 10-years yields and 10- to 30- years yields 
recorded a positive quarterly growth, thus reflecting to some 
extent increased preference for higher yields across the entire 
maturity spectrum of the goj domestic jmd issue.6 The flatten-
ing of the curve at the long end was most evident for 2014Q3 
which reflected the minimum interest rate spread for 10- to 
30-years yields over the sample period.

In sum, the estimated outputs throughout the sample peri-
od provided upward sloping yield curves.7 The fit of the model 
to the observed sample data was most accurate as at end-2015 
as displayed by the incorporated error measures.

4 The 1- to 10-years spread on yields was 4.6% reflecting a 10.1% 
increased relative to 2015Q2 while the 10- to 30-years yields 
spread was 2.6% reflecting a 29.5% decline relative to the prior 
quarter.

5 The interest spread between the 10- to 30-years yields was 5.9% 
reflecting 12.7% increase while the 1- to 10-years interest rate 
spread was 4.1% reflecting a decline of 2.8 percent.

6 The interest spread between the 1- to 10-years and 10- to 30-years 
yields were 4.2% and 5.3% reflecting quarterly increases of 5.3% 
and 178.5%, respectively.

7 See Estrella and Trubin (2006).
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Figure 1
ESTIMATED ZERO-COUPON YIELD CURVES
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Figure 2
ESTIMATED OUTPUT FOR THE SVENSSON MODEL
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As an example of the results, the estimated spot, instanta-
neous forward and par rates for December 2015 were captured 
by Figure 2. The rates are presented as annually compounded. 
There were eight government bonds available as at end-2015 
with maturities ranging from approximately one year and four 
months to approximately thirty-five years.

As can be seen from Figure 2, the Svensson curve provides a 
fair fit of the term structure of the government’s domestic debt. 
However, the fit of the curve was poorer at the short-end of the 
curve (less than one year) reflecting the idiosyncratic nature 
of these issues. For the one to five years maturity bucket, the fit 
of the 2019 8.5% coupon bond was the worst which appeared to 
be overpriced relative to the other bonds. The shape of the es-
timated spot rate curve was upward sloping for maturities over 
three years. At the short end, a U-shaped hump was evident. 
This suggests market participants’ expectation of monetary 
easing by the central bank in the short term, (Bomfim, 2003).

Similar to Kladivko (2010), the mean absolute error (mae), 
the root mean squared error (rsme) and the maximum abso-
lute error (maxae) were used to assess the goodness of fit of 
the model:

  19   RSME = −( )
=
∑1 2

1n
y yi i

i

n
,ˆ

  20   MaxAE = −{ } =max , , , ,i i iy y i n1…ˆ

Table 1

ERROR MEASURES FOR ESTIMATED YIELD CURVE
Svensson estimated yield to maturity curve at the end of December 2015

Basis points
rsme mae maxae

3.8 3.3 6.7
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where n  is the number of government bonds for a given settle-
ment date, yi  is the observed yield to maturity, and yî  is the 
fitted yield to maturity. In calculating the error measures, the 
Treasury bill rates were excluded from the analysis.8

The estimated maxae which identifies the point of least best 
fit was associated with the 2018 7.75% coupon bond. The max-
ae for the estimated 2015Q4 zero-coupon curve reflected the 
overpricing of the 2018 7.75% coupon bond relative to the cor-
responding estimated output.

6. STRESS TESTING APPLICATION 
OF THE YIELD CURVE

The yield curve has many applications that are localized to the 
intended purposes. For example, inflation expectation which 
is of critical importance for monetary policy can be obtained 
from the yield curve. Additionally, Estrella and Trubin (2006) 
investigated the use of the yield curve as a forecasting tool in 
real time of macroeconomic conditions. The study employed 
a probabilistic model to capture the relation between key attri-
butes of the curve (that is, the steepness of the curve) and the 
business cycle, for which they found that the yield curve was a 
good predictor of recessions.

Seminal work of Ho (1992) utilized nonparallel shifts in the 
yield curve as an approach for fixed income portfolio immuni-
zation. Ho (1992) investigated the impact of changes in selected 
rates along the curve on the pricing of fixed income securi-
ties. This approach is currently coined key rate duration (krd) 
and is commonly used among financial market practitioners 
in developing hedging strategies for their portfolio holdings.

This paper applied the key rate model to goj’s domestic sov-
ereign portfolio within the context of assessing interest rate risk 

8 The exclusion of the error measures for Treasury bill rates was 
motivated by the poor fit of the curve at the short end. In addi-
tion, yields on Treasury bill were not collected in the sample.
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exposure. Such applications involved shifting of the zero-cou-
pon curve through selected key rates for the goj domestic jmd 
bond portfolio. With these key rates, one has the flexibility to 
conduct parallel and nonparallel shifts of the curve to provide 
richer analysis of bond price movements.

6.1 Key Rate Model

In this section, the krd and the key rate convexity measures of 
interest rate risk are discussed along the lines of application for 
stress testing. The krd as defined by Ho (1992) is a measure of 
the price sensitivity of a fixed income security to changes in se-
lected spot rates along the yield curve. These rates are referred 
to as the key rates. Ho (1992), who pioneered the application of 
the krd for fixed income portfolio, recommended 11 key rates: 
1, 2, 3, 4, 5, 7, 9, 10, 15, 20 and 30 years to maturity. It is import-
ant to note that the choice of key rates along the yield curve is 
flexible in that one can choose any number of rates rate along 
the curve. The krd measure is used by market practitioners to 
decompose portfolio returns, identify interest rate risk expo-
sure, design active trading strategies and implement passive 
portfolio strategies such as portfolio immunization and index 
replication (Nawalkha et al., 2005).

The use of the key rate model is conditional on the assump-
tion that any smooth change in the term structure of zero-cou-
pon yields can be represented as a vector of changes in a number 
of properly chosen key rates. That is:

  21   ∆ ∆ ∆ ∆Y y t y t y tm= ( ) ( ) ( )[ ]1 2, , ..., ,

where Y  is the zero-coupon curve and ∆y ti( )  for i =1, 2, ..., m 
are the set of m  key rates. Changes in all other interest rates are 
approximated by linear interpolation of the changes in the ad-
jacent key rates. The shifting of a key rate along the zero-cou-
pon curve, only impacts rates within the neighborhood of the 
selected key rate that are bounded to the right and the left by 
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the closest key rates to our key rate of interest (Nawalkha et 
al., 2005). Rates outside of this bound will be unchanged. The 
shortest and longest key rates are bounded on one side, the 
shortest key rate is bounded to the right by the second key rate 
while the longest key rate is bounded to the left by the m − 1st  key 
rate. Thus, shifting the shortest key rate by an amount x  results 
in an equal amount in shifting rates to the left of the shortest 
key rate and a linear interpolation of the shift in rates to the 
right of the key rates that are bounded, while leaving rates above 
the bound unchanged. Similarly, shifting the longest key rate 
results in an equal shift of rates to the right of the longest key 
rate and linear interpolation of the shift in rates to the left of 
the longest key rate that are bounded, while leaving all other 
rates below the bound unchanged. A generic expression for 
the change in the interest rate for any given term t  is written as:
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The set of key rate shifts can be used to evaluate the change 
in the price of fixed income securities. An infinitesimal shift 
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in a given key rate, ∆y ti( ), results in an instantaneous price 
change given as:

  23   
∆
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where KRDi  is the i-th  krd. So, the key rate is defined as the 
negative percentage change in the price of a given fixed in-
come security resulting from the change in the i-th  key rate:
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Alternatively, the duration of the i-th  key rate is defined as 
the negative of the elasticity of the price of a given fixed income 
security to the i-th  key rate relative to the i-th  key rate:
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e

y ti
p i

i
= −

( )
, ,

where e p i,  is the elasticity of the price to the i-th  key rate. The 
application of the key rate model is fairly straight forward. 
First, we calculate the krd for each of our five key rates using 
the formula:
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By substituting Equation 22 into 18, we have:
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where t  is the time to maturity. Observe that the krd is an in-
creasing function of time. Thus, key rates at the long end of the 
curve would have a greater responsiveness of price changes to 
interest rate changes.

The total price change resulting from all key rate changes is 
given as:

  28   
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The sum of the krd measures from a simultaneous shift in 
all the key rates by the same amount results in the traditional 
duration of a given fixed income security. Thus, the krd mea-
sure only account for the linear effect of key rate shifts. Under 
a non-infinitesinal shift in the term structure, the krd frame-
work is extended to account for second-order nonlinear effects 
of such shift. The nonlinear effect of the key rate shifts is called 
the key rate convexity (krc) and is defined as:

  29   KRC i j KRC j i
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for every pair (i, j), of key rates. Similarly, the sum of the krc 
measures from a simultaneous shift in all the key rates by the 
same amount results in the traditional convexity of a given fixed 
income security. The krds and krcs of a portfolio can be ob-
tained as the weighted average of the krd and krcs of the secu-
rities in the portfolio.

The following section discusses the selection of the key rates 
that will be used in our krd model to conduct parallel and non-
parallel shifts of the yield curve. Such shifts of the zero-coupon 
curve will be governed by scenario analyses that are acceptable 
industry practices.
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6.2 Application of the Key Rate Model

The choice of key rates as pointed out by Zeballos (2011) is arbi-
trary owing mainly to the absence of unique fundamentals. In 
acknowledgment of this gap in the model framework, Nawalkha 
et al. (2005) proposed that the choice of key rates can be guided 
by the maturity structure of the portfolio under consideration. As 
such, the choice of key rates for this analysis will be guided by the 
structure of the government’s domestic fixed income portfolio.

As at end March 2016, total outstanding jmd denominated 
government’s issue was approximately 233 billion jmd in nomi-
nal value for fixed coupon bonds and 508 billion jmd in nominal 
value for variable coupon bonds which is unevenly distributed 
across 33 issues. This outstanding debt issue is sparsely distrib-
uted across the maturity spectrum of the yield curve. Approx-
imately 50% of the outstanding debt matures within the next 
three years while 21% falls within the maturity range 20-35 years 
(see Figure A.2).

For this study five key rates were considered for varying rea-
sons: the 1-year and 5-year were chosen as the major share of the 
government’s domestic bond portfolio was at the short end; the 
10-year key rate was reasonably viewed as a point along the curve 
ideal for conducting various shifts in the shape of the curve. For 
example, the butterfly shift of the curve, as well as a tilt of the 
curve, could be facilitated by fixing the 10-year key rate. The 20- 
and 30-year key rates provides useful analysis of the long end of 
the curve and are in line with the long-term maturity’s share of 
the government’s fixed income portfolio.

The result of our key rate application is presented in Figure 
3. To calculate the krd for the bond portfolio a shift of 100 ba-
sis points was applied to each of the key rates. Then, for each 
key a weight was assigned to each maturity conditional on the 
portfolio maturity spectrum. So, for example, rates that had 
time to maturity of one year or less were assigned a weight that 
represents the share of nominal issues that mature within one 
year. Likewise, rates one to two years was assigned a weight of 
nominal issues that mature one to two years.
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As evident in Figure 3, the portfolio has larger expositions 
over the medium to long-term. Specifically, the exposition for 
the 30-year key rate dominates the bond portfolio followed by 
the 20-year key rate.9 This means that the bond portfolio is more 
sensitive to changes in the long end of the yield curve. Zebal-
los (2011) pointed out in a recent study that a concentration in 
the krd at the long end of the term structure may indicate an 
expectation of the flattening of the yield curve.10

9 A krd of 50 for the 30-year key rate means that a 100 basis points 
change in the 30-year key rate would lead to 50 percent reduc-
tion in the weighted aggregated value of the goj domestic jmd 
portfolio cash flows that have a maturity period greater than 20 
years.

10 Similarly, the krc for the bond portfolio was also calculated. 
The result of the krc was in some sense similar to the outcome 

Figure 3
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6.3 Stress Testing Application of Yield Curve Shifts

As part of the Bank’s interest rate stress test, scenario shifts in 
the yield curve are considered. This paper utilizes key rates to 
conduct parallel and nonparallel shifts in the yield curve. For 
a parallel shift in the yield curve, equal shifts in the selected 
key rates are considered. Nonparallel shifts in the yield curve 
amount to unequal shifts in the key rates. Specifically, an up-
ward tilt of the yield curve at the 10-year key rate is achievable 
through an upward shift in key rates to the left of the 10-year 
key rate while simultaneously shifting the key rates to the right 
downwards. In the case of the domestic fixed income sovereign 
issues, four cases are considered for illustration: 1)  a parallel 
upward shift of the yield curve; 2)  a flattening of the curve at 
the short end up to 10-year; 3)  an increase in premiums for me-
dium tenors; and 4)  a steepening of the curve at the long end of 
the maturity spectrum. The assessment of each scenario will be 
conducted based on changes of stress levels of 20%, 50% and 
100% in the yields, respectively.

6.3.1 An Upward Parallel Shift of the Yield Curve

A parallel shift of the curve is supported by the notion of inves-
tors requiring equal premiums across the term structure due to 
higher perceived risk of government’s ability to repay its debt. 
Such shift of the curve is accomplished by increasing the key rates 
by similar amount. The study considered 20%, 50% and 100% 
increases in the key rates simultaneously across the estimated 
term structure. The new yield curve was then used to evaluate 
fair value losses11 for portfolio holding of deposit-taking institu-
tions (dtis), securities dealers and insurance companies.12 The 

of the portfolio’s krd and are not included in the analysis for 
ease of explanation.

11 Fair value loss is defined as the difference in value of goj domestic 
jmd portfolio holdings resulting from changes in yields.

12 Currently, the deposit-taking subsector comprises of six com-
mercial banks, three building societies and two merchant banks. 
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results of the parallel shift of the curve showed an impairment 
to the capital base of dtis of 16.2% resulting from a 100 shock 
to the yield curve (see Figure 4).13

A 20% increase in the term structure had a marginal im-
pact on the fair value losses of the dti sector (3.8% loss in cap-
ital) while at a 50% shock levels, impairments to capital were 
9% (see Table B.1 in Annex B). The impact of the 100% shock 
threshold level on individual institutions within the dti sec-
tor resulted in no significant impairment to their capital ade-
quacy ratio; hence, indicating that the dti sector is adequately 

These institutions account for approximately 50% of the total 
financial system’s assets.

13 Impairment to capital for each subsector is defined as the fair 
value loss divided by total accounting capital holding.

Figure 4
BOX-PLOT OF THE RATIO OF FAIR VALUE LOSSES TO CAPITAL

FOR THE DEPOSIT-TAKING INSTITUTIONS SECTOR
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capitalized to withstand such shocks in the yields on govern-
ment’s domestic issues.

The result of the analysis revealed that securities dealers 
were less susceptible to parallel shifts of the curve than dtis. 
The sector’s impairment to capital from a 100% upward shift 
of the term structure was 7.5% (see Table B.1 in Annex B). A 
20% increase in the term structure would result in an impair-
ment to securities dealers’ capital of 1.9% (see Figure 5), while 
a 50% increase in rates resulted in impairment of 4.3 percent.

At the 50% shock level, one institution fell below the capital 
adequacy ratio prudential minimum level of 10%. The outcome 
was unchanged at the 100-shock level where one institution fell 
below the capital adequacy ratio prudential minimum level.

An assessment of the insurance industry revealed that 
fair value losses from a 100 increase in rates across the term 

Figure 5
BOX-PLOT OF THE RATIO OF FAIR VALUE LOSSES TO CAPITAL

FOR THE SECURITIES DEALER SECTOR
FOR PARALLEL SHIFTS OF THE YIELD CURVE

50

40

10

0

30

70

60

20

100 percent

Fa
ir

 v
al

ue
 lo

ss
es

 to
 ca

pi
ta

l
(p

er
ce

nt
ag

e)

SD sector aggregate

50 percent20 percent



28 Monetaria, January-June, 2017

structure accounted for 37.4% of the life insurance subsector 
capital base (Figure 6). Exposure to the general insurance sub-
sector, on the other hand, was less than 10% of its capital base 
(see Table B.1 in Annex B). At the 100% shock level, fair val-
ue losses across all three sectors of the market was highest for 
the insurance sector (specifically the life insurance subsector 
which accounted for 41.6% of total losses of 49.4 billion jmd).

6.3.2 Flattening of the Yield Curve at the Short End

A hypothetical flattening of the yield curve was considered, in 
which the 1-year key rate increased by 20%, 50% and 100%, re-
spectively. Such movement in the curve would result in great-
er impact on portfolios holdings that are concentrated within 
maturities of up to five years. The outcome of the assessment 
showed that dtis were more susceptible to the flattening of 

Figure 6
BOX-PLOT OF THE RATIO OF FAIR VALUE LOSSES TO CAPITAL

FOR THE INSURANCE SECTOR
FOR PARALLEL SHIFTS OF THE YIELD CURVE
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the curve at the short end than securities dealers. At the 100% 
shock level fair value losses for dtis amounted to 12.7% of 
their capital base while securities dealers amounted 2.6% of their 
capital base (see Figures 7 and 8 and Table B.1). Similarly, life 
insurance subsector was more exposed to the flattening of the 
curve at the short end when compared to the general insurance 
subsector for the insurance sector (see Figure 9). At the 100% 
shock level fair value losses for life and general insurance sub-
sectors were 3.1% and 2.2% of their capital base, respectively. 
In addition, across the market, the dti sector had the greatest 
exposure to the stress testing of the short end of the curve fol-
lowed by the life insurance subsector. Evidently, the outcome 

Figure 7
BOX-PLOT OF THE RATIO OF FAIR VALUE LOSSES TO CAPITAL

FOR THE DEPOSIT-TAKING INSTITUTION
SECTOR FOR NONPARALLEL SHIFTS OF THE YIELD CURVE
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of the flattening of the curve was lower than that of a parallel 
shift of the curve.

6.3.3 An Increase in Premiums for Medium Tenures 
along the Curve

A hypothetical increase in yields along the medium-term ten-
ures (for example, five years to ten years) of the curve was con-
sidered as an increase in the demand for premiums along 
these tenors by investors. To simulate such changes in the yield 
curve the 10-year key rate was adjusted upwards at the respec-
tive shock levels. The adjustment in the 5-year key rate would 
impact yields that are greater than the 5-year key rate up to the 
10-year key rate and above the 10-year key rate but less than the 
20-year key rate.

Figure 8
BOX-PLOT OF THE RATIO OF FAIR VALUE LOSSES TO CAPITAL

FOR THE SECURITIES DEALERS SECTOR
FOR NONPARALLEL SHIFTS OF THE YIELD CURVE
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The relative fair value exposure to capital for such movement 
along the curve was largest for the insurance sector across the 
market. At the 100% shock level, fair value losses from such 
movement along the curve was 10.4% of capital for the life in-
surance subsector and 2% for the general insurance subsector 
(see Figure 9, and Table B.1).

While for the dtis and securities dealers, such movement 
along the curve would result in lower exposure when compared 
to a flattening of the curve at the short end. At the 100% shock 
level, fair value losses relative to capital were 2.8% and 2.4% for 
dtis and securities dealers, respectively (see Figures 7 and 8).

Figure 9
BOX-PLOT OF THE RATIO OF FAIR VALUE LOSSES TO CAPITAL

FOR THE INSURANCE SECTOR
FOR NONPARALLEL SHIFTS OF THE YIELD CURVE
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6.3.4 A Steepening of the Curve at the Long End 
of the Maturity Spectrum

A hypothetical increase in yields along the long end (that is, 
above 10 years) of the curve was considered reflecting an in-
crease in uncertainty of long-term macroeconomic conditions 
by investors. To simulate such movements in the yield curve, 
the 20-year and 30-year key rates were stressed at the respec-
tive shock levels. Relative to prior segmented shifts along the 
curve, exposures for the life insurance subsector was largest 
for shifts at the long end of the yield curve. At the 100% shock 
level, fair value losses from such movement along the curve was 
10.4% of capital for the life insurance subsector (see Figure 8 
and 9, and Table B.1). Conversely, relative to prior segmented 
shifts along the yield curve, exposures for dtis and securities 
dealers were smallest for shift at the long end of the maturity 
spectrum. At the 100% stress level, fair value losses relative to 
capital were 0.3% for dtis and 1.7% for the securities dealers 
sector (see Figures 7 and 9).

From the respected shifts of the yield curve, it was observed 
that a parallel shift of the curve would have the largest impact 
on the fair value of the portfolio holdings of goj domestic se-
curities across the respective sectors in the above analysis. In 
relation to nonparallel shifts of the yield curve, the results of 
the analysis were to some extent consistent with the funda-
mental market practice of the respective sectoral market par-
ticipants. The life insurance subsector was more vulnerable to 
the medium to the long end of the maturity spectrum which 
is reflective of the appetite of their investment horizon. The 
dtis, securities dealers and the general insurance subsector, 
on the other hand, were more vulnerable to the short to medi-
um term segment of the yield curve.

7. CONCLUSION

This paper estimated the goj domestic yield curves from 2014 
to 2016 at a quarterly frequency. The estimation of the curves 
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was based on the Svensson model. The model fits the goj bond 
price data well without being overparameterized and, thus, 
provides a consistent picture of goj’s domestic yield curve evo-
lution. The results from the estimation of the goj zero-coupon 
spot rate curve show upward sloping yield curve. With the ex-
ception of 2014Q4, investors’ preferences along the curve vary 
inversely across the 1- to 10-years and 10- to 30-years segments 
maturity spectrum of the goj domestic jmd debt portfolio.

Additionally, the estimated yield curve was utilized in an in-
terest rate risk analysis for selected financial market participant 
sectors in Jamaica. As a risk assessment exercise, the study inves-
tigated the impact of parallel and nonparallel shifts of the yield 
curve on the portfolio holdings of selected domestic financial 
market participant sectors. The approach of the study relies on 
the krd model for interest rate risk management. The choice 
of the krd model was motivated by nonparallel shift scenarios 
for the yield curve.

The results from a parallel shift of the estimated yield curve 
showed that the life insurance subsector was more exposed to 
such movements in goj domestic bond yields relative to other 
market participant groups. In relation to nonparallel shifts of 
the curve, dtis, securities dealers and general insurance sub-
sector were more vulnerable to shifts in short to medium terms 
segment of the yield curve. The life insurance subsector was 
more exposed to the medium to the long end of the yield curve. 
The results of the assessment provide useful insights on the fi-
nancial market structure, which was consistent with market 
expectation on the investment horizon for these participants.

The key rate model is a very useful tool for hedging interest 
rate risk and is used by market participants along with other 
tools. In light of the model’s application, there are limitations 
to its use. Firstly, the choice of key rates is somewhat subjective. 
Thus, the model offers no guidance on the choice of the risk 
factor to be used despite its importance. As a circumvention to 
this shortcoming of the model, different numbers and choices 
of key rates may be selected conditional on the maturity struc-
ture of the portfolio under consideration.
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Secondly, the shift in the individual key rates provides an im-
plausible yield curve shape. Further, the shift in the key rates 
assumes strong correlation of the neighboring rates which may 
not always be the case. In addressing this shortcoming of the 
model, Johnson and Meyer (1989) proposed the partial deriv-
ative approach. This approach assumes that the forward rate 
curve is split up into many linear segments and all forward rates 
within each segment are assumed to change in a parallel way. 
Under it each forward rate affects the present value of all the 
cash flows occurring within or after the term of the forward rate.

Lastly, the key rate model does not take into account past 
movements in past yield curves hence making the model ineffi-
cient in describing the dynamics of term structure because his-
torical volatilities of interest rates provide useful information.

Figure A.1
HOLDINGS OF GOJ DOMESTIC JMD ISSUE BY DEPOSIT-TAKING

INSTITUTIONS AND SECURITIES DEALERS
MARCH 2014 TO MARCH 2016
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Figure A.2
DISAGGREGATION OF THE SHARE OF GOJ DOMESTIC JMD ISSUE

BY MATURITY AS AT DECEMBER 2016
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Table A.1

PARAMETER OUTPUT
Estimated Parameters for the Period 2014Q1-2016Q4

Actual values

Date β0 β1 β2 β3 λ γ

2014Q1 0.17 −0.13 −0.15 0.16 0.41 3.81

2014Q2 0.15 −0.11 −0.19 0.16 0.64 2.40

2014Q3 0.08 −0.00 −18.86 18.96 0.18 0.18

2014Q4 0.19 −0.13 28.22 −28.40 0.59 0.59

2015Q1 0.20 −0.12 −0.12 −0.33 2.52 0.38

2015Q2 0.17 −0.11 −22.06 21.93 0.74 0.74

2015Q3 0.15 −0.08 −0.09 −0.19 3.71 0.60

2015Q4 0.17 −0.12 −0.07 −0.05 0.23 2.63

2016Q1 0.14 −0.10 −16.9 −16.81 0.94 0.95

2016Q2 0.15 −0.10 −9.18 9.08 0.79 0.80

2016Q3 0.17 −0.10 −0.09 −0.02 0.28 6.40

2016Q4 0.27 −0.15 −0.36 −0.51 2.92 0.23
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Annex B

Table B.1

FAIR VALUE LOSSES RELATIVE TO CAPITAL FROM KEY RATE SHIFTS 
OF THE ESTIMATED YIELD CURVE AS AT DECEMBER 2016

Shock levels (%)

20 50 100

Parallel upward shift of the curve

dtis 3.8 9.0 16.2

sds 1.9 4.3 7.5

lis 11.1 23.4 37.4

gis 0.5 1.2 6.2

Flattening of the curve at the 
shortend

dtis 2.9 6.9 12.7

sds 0.5 1.2 2.6

lis 0.7 1.6 3.1

gis 0.2 0.4 2.2

Increase in medium term 
tenures along the curve

dtis 0.7 1.6 2.8

sds 0.6 1.3 2.4

lis 2.6 5.9 10.4

gis 0.2 0.4 2.0

Steepening of the curve at the 
long-end

dtis 0.1 0.2 0.3

sds 0.5 1.1 1.7

lis 2.6 5.9 10.4

gis 0.2 0.4 2.0

Note: dtis stands for deposit-taking institutions sector; sds for securities dealers 
sector; lis for life insurance subsector; and gis for general insurance subsector.
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