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Abstract

In this paper we provide conditions under which the hitting-time problem for Brownian motion is equivalent to

solving a heat equation with moving boundary and distributional initial conditions. Motivated by the hitting-

time problem, we study the heat equation with absorbing moving boundaries. Using Fourier analysis we develop

a procedure to solve this problem for a family of curves that includes the square root, quadratic, and cubic

boundaries. As an application of our results, and using Sturm-Liouvile theory, we compute the density of the

hitting time of a Brownian motion to a family of quadratic boundaries.

Keywords: Heat equation, Brownian motion, Hitting times, Sturm-Liouville theory
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1. Introduction

Consider a standard one-dimensional Brownian motion {Bt : 0 ≤ t <∞} starting at zero, and a real-valued

continuous function f on [0,∞). We define the first hitting time as

Tf := inf{t > 0 : Bt = f(t)}. (1)

The first hitting time problem is then to find the distribution of Tf . Hitting time problems are also known as

boundary crossing problems and they are fundamental and challenging problems in stochastic analysis. The

study of hitting time problems may be traced back to Bachelier’s doctoral thesis [1] and nowadays they have

deep applications in pure and applied mathematics.5

In this paper we introduce a new approach for solving the boundary crossing problem for Brownian motion

for certain smooth and convex boundaries. As a first contribution of the present paper, in Section 2, using

some results from [2], we give conditions under which the boundary crossing problem for Brownian motion is

equivalent to solving a heat equation with moving boundary and distributional initial conditions. This result

can be seen as a complement to the celebrated method of images developed by Lerche [3] that works for concave10

and sub-linear boundaries.

∗Corresponding author
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Guerra-Polania)
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The study of hitting time problems for Brownian motion leads us to deal with the heat equation absorbed

at a moving boundary f(t). Thus, we wish to find functions v(t, x) such that

νt(t, x) =
1

2
νxx(t, x), (2)

ν(t, f(t)) = 0, (3)

(t, x) ∈ [0,∞)× R, f ∈ C2.

Although (2)-(3) seems to be a particular problem in stochastic analysis, it actually appears prominently in

applications. For instance, see [4, 2, 5, 6] in the construction of first hitting time densities of Brownian motion;15

[7, 8, 9] in the valuation of barrier options; [10, 11] in the quantification of counterparty risk; [12, 13] for

applications of the quadratic boundary in biology and other fields; [14, 15] for applications in physics. In fact,

explicit solutions to the problem (2)-(3) are well known in some particular cases, such as the followings.

(a) Linear boundary. For b ∈ R, the function

ν(t, x) =
x√
2πt3

exp

{
−x

2

2t

}
+ b

1√
2πt

exp

{
−x

2

2t

}
. (4)

solves (2)-(3) in the case in which f(t) = −bt. [See, for instance, [16] for an example of this function in20

the first hitting time of Brownian motion to a linear boundary.]

(b) Quadratic boundary. Given that Ai denotes an Airy function and ξ ∈ R− := {x ∈ R;x < 0} is any of its

roots, then

ν(t, x) = exp

{
t3

12
+
tx

2

}
Ai

(
x+

t2

4

)
(5)

is a solution of problem (2)-(3) when f(t) = ξ − t2/4. (See, for instance, [17] for the general theory and

applications of Airy functions)25

(c) Rayleigh type equation. Let

ν(t, x) =
1

2π

∫ ∞
−∞

exp

{
iλx− 1

2
λ2t− λ4

4

}
dλ

be the so-called Pearcey function. This function solves problem (2)-(3) when f satisfies

f ′′(t) = 2[f ′(t)]3 − 1

2
tf ′(t)− 1

4
f(t).

See [18].

As a second contribution of the present paper, using basic elements of Fourier analysis, we develop a unified

procedure to solve problem (2)-(3) for a family of boundaries that include quadratic and cubic boundaries. The30

technique used to achieve our goal is remarkably straightforward, and is based on analyzing the convolution

between the fundamental solution of the heat equation and some real-valued and sufficiently smooth function

φ. We suspect that this technique can be generalized to the case of a general polynomial boundary.

Finally, given that our main motivation for studying problem (2)-(3) comes from the hitting time problem

for Brownian motion, we use our results to compute the density of the boundary crossing up to a quadratic35

boundary. To this end, we use the solution to the heat equation with quadratic moving boundary computed in

Section 4, below, and Sturm-Liouville theory.
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Organization of the paper. In Section 2 we show that, for certain smooth and convex boundaries, the

boundary crossing problem for Brownian motion is equivalent to solving the heat equation with distributional

initial and moving boundary conditions. In Section 3 we introduce some notation, define the heat polynomials,40

and recall some of their properties. In Section 4 the technique used to link solutions ν of the heat equation with

moving boundaries f is introduced in the case in which the linking function φ(x) has Fourier transform φ which

is an entire function with growth (2, σ). Furthermore, in Section 5 we study in detail the case of absorption at

the linear, quadratic, and square root boundaries with our approach. Subsequently, in Section 6, we derive the

solution of the heat equation with a cubic absorbing boundary. As an application of our results, in Section 7 we45

compute the density of the hitting time up to a family of quadratic boundaries. Finally, we conclude in Section

8 with some general remarks.

2. On the heat equation and hitting-time problems

In this section we present a brief and self-contained summary of [2] and give conditions under which the

boundary crossing problem for Brownian motion is equivalent to solving a heat equation with suitable initial50

and moving boundary conditions. The main goal in this section is to correct an erratum that appeared in the

boundary conditions (6.5) in [2].

The use of the heat equation with a moving boundary for finding the density of a hitting time appeared

for the first time in the method of images developed by Lerche [3] Theorem 1.1. A concise statement of this

theorem appears in Proposition 3.3 in [19]. Among the type of boundaries ψ for which Lerche’s approach holds55

are:

1. ψ is a concave function,

2. ψ(t)/t is monotone decreasing that is, ψ is a sub-linear function.

Consider a boundary ψ ∈ C∞[0,∞) that is concave and sub-linear on a region Ω := {(t, x) : x ≤ ψ(t)}.

Roughly speaking, the method of images states that if you have a solution h to the heat equation on Ω that60

satisfies

1. h(t, ψ(t)) = 0;

2. limt↓0 h(t, a) = δ0(a),

then the density of the hitting time up to the boundary ψ is

fψ(t) = −1

2
hx(t, ψ(t)).

The theory developed in this section can be seen as a complement to the Lerche’s method of images.

In fact, we characterize the density of hitting times of Brownian motion as solutions to the heat equation65

with distributional initial and moving boundary conditions, considering boundaries that do not fit Lerche’s

approach. We study the hitting times for convex boundaries (see Assumption 2.1 below) that include, for

instance, polynomial boundaries such as f(t) = a+ btn for a, b > 0 and n a positive integer.

3



Recall that given a standard one-dimensional Brownian motion {Bt : 0 ≤ t < ∞} starting at zero, and a

real-valued continuous function f on [0,∞) and such that f(0) 6= 0, the hitting time problem is to find the

distribution of the random time

Tf := inf{t > 0 : Bt = f(t)}. (6)

In the case of a Brownian motion it is known that if f is a C1 function, then Tf admits a continuous density

with respect to the Lebesgue measure [20].70

Consider first the hitting time to a fixed level a, so

Ta := inf{t > 0 : Bt = a}.

Using the reflection principle (see [16] p. 81) it can be shown that, for a > 0 fixed, Ta has a density with respect

to the Lebesgue measure given by

h(t, a) =
a√
2πt3

e−
a2

2t for t > 0. (7)

We will study the limits of the function h because they will play a key role in determining the boundary

conditions (22) and (21) below. Note that if ω(t, a) is the heat kernel (also known as the fundamental solution

to the heat equation), that is,

ω(t, a) =
1√
2πt

e−
a2

2t , (8)

then ωa(t, a) = −h(t, a) where h is as in (7), and ωa denotes partial derivative.

Let C∞c (R) be the set of infinitely differentiable functions with compact support, and recall that ([21] p.

208)

lim
t↓0

ω(t, a) = δ0(a),

where δ0(a) is the Dirac mass at 0 with respect to the variable a. Then, given that differentiation is continuous

with respect to distributional convergence ([21] p. 315), we have

lim
t↓0

h(t, a) = −1

2
δ′0(a) (9)

where the limit is in distributional sense, that is,

lim
t↓0

∫ ∞
0

h(t, a)ϕ(a)da =
1

2
ϕ′(0) (10)

for all ϕ in the set E of test functions defined as

E := {ϕ ∈ C∞c ([0,∞)) : ϕ(0) = 0}. (11)

Besides, direct calculations show that

lim
a↓0

h(t, a) = 0. (12)

We will study the hitting time problem (6) for a function f that satisfies the following conditions.

Assumption 2.1. Let f ∈ C2([0,∞)) be a real-valued function such that, for all t > 0,

f(0) = 0, f ′′(t) ≥ 0, and

∫ t

0

(f ′(s))2ds <∞. (13)
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Remark 2.2. We will denote by νf (t, a) the density of the hitting time for a boundary a+ f(t) for a > 0 and

such that f satisfies Assumption 2.1.

Theorem 3.1 together with Theorem 4.1 in [2] show that the density of the hitting time νf (s, a) is given by

νf (s, a) = v(0, a)e−
1
2

∫ s
0
(f ′(u))2du−f ′(0)ah(s, a) (14)

with h as in (7), and v : [0, s]× [0,∞)→ [0,∞) is a solution to the Cauchy problem

−∂v
∂t

+ f ′′(t)av =
1

2

∂2v

∂a2
+
(1

a
− a

s− t

)∂v
∂a

with v(s, a) = 1, (15)

as well as 0 ≤ v(t, a) ≤ 1 for 0 ≤ t ≤ s.75

To obtain a solution v to (15), Proposition 4.1 in [2] considers a function w defined as

v(t, a) =
w(t, a)

h(s− t, a)
, (16)

where h is given in (7). If w(t, x) satisfies that

−wt(t, a) + f ′′(t)aw(t, a) =
1

2

∂2w

∂a2
on [0, s)× (0,∞), (17)

then v(t, a) in (16) satisfies (15). Furthermore, from the boundary condition (9) and the fact that v(s, a) = 1

we obtain

lim
t↑s

w(t, a) = −1

2
δ′0(a) (18)

and, from (12) it follows that

lim
a↓0

w(t, a) = 0. (19)

Using Fourier transforms, Theorem 6.1 in [2] establishes that a solution to (17) on [0, s)× (0,∞) is

w(t, a) = e
1
2

∫ s
t
(f ′(u)2du+af ′(t)κ(s− t, a+

∫ s

t

f ′(u)du) (20)

where κ(t, x) is a solution to the heat equation.

Finally, for a solution κ to the heat equation and considering the initial condition (18) we obtain

lim
t↑s

κ
(
s− t, a+

∫ s

t

f ′(u)du
)

= lim
t↓0

κ(t, a) = −1

2
δ′0(a) (21)

where the limit is in the distributional sense on the set of test functions E in (11).

The condition (19) yields

lim
a↓0

κ
(
s− t, a+

∫ s

t

f ′(u)du
)

= κ(s− t, f(s)− f(t)) = 0. (22)

The Condition 6.5 in [2] has to be replaced by the conditions (21) and (22).

Summarizing, if κ is a solution to the heat equation on [0, s)× (0,∞) that satisfies (21) and (22), then the

density of the hitting time at time s, νf (s, a), is

νf (s, a) = κ
(
s, a+

∫ s

0

f ′(u)du
)

= κ(s, a+ f(s)). (23)
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Example 2.3 (The hitting time up to a linear boundary). This example is devoted to show that the hitting

time up to the linear boundary f(t, a) = a+ µt (µ > 0, a > 0) can be found with a solution to the heat equation

that satisfies (21) and (22) with f(t) = µt. To this end, consider the function κ(t, x) given by

κ(t, x) =
(x− µt)√

2πt3
e−

x2

2t = h(t, x)− ω(t, x), (24)

where h was given in (7) and ω is the heat kernel (8). Given that h and ω both are solutions to the heat equation,

it follows that also κ solves the heat equation. Furthermore, if ϕ ∈ E, then

lim
t↓0

∫ ∞
0

ϕ(a)κ(t, a)da =
1

2
ϕ(0) +

1

2
ϕ′(0) =

1

2
ϕ′(0) = −1

2
δ′0(a),

and so κ satisfies (21). Finally, if s is a fixed number, it follows that

κ(s− t, f(s)− f(t)) =
(µs− µt− µ(s− t))√

2π(s− t)3
e−

(µs−µt)2
2(s−t) = 0.

Hence κ satisfies (22). Therefore, the density νf is given by

νf (s, a) = κ(s, a+ µs) =
a√

2πs3
e−

(a+µs)2

2s . (25)

This density can be checked in [16] p. 196 where it is obtained by means of the Girsanov theorem.

Motivated by the hitting time problem for Brownian motion, in the next sections we address the problem80

of the heat equation with a moving boundary, that is, problem (2)-(3).

3. Technical preliminaries

In this section we introduce notation that will be used in the remainder of the paper. We also define the

so-called heat polynomials and state some of their properties.

Now we will define the so-called heat polynomials and present some of their properties. We will make use85

of heat polynomials in Lemma 3.2 and in the proof of Proposition 4.1 below.

Definition 3.1 (Rosembloom and Widder [22]). We define the heat polynomials as functions vn(t, x) such that

eiλx−λ
2t/2 =

∞∑
n=0

vn(t/2, x)
(iλ)n

n!
.

The heat polynomials satisfy the following properties whose proofs can be seen in [22].

• The recurrence relation

vn+1(t, x) = xvn(t, x) + 2ntvn−1(t, x) (26)

holds for n = 1, 2, . . . , with v0(t, x) = 1, v1(t, x) = x.

• For n = 1, 2, . . . ,

v(1)n (t, x) = nvn−1(t, x). (27)

Finally, we introduce a technical lemma that will be used in the proof of Proposition 4.1.90
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Lemma 3.2. Let vn(t, x) be the heat polynomials. Then

dn

dλn

[
eiλx−λ

2t/2
]

= vn(−t/2, ix− λt)eiλx−λ
2t/2 for n = 1, 2 · · · . (28)

Proof. The proof is by induction. For n = 1, from (26) direct calculations give the result. Now, assume that

(28) holds for n; we will prove that it holds for n+ 1. The induction hypothesis yields

dn+1

dλn+1

[
eiλx−λ

2t/2
]

=
d

dλ

[ dn
dλn

[
eiλx−λ

2t/2
] ]

=
d

dλ

[
vn(−t/2, ix− λt)eiλx−λ

2t/2
]
,

which together with (27) gives

dn+1

dλn+1

[
eiλx−λ

2t/2
]

=
[
− tnvn−1(−t/2, x− λt)

+vn(−t/2, x− λt)(ix− λt)
]
eiλx−λ

2t/2

= vn+1(−t/2, ix− λt)eiλx−λ
2t/2.

The last equality follows from (26). The proof is complete.95

4. Main results

In this section we derive some algebraic properties of the convolution between the fundamental solution of

the heat equation and a function φ which has Fourier transform φ which in turn, is an entire function of growth

(2, σ), for more details on this assumption see for instance Theroem 12.1 in [22].

Proposition 4.1. For positive integers p, q, r and constant coefficients a, b ∈ R, consider the differential equa-100

tion

xpφ(2)(x) = axqφ(1)(x) + bxrφ(0)(x) for x ∈ R. (29)

In addition, let vn be the heat polynomials. If φ is an entire function of growth (2, σ) and denotes the Fourier

transform of a solution φ to (29), then the following holds

(−i)p
∫

(iλ)2φ(λ)vp(−t/2, ix− λt)eiλx−λ
2t/2dλ (30)

= (−i)qa
∫
iλφ(λ)vq(−t/2, ix− λt)eiλx−λ

2t/2dλ

+(−i)rb
∫
φ(λ)vr(−t/2, ix− λt)eiλx−λ

2t/2dλ.

Proof. Applying the Fourier transform to both sides of (29) yields

ip
dp

dλp
[
(iλ)2φ(λ)

]
= aiq

dq

dλq
[
iλφ(λ)

]
+ bir

dr

dλr
[
φ(λ)

]
.

7



Next, we multiply both sides of the previous expression by eiλx−λ
2t/2, and then integrate to obtain105 ∫ +∞

−∞
eiλx−λ

2t/2ip
dp

dλp
[
(iλ)2φ

]
dλ (31)

= a

∫ +∞

−∞
eiλx−λ

2t/2iq
dq

dλq
[
iλφ
]
dλ+ b

∫ +∞

−∞
eiλx−λ

2t/2ir
dr

dλr
[
φ
]
dλ.

Note that the function eiλx−λ
2t/2 vanishes as |λ| → ∞. Hence, integration by parts gives

(−i)p
∫

(iλ)2φ
dp

dλp

[
eiλx−λ

2t/2
]
dλ

= (−i)qa
∫

(iλ)1φ
dq

dλq

[
eiλx−λ

2t/2
]
dλ

+(−i)rb
∫

(iλ)0φ
dr

dλr

[
eiλx−λ

2t/2
]
dλ.

Thus, equation (30) follows from the latter equality and (28).

We will use Proposition 4.1 in combination with the following facts.

Remark 4.2. (a) Suppose that there exists a pair of functions ν and f that solve the moving boundary problem

(2)-(3). Then direct calculations give

f ′(t)ν(1)(t, f(t)) +
1

2
ν(2)(t, f(t)) = 0 (32)

and

f ′′(t)ν(1) + f ′(t)
(
f ′(t)ν(2) + ν(3)

)
+

1

4
ν(4) = 0. (33)

(b) Consider the function ν(t, x) defined as the convolution between a solution φ to (29) and the fundamental

solution to the heat equation, i.e.,110

ν(t, x) :=
1

2π

∫ ∞
−∞

φ(λ)eiλx−λ
2t/2dλ for (t, x) ∈ R+ × R.

If φ satisfies some growth condition (see [16] p. 254), then ν(t, x) is a solution to the heat equation.

Furthermore, by properties of Fourier transforms,

ν(n)(t, x) :=
1

2π

∫ ∞
−∞

(iλ)nφ(λ)eiλx−λ
2t/2dλ (34)

for (t, x) ∈ R+ × R.

We are now ready to present the main result of this section which uses Proposition 4.1 and Remark 4.2.

Theorem 4.3 links the functions ν and f that solve (2)-(3), through a specific C2 function φ.115

Theorem 4.3. For given fixed coefficients d0, d1, c0, c1, c2 ∈ R, let φ be a real-valued solution of the following

second order ODE

φ(2)(x) =

1∑
j=0

djx
jφ(1)(x) +

2∑
j=0

cjx
jφ(x) (35)

8



for x ∈ R, with Fourier transform φ. Let

ν(t, x) :=
1

2π

∫ ∞
−∞

φ(λ)eiλx−λ
2t/2dλ (36)

be the convolution between φ and the fundamental solution of the heat equation. If there exists f such that

ν(t, f(t)) = 0 and ν(1)(t, f(t)) 6= 0, it follows that120

1. If d1 = c2 = 0 in (35), then we have that

f(t) = −d0
2
t− c1

4
t2. (37)

2. If at least one of the coefficients d1, c2 is different from zero, then, for an arbitrary constant C, the function

f is of the form

f(t) =
−d0d1 − 2c1 − 2c2d0t+ c1d1t

d21 + 4c2
+
√
−1 + d1t+ c2t2 · C. (38)

Proof. If the function φ is a solution of (35), it follows from Proposition 4.1 and (34) that its convolution with

the fundamental solution of the heat equation satisfies that125

(1− d1t− c2t2)ν(2)(t, x) =

(d0 + d1x+ c1t+ c22tx)ν(1)(t, x) (39)

+(c0 + c1x+ c2x
2 + c2t)ν

(0)(t, x).

Now, suppose that there exists a function f such that ν(t, f(t)) = 0 for all t ≥ 0. It follows from (39) that

(1− d1t− c2t2)ν(2)(t, f(t))

= (d0 + c1t+ [d1 + 2c2t]f(t))ν(1)(t, f(t)) (40)

and, from (32),

ν(2)(t, f(t)) = −2f ′(t)ν(1)(t, f(t)). (41)

Thus, from (40) and (41), we have that

−2f ′(t)(1− d1t− c2t2) = (d0 + c1t+ [d1 + 2c2t]f(t)) . (42)

This implies that f , which solves the latter ODE, has the following general solution (by standard techniques)

as long as at least one of the coefficients d1, c2 is not zero130

f(t) =
−d0d1 − 2c1 − 2c2d0t+ c1d1t

d21 + 4c2
+
√
−1 + d1t+ c2t2 · C.

In turn, if d1 = c2 = 0, it follows from (42) that

f(t) = −d0
2
t− c1

4
t2,

as claimed.

9



5. Applications of Theorem 4.3

In this section we will show how Theorem 4.3 works to solve (2)-(3).

5.1. The linear boundary

From the proof of Theorem 4.3 we know that if all the coefficients are zero except d0, then we will recover135

the linear boundary.

Next we will proceed to construct a solution. To this end recall that, for arbitrary constants C1 and C2, the

equation

φ(2)(x) = d0φ
(1)(x) + c0φ

(0)(x),

has the general solution

φ(x) = e
1/2
(
d0−
√

4c0+d20

)
x
C1 + e

1/2
(
d0+
√

4c0+d20

)
x
C2.

If we take convolution between this function and the fundamental solution of the heat equation, we obtain

ν(t, x) = e
1/2
(
d0−
√

4c0+d20

)
x+ 1

2 t
[
1/2
(
d0−
√

4c0+d20

)]2
C1

+e
1/2
(
d0+
√

4c0+d20

)
x+ 1

2 t
[
1/2
(
d0+
√

4c0+d20

)]2
C2. (43)

Thus if C1 = −C2 we verify that ν (t, f(t)) = 0 for all t ≥ 0 in the case in which the boundary is

f(t) = −d0
2
t.

5.2. The quadratic boundary

Next we study a quadratic boundary. Taking c0, c1 6= 0 in (35) we have that

φ(2)(x) = c1xφ
(0)(x) + c0φ

(0)(x), (44)

which is the Airy differential equation [17]. To solve (44) first consider the homogeneous Airy equation

φ′′(x)− xφ(x) = 0. (45)

Using Fourier transform we can find a solution φ(x) to (45) such that

lim
x→+∞

φ(x) = 0.

It is given by

Ai(x) :=
1

2π

∫ +∞

−∞
ei(xz+z

3/3)dz. (46)

Direct calculations show that a solution φ(x) to (44) is given by Ac1i (x+ c0
c1

), where

Ac1i (x) :=
1

2π

∫ ∞
−∞

ei(xz+
z3

3c1
)dz = c

1/3
1 Ai(c

1/3
1 x). (47)

In particular, the convolution of Ac1i (x+ c0
c1

) with the fundamental solution of the heat equation is

ν(t, x) =
1

2π

∫
R

exp
(
iλx− λ2t

2
+ ic0

λ

c1
+ i

λ3

3c1

)
dλ (48)

= exp
(c21t3

12
+
xc1t

2
+
tc0
2

)
Ac1i

(
x+

c0
c1

+
c1t

2

4

)
. (49)
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Hence, if we take c0 = c
2/3
1 cn, where cn is a root of Ai(x) we obtain140

ν(t, x) = exp
(c21t3

12
+
xc1t

2
+
tc

2/3
1 cn
2

)
Ac1i

(
x+

cn

c
1/3
1

+
c1t

2

4

)
. (50)

From (50) we note that ν(t, f(t)) = 0 for all t ≥ 0 in the case in which

f(t) = −c1
4
t2.

We know that the zeros cn of Ai(x) are negative, and countable; see [17] p. 15.

5.3. The square root boundary

Next we analyze a square root boundary. To this end, from Theorem 4.3 we study the equation

φ(2)(x) = xd1φ
(1)(x) + c0φ

(0)(x),

whose solution has Fourier transform

φ(λ) = C1λ
c0−d1
d1 e

λ2

2d1 .

In particular, if we let s = −1/d1 > 0 and z0 = c0/d1, then

ν(t, x) =
1

π
2
z0
2 −1(s+ t)−

z0+1
2 I,

where

I =

[
√

2x cos
[
z0π
2

]
Γ
[
1+z0
2

]
1F1

[
1+z0
2 , 32 ,−

x2

2(s+t)

]
+
√
s+ tΓ

[
z0
2

]
1F1

[
z0
2 ,

1
2 ,−

x2

2(s+t)

]
sin
[
z0π
2

] ]
,

where 1F1 is the confluent hypergeometric function (see [23] p. 503) and Γ(·) is the gamma function ([23] p.

253). To verify that with f(t) =
√
s+ t we obtain ν(t, f(t)) = 0 for all t ≥ 0, we use the previous expression to145

obtain

ν(t,
√
s+ t) =

1

π
2
z0
2 −1(s+ t)−

z0
2 I

where

I =

[
√

2 cos
[
z0π
2

]
Γ
[
1+z0
2

]
1F1

[
1+z0
2 , 32 ,−

1
2

]
+Γ
[
z0
2

]
1F1

[
z0
2 ,

1
2 ,−

1
2

]
sin
[
z0π
2

] ]
.

We conclude by noticing that I is independent of s and t. Furthermore, by properties of the hypergeometric

functions one can check that I has countably many roots as a function of c0.
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5.4. Remarks150

1. In Theorem 4.3 the coefficient c0 is independent of the boundaries. In Section 7 below we will use c0 as an

eigenvalue in the standard Sturm-Liouville theory to find densities of hitting times for Brownian motion.

2. We note that the coefficient of ν(2) in equation (39) is given by

(1− d1t− c2t2).

In turn, d0 and c1 corresponded to the linear and quadratic boundaries, respectively. By analogy, we are

tempted to study an ODE that leads to a solution of the heat equation involving a coefficient where t is

of cubic order. We will do so in the next section.155

6. Derivation of the cubic boundary

In this section we derive a function f which corresponds to a solution of the heat equation (2)-(3) with cubic

absorbing boundary. We will make use of part 2 in Remark 5.4.

Theorem 6.1. Suppose that the moving boundary f in (3) is f(t) = − b
8 t

3. Furthermore, take b ∈ R\{0} and

let φ be a real-valued function that satisfies160

φ′′′(x) = bx2φ(x). (51)

Then there exists a real-valued solution of (51), that convolved with the heat kernel yields a function ν that

solves problem (2)-(3).

Before proving the theorem, we provide an example.

Example 6.2. For b = −1, the function

φ(x) :=
x

53/5
·0F2

[{}
,
{4

5
,

6

5

}
,− x5

125

]
,

defined in terms of the generalized hypergeometric function ·0F2 (see [24]), solves (51). Then the convolution of165

the heat kernel ω and φ,

ν(t, y) =

∫ ∞
−∞

ω(t, x)φ(y − x)dx,

is a solution to the problem (2)-(3) when f(t) = t3/8. That is,

ν(t, t3/8) = 0 ∀t ≥ 0.

The proof of Theorem 6.1 is in the spirit of the proof of Theorem 4.3. The only difference is that the function

φ that links ν and the boundary f in problem (2)-(3) is now C3 instead of C2.

Proof of Theorem 6.1. If φ is a solution to (51) and ν(t, x) denotes the convolution of φ and the fundamental170

solution to the heat equation, then a direct application of Proposition 4.1 to the ODE (51) yields

ν(3)(t, x) = bt2ν(2)(t, x) + 2btxν(1)(t, x) + (bx2 + bt)ν(t, x). (52)
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Now, if f is such that ν(t, f(t)) = 0, then from (32) we obtain

ν(3)(t, f(t)) = (−2bt2f ′(t) + 2btf(t))ν(1)(t, f(t)). (53)

Moreover, differentiating (52) with respect to x we have

ν(4)(t, x) = bt2ν(3)(t, x) + 2btxν(2)(t, x)

+ (2bt+ bx2 + bt)ν(1)(t, x) + 2bxν(t, x)

and again, if ν(t, f(t)) = 0, from this last expression and (53) it follows that

ν(4) = (−2b2t4f ′(t) + 2b2t3f(t)− 4btf(t)f ′(t) + 3bt+ bf2(t))ν(1). (54)

On the other hand, (33) reads

ν(4) = −4f ′′(t)ν(1) − 4f ′(t)(f ′(t)ν(2) + ν(3)).

From this latter equation, if ν(t, f(t)) = 0, then (53) yields

ν(4) = (−4f ′′ + 8(f ′)3 + 8bt2(f ′)2 − 8btff ′)ν(1). (55)

Thus equating (54) and (55) we obtain

− 4f ′′(t) + 2f ′(t)[4(f ′(t))2 + 4b2t
2f ′(t)− 2b2tf(t) + b22t

4]

− b2f(t)[2b2t
3 + f(t)]− 3b2t = 0. (56)

Finally, to verify the statement of the theorem, let f(t) = δt3, so f ′(t) = 3δt2 and f ′′(t) = 6δt. Then substitute

the values of f , f ′ and f ′′ in (56) to obtain

−24δt− 3b2t+ 2(3δt2)(4 · 9δ2t4 + 4b2t
2 · 3δt2 − 2b2tδt

3 + b22t
4)

−b2δt3(2b2t
3 + δt3) = 0,

or equivalently175

−3t(8δ + b2) + 6δt2(36δ2t4 + 12b2δt
4 − 2b2δt

4 + b22t
4)

−b2δt3(2b2t
3 + δt3) = 0.

Factorizing in terms of t and t6 we have

−3t(8δ + b2)

+δt6(216δ2 + 72b2δ − 12b2δ + 6b22 − 2b22 − b2δ) = 0.

Thus, for the latter equality to hold for all t ≥ 0 we should have

δ = −b2/8.

But this also yields

216b22/64− 59b22/8 + 4b22 = 0,

and thus the proof is complete.

The next section is devoted to computing the hitting time up to a family of quadratic boundaries making180

use of (21) and (22), and Theorem 4.3.
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7. Hitting time of a Brownian motion to a quadratic boundary

In this section we will compute explicitly the density of the hitting time of a standard Brownian motion up

to a quadratic boundary f(t) = a + k
4 t

2 for a > 0, k > 0. We will use the solution to the heat equation with

quadratic moving boundary computed above, in (50). Recall that we are looking for a solution κ(t, x) to the185

heat equation on [0, s)× (0,∞) that satisfies the conditions (21) and (22) where f(t) = k
4 t

2.

We will use the solution ν(t, x) to the heat equation with quadratic moving boundary computed above (see

(50)),

ν(t, x) = exp

{
k2t3

12
+
ktx

2
+
k2/3cnt

2

}
Aki

(
x+

cn
k1/3

+
kt2

4

)
(57)

where cn is a zero of the Airy function Ai(x). To fulfill the condition (21) we will use cn as an eigenvalue in the

Sturm-Liouville theory as was pointed out in Remark 5.4. To this end recall that the Airy function190

Ai(x) :=
1

2π

∫ +∞

−∞
ei(xz+z

3/3)dz (58)

has countably many zeros (see [17] p. 20) on the negative real axis.

Let

A := A−1i ({0}) = {cn ∈ R− : n = 0, 1, · · · , Ai(cn) = 0, cn+1 < cn} (59)

be the set of zeros of Ai(x). It is known ([17] p. 88) that∫ ∞
0

A2
i (x+ cn)dx = A′2i (cn). (60)

Consider the regular Sturm-Liouville problem

φ′′(x)− kxφ(x) = λφ(x), with φ(0) = 0, lim
x→∞

φ(x) = 0, (61)

for x ∈ [0,∞), defined on the ideal domain of C2 functions that satisfy the boundaries conditions. From (61),

letting h(x) = φ(x− λ
k ) we obtain

h′′(x)− kxh(x) = 0, with h
(λ
k

)
= 0, for x ∈ [0,∞). (62)

Hence, given that we know the solution to the ODE in (62) and its zeros, it follows that eigenvalues and

eigenfunctions to the Sturm-Liouville problem are

λ = k2/3cn, Aki

(
x+

cn
k1/3

)
, (63)

respectively, where cn ∈ A and Aki (x) := k1/3Ai(k
1/3x) was defined at (47).

From classical Sturm-Liouville theory (see [21], Chapter 3) it follows that the eigenvalues (63) form a discrete

unbounded set and that the eigenfunctions in (63) form a complete orthogonal set in L2[0,∞).

To compute the norm in L2[0,∞) of Aki (x+ cn
k1/3

), note that∫ ∞
0

(Aki (x+
cn
k1/3

))2dx = k1/3
∫ ∞
0

A2
i (y + cn)dy = k1/3A′2i (cn)

where the last integral follows from (60). From these facts we have that{Aki (x+ cn
k1/3

)

k1/6|A′i(cn)|

}∞
n=0

(64)
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is a complete orthonormal set on L2[0,∞).195

The so-called closure representation to Dirac’s delta in terms of a complete orthonormal family {ϕn} in

L2(R) is given by

δ0(x− t) =

∞∑
n=0

ϕn(t)ϕn(x), (65)

where this equality is in the distributional sense; see [25], p. 89.

The Fourier coefficients associated to (64) for the derivative of Dirac’s delta are

〈−δ′0(x),
Aki (x− cn/k1/3)

k1/6A′i(cn)
〉 = (−1)nk1/2

Therefore, in the distributional sense we have that

−δ
′
0(x)

2
=

∞∑
n=0

k1/3
Aki (x+ cn/k

1/3)

2A′i(cn)
. (66)

Taking convolution with respect to the heat kernel we obtain

η(t, x) =

∞∑
n=0

k1/3

2A′i(cn)
e
k2t3

12 + ktx
2 + k2/3cnt

2 Aki

(
x+

cn
k1/3

+
kt2

4

)
. (67)

Note that η(t, x) is a solution to the heat equation that satisfies

lim
t↓0

η(t, x) = −1

2
δ′0(x),

so, using η we can find a solution to (21). On the other hand, to satisfy the boundary condition (22) we use

the following well known transformation

κ(t, x) = exp
(
µx+

1

2
µ2t
)
η(t, x+ µt) (68)

where µ is a constant given by µ = −f ′(s) = −ks2 . Note that κ is a solution to the heat equation and,

furthermore,

κ(s− t, a+

∫ s

t

f ′(u)du) =

∞∑
n=0

k1/3

2A′i(cn)
In, (69)

where In is given by

In = exp
(k2

12
(s− t)3 − kta

2
− k2s3

8
+
k2t3

8
+
k2s2t

4
− k2st2

4

)
Aki

(
a+

cn
k1/3

)
. (70)

Direct calculations show that κ satisfies the initial and boundary conditions (22)-(21). Hence, the density of

the hitting time up to the quadratic boundary a+ k
4 t

2 is200

νf (s, a) = κ(s, a+
k

4
s2) =

∞∑
n=0

k1/3

2A′i(cn)
e−

k2s3

24 + k2/3scn
2 Aki

(
a+

cn
k1/3

)
. (71)

Remark 7.1. This formula was computed in [12] (for a = 1 and k = (2κ)2) with a different approach . In

fact, the formula was obtained by means of the Laplace inversion formula and the residues theorem. In this

general setting the formula can be seen in [26], Lemma 2.3.3. Although formula (71) has been computed in

the literature ([12, 13]), there is no mention of the relationship between the boundary crossing problem up to a

quadratic boundary and the heat equation.205
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Example 7.2. We have computed numerically the density of the hitting time of a one-dimensional Brownian

motion to a quadratic boundary with a = 1, and k = 4 in Figure 1.

Figure 1: Density νf of the first hitting time of BM to a quadratic boundary with a = 1, and k = 4.

8. Concluding Remarks

In this work we give conditions under which the hitting time problem for Brownian motion is equivalent to

solve a heat equation with non-standard initial and boundary conditions. This connection between boundary210

crossing problems and the heat equation opens a new way for studying hitting time densities for some smooth

and convex boundaries. Motivated by hitting time problems we introduced a general framework to study the

problem of the heat equation with absorbing moving boundaries for a family of boundaries. As an application

of our results, we computed the density of the hitting time of a Brownian motion up to a quadratic boundary.
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Zürich (2004).260

18



www.cemla.org 

 

 

ANKS CONFERENCE ON ENV 
 

 

  

About CEMLA 

CEMLA is since 1952 the Center for Latin American Monetary Studies, an association of central banks with 
the goal of conducting frontier economic research and promoting capacity building in the areas of 
monetary policy, financial stability, and financial market infrastructures. CEMLA´s purpose is to foster 
cooperation among its more than 50 associated central banks and financial supervisory authorities across 
the Americas, Europe, and Asia, encouraging policies and technical advances that enhance price and 
financial stability as key conditions to achieve economic development and improve living conditions 
through stable and sound macro-financial fundamentals. 

CEMLA, 2023 

 
Postal address: Durango 54, Colonia Roma Norte, Alcaldía Cuauhtémoc, 06700 Mexico City, Mexico 
Website: www.cemla.org 
 
This paper can be downloaded without charge from www.cemla.org, or from RePEc: Research 
Papers in Economics. Information on all of the papers published in the CEMLA Working Paper 
Series can be found on CEMLA´s website. 

http://www.cemla.org/
http://www.cemla.org/


www.cemla.org 

 

 

 

 

http://www.cemla.org/

	628aa4b7-30f7-45e7-bbeb-1f66e69ccc3b.pdf
	Introduction
	On the heat equation and hitting-time problems
	Technical preliminaries
	Main results
	Applications of Theorem 4.3
	The linear boundary
	The quadratic boundary
	The square root boundary
	Remarks

	Derivation of the cubic boundary
	Hitting time of a Brownian motion to a quadratic boundary
	Concluding Remarks


