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Abstract

We study matching with couples problems where hospitals have one vacant

position. We introduce a constraint on couples’ preferences over pairs of hos-

pitals called restricted complementarity, which is a “translation” of bilateral

substitutability in matching with contracts. Next, we extend Klaus and Klijn’s

(2007) path to stability result by showing that if couples’ preferences satisfy re-

stricted complementarity, then from any arbitrary matching, there exists a finite

path of matchings where each matching on the path is obtained by “satisfying”

a blocking coalition for the previous one and the final matching is stable.
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1 Introduction

A matching with couples problem is a mathematical representation of a labor market with

two salient features: (i) wages are fixed, and hence they cannot be used to equate labor

supply and demand, and (ii) married couples participate in the market. An example of

such a labor market is the entry-level labor market for medical doctors in the e U.S. which

is administered by the National Resident Matching Program (NRMP).

Since the 1950s, the NRMP has used a variant of the Gale and Shapley (1962) algorithm

to match doctors and hospitals. It was by 1970 that the increasing presence of married

couples in the market led to a significant reduction of voluntary participation in the NRMP.

This problem was tackled by allowing couples to express their preferences over pairs of

hospitals.1 The difficulties the NRMP experienced before its redesign suggest market

outcomes were not “stable” in the way we describe next.

A blocking coalition consists of a group of doctors and hospitals that are not matched

to each other but would prefer to be. A matching is stable if there is no blocking coalition.

In the presence of blocking coalitions, the permanence of the matching is at serious risk

as there are agents who have the incentive and the power to circumvent it.

Gale and Shapley (1962) demonstrate that there is always a stable matching in matching

problems with no couples. Unfortunately, in the presence of couples, a stable matching is

no longer guaranteed (Roth, 1984).

The success of matching markets with couples such as the NRMP suggests that, de-

spite the theoretical impossibility, stable matchings exist and are reached in real-life ap-

plications. These findings have led to investigating properties of couples’ preferences that

guarantee the existence of stable matchings. Some such properties are weak responsiveness

(Klaus and Klijn, 2005 and Klaus et al., 2009), substitutability (Hatfield and Milgrom,

2005), and bilateral substitutability (Hatfield and Kojima, 2010). Bilateral substitutabil-

ity is weaker than both substitutability and weak responsiveness (Hatfield and Kojima,

2010).2

In this paper, we introduce a property of couples’ preferences over pairs of hospitals

called restricted complementarity. Restricted complementarity is the “translation” of bi-

lateral substitutability from the matching with contracts model to the standard couples

1See Roth and Peranson (1999) and Roth (2002) for details on the new design of the algorithm.
2For an interdisciplinary and comprehensive review of the literature on matching with couples problems, see Biró and

Klijn (2013).

2



model. Tello (2016) shows that, in the standard couples model, bilateral substitutability

is the minimal restriction on couples’ preferences for the existence of stable matchings,

and therefore is restricted complementarity. Furthermore, restricted complementarity be-

ing a condition on preference orderings over pairs of hospitals, instead of a condition over

choice functions, makes it possible to adapt techniques introduced by Roth and Vande

Vate (1990) and Klaus and Klijn (2007).

Our main result is that for problems where all couples’ preferences satisfy restricted

complementarity, it is possible to reach a stable matching from any arbitrary matching

by satisfying blocking coalitions one by one.3 This result implies that starting from an

arbitrary matching, certain random processes that match blocking coalitions converge to

a stable matching with probability one.4

The importance of this result is that it provides theoretical support to the empirical

observation that many decentralized matching markets perform well, suggesting they can

reach stable outcomes.

The remainder of the paper is organized as follows. Section 2 describes the matching

with couples problem and introduces restricted complementarity. In Section 3, we give the

path to stability result. We conclude in Section 4. All proofs are in the Appendices.

2 Matching with couples

There are two finite sets H and C of hospitals and couples. We denote generic elements

of H and C by h and c = (d1, d2), where d1 and d2 denote the spouses in a couple c. Let

D := {d : d ∈ {d1, d2} for some (d1, d2) ∈ C} be the set of doctors. Each hospital has

exactly one position to fill. Let u be the outside option for doctors. We can think of u

as a hospital with no capacity constraint so that each doctor can always find a job there.5

Each hospital h ∈ H has a complete, transitive, and strict preference relation P h

over the set D, and the prospect of having its position unfilled denoted by ∅. For d, d′ ∈
3Satisfying a blocking coalition: a couple or a hospital ends its partnership with unacceptable partners, or a couple and

two hospitals match with each other, possibly in replacement of less preferred partners.
4This result is established for one-to-one matching problems by Roth and Vande Vate (1990). It is extended to many-to-

many matching problems in which agents on one side of the market have substitutable preferences and agents on the other

side have responsive preferences by Kojima and Ünver (2006). For matching with couples problems, the path to stability

result holds whenever couples’ preferences satisfy weak responsiveness (Klaus and Klijn, 2007).
5We refer to elements of H ∪ {u} as hospitals. When we refer only to elements in H we make it explicit by writing

“hospitals in H”.
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D ∪ {∅}, we write dPh d
′ if hospital h prefers d to d′ (d ̸= d′), and dRh d

′ if h finds d

at least as good as d′, i.e., dPh d
′ or d = d′. If d ∈ D is such that dPh ∅, then d is an

acceptable doctor for hospital h. By contrast, if ∅Ph d, d is an unacceptable doctor for

hospital h.

We represent hospitals’ preferences by ordered lists of doctors and ∅; for example,

Ph = d5, d3, ∅ . . . indicates that hospital h prefers d5 to d3, and considers all other doctors

to be unacceptable. Let PH = {Ph }h∈H .
The restriction that each hospital has exactly one vacant position implies that no couple

can get a job for each of its members in the same hospital. In other words, no pair (h, h)

with h ∈ H is feasible. The set of all feasible hospital pairs is given by

H̄ = [(H ∪ {u})× (H ∪ {u})] \ {(h, h) : h ∈ H}.

We denote a generic element of H̄ by (h, h′).

Each couple c = (d1, d2) ∈ C has a complete, transitive, and strict preference relation

Pc over H̄. For each (h1, h2), (h3, h4) ∈ H̄ we write (h1, h2)Pc (h3, h4) if c prefers d1 and d2

being matched to h1 and h2 respectively, to being matched to h3 and h4 respectively. We

write (h1, h2)Rc (h3, h4) if c finds (h1, h2) at least as good as (h3, h4), i.e., (h1, h2)Pc (h3, h4)

or (h1, h2) = (h3, h4). Any pair (h, h′) such that (h, h′)Rc (u, u) is an acceptable pair to

c and otherwise unacceptable.

We represent couples’ preferences by means of ordered lists of feasible hospital pairs;

for example, Pc = (h3, h4), (h5, h3), (u, h4), . . . , (u, u) . . . indicates that c prefers (h3, h4) to

(h5, h3) and so on. Let PC = {Pc }c∈C .
A one-to-one matching with couples problem or simply a problem is denoted by

(PH, PC).

For each c we define a choice function Chc as

Chc(H) := argmax
Pc

{
H ∪ {(u, u)}

}
, for each H ⊆ H̄.

The choice function is defined on the set of feasible hospital pairs. Given a feasible set

of hospital pairs, it selects the most preferred pair from the set and the outside option

(u, u). It is important to highlight that choice functions are not a primitives of our model.

A matching specifies which hospitals are matched to which doctors. Formally, a

matching µ is a function defined on D ∪H such that

• for each d ∈ D, µ(d) ∈ H ∪ {u},
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• for each h ∈ H, µ(h) ∈ D ∪ {∅},

• for each d ∈ D and h ∈ H, µ(d) = h if and only if µ(h) = d.

For each c = (d1, d2) ∈ C, we write µ(c) to denote the pair (µ(d1), µ(d2)).

Now we introduce a central property of the matching literature: stability. Our stability

concept is the same as the one in Klaus and Klijn (2005).

Let µ be a matching. A coalition [h] with h ∈ H is a blocking hospital for µ if

• ∅Ph µ(h).

Let c = (d1, d2) ∈ C. A coalition [c, (u, u)], [c, (µ(d1), u)] or [c, (u, µ(d2))] is a

blocking couple for µ if

•
(
u, u

)
Pc

(
µ(d1), µ(d2)

)
,

(
µ(d1), u

)
Pc

(
µ(d1), µ(d2)

)
or

(
u, µ(d2)

)
Pc

(
µ(d1), µ(d2)

)
,

respectively.

We often refer to blocking hospitals and blocking couples as blocking coalitions.

A coalition [c, (h, h′)] with (h, h′) ∈ H̄ is a blocking coalition for µ if (h, h′) /∈
{(u, u),

(
µ(d1), u)

)
,
(
u, µ(d2)

)
} and

•
(
h, h′)Pc

(
µ(d1), µ(d2)

)
;

• [h ∈ H implies d1Rh µ(h)] and [h′ ∈ H implies d2Rh′ µ(h′)].

A matching is stable if there are no blocking coalitions. Since our analysis focuses on

stability, whenever we specify a problem (PH , PC) it is enough to specify lists of acceptable

doctors and lists of acceptable (and feasible) hospital pairs.

A set of hospital pairs is complete if (i) it contains the pair (u, u), and (ii) if combining

the first and second components of any two pairs within the set results in a feasible hospital

pair, then the latter pair also belongs to the set. Formally:

A subsetH ⊆ H̄ is complete if (i) (u, u) ∈ H and (ii)
[
(h1, h2), (h3, h4) ∈ H and (h1, h4) ∈

H̄
]
imply (h1, h4) ∈ H.

We define restricted complementarity, which is a property of couples’ preferences Pc

over hospital pairs.
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Restricted complementarity: for each complete H ⊆ H̄ and each h1, h2, h3, h4 such

that h1, h2 /∈ {u, h3, h4}, (h3, h4) ∈ H, and Chc(H) = (h1, h2), we have[
(sc1) (h1, h4)Pc (h3, h4) or (sc2) (h1, u)Pc (h3, h4)

]
and [

(sc3) (h3, h2)Pc (h3, h4) or (sc4) (u, h2)Pc (h3, h4)
]
.

We explain restricted complementarity by means of an example. Suppose married doc-

tors A and B receive several offers from hospitals h1, h2, h3, h4. Suppose that they take the

offer from hospital h1 for A and the offer from the hospital h2 for B. Let h3 ̸= h1, h2 be

a hospital that made an offer to A. Further, suppose that the offer from hospital h2 is no

longer available to B. In this case A rejecting the offer from h1 and taking the offer from

h3 while B taking an offer from a hospital h4 ̸= h1 is a violation of restricted complemen-

tarity. However, A taking the offer from h3 and B taking the offer from h4 = h1 is not a

violation of restricted complementarity. Complementarities that involve this kind of job

swaps between couple’s spouses are allowed under restricted complementarity.

Proposition 1. Let (PH , PC) be a problem such that for each c ∈ C, Pc satisfies restricted

complementary, then a stable matching exist.

The proof to Proposition 1 is relegated to Appendix A.

In Appendix A, we define bilateral substitutability. Tello 2016 shows that in the couples

model, bilateral substitutability is the minimal condition for which the existence of stable

matchings is guaranteed. We prove Proposition 1 by showing that restricted complemen-

tarity is equivalent to bilateral substitutability. The advantage of working with restricted

complementarity is that it is possible to extend the techniques introduced by Roth and

Vande Vate (1990) and Klaus and Klijn (2007).

3 Results

We extend Klaus and Klijn’s (2007) path to stability result to the case when couples’

preferences satisfy restricted complementarity. We show that if all couples’ preferences

satisfy restricted complementarity, there is always a path from an arbitrary matching to

a stable one, such that each matching on the path is obtained by “satisfying” a blocking
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coalition for the previous matching. We first define precisely what we mean by “satisfying”

a blocking coalition.

Satisfying blocking coalitions:6 If [h], h ∈ H is a blocking hospital for a matching µ,

then we say that a new matching ν is obtained from µ by satisfying the blocking coalition

if h and µ(h) are unmatched, and all other agents are matched to the same mates at ν as

they are at µ. Formally, matching ν is obtained from matching µ by satisfying blocking

coalition [h] for µ if

• ν(h) = ∅ and ν(µ(h)) = u;

• ν(d) = µ(d) for each d ∈ D \ {µ(h)};

• ν(h̄) = µ(h̄) for each h̄ ∈ H \ {h}.

Similarly, if [c = (d1, d2), (h
′, h′′)] is a blocking couple or a blocking coalition for a

matching µ, then we say that a new matching ν is obtained from µ by satisfying the

blocking coalition if (d1, d2) and (h, h′) are matched to one another at ν, their mates at

µ (if any, and if not involved in the blocking coalition) are unmatched at ν, and all other

agents are matched to the same mates at ν as they were at µ. Formally, matching ν is

obtained from matching µ by satisfying blocking coalition [(d1, d2), (h
′, h′′)] (for µ) if

•
[
µ(d1) = h ∈ H \ {h′, h′′} implies ν(h) = ∅

]
and

[
µ(d2) = h ∈ H \ {h′, h′′} implies

ν(h) = ∅
]
;

•
[
µ(h′) = d ∈ D \ {d1, d2} implies ν(d) = u

]
and

[
µ(h′′) = d ∈ D \ {d1, d2} implies

ν(d) = u
]
;

• ν(d1) = h′, ν(d2) = h′′,
[
h′ ∈ H implies ν(h′) = d1

]
, and

[
h′′ ∈ H implies ν(h′′) = d2

]
;

• ν(d) = µ(d) for each d ∈ D \ {µ(h′), µ(h′′), d1, d2};

• ν(h) = µ(h) for each h ∈ H \ {µ(d1), µ(d2), h′, h′′}. ♢

Now we are ready to state our path to stability result.

Theorem 1 (Paths to stability result). Let (PH , PC) be a problem such that for each c ∈ C,

Pc satisfies restricted complementarity. Let µ be an arbitrary matching for (PH , PC).

6We borrow the definition of satisfying blocking coalitions from Klaus and Klijn (2007, page 159).
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Then, there is a finite sequence of matchings µ1, . . . , µk such that µ1 = µ, µk is stable, and

for each i = 1, . . . , k−1, there is a blocking coalition for µi such that µi+1 is obtained from

µi by satisfying this blocking coalition.

The proof to Theorem 1 is relegated to Appendix B.

As a Corollary to Theorem 1 we obtain the following result. Consider a random process

that begins by selecting an arbitrary matching µ and generates the sequence of matchings

µ = µ1, µ2, . . . where each µi+1 is obtained from µi by satisfying a blocking coalition,

chosen at random from the blocking coalitions for µi. Assume that the probability that

any particular blocking coalition for µi is chosen to generate µi+1 is positive, and only

depends on the matching µi (but not on the number i). Let Ψ(µ) be the random sequence

generated in this way from an initial matching µ.

Corollary 1 (Random paths to stability). Let (PH , PC) be a problem such that for each

c ∈ C, Pc satisfies restricted complementarity. For any initial matching µ for (PH , PC),

the random sequence Ψ(µ) converges with probability one to a stable matching.

To prove Theorem 2, we adapt the deterministic path algorithm to stability from Klaus

and Klijn’s (2007) DPC-Algorithm.7 Our algorithm yields, in a finite number of steps, a

stable matching for any problem in which couples’ preferences satisfy restricted comple-

mentarity.

In the description of our algorithm we use the aid of a virtual room that agents enter

and exit throughout the algorithm. This didactic visualization was first introduced by Ma

(1996) and is also used in Klaus and Klijn (2007).

3.1 Paths to Stability Algorithm (PS-algorithm)

Let µ be an arbitrary matching for a problem (PH , PC) where for each c ∈ C, Pc satisfies

restricted complementarity.8 After satisfying blocking hospitals for µ (first stage) we start

putting couples one by one in an initially empty room (second stage). Each couple enters

the room with its mates under µ. Whenever a couple enters the room with its mates,

blocking coalitions within the room are satisfied and the hospitals that are “dumped” are

put outside the room. Thus, after this second stage we obtain a matching where all couples

7The DPC-Algorithm of Klaus and Klijn (2007) is in turn a modification of the Roth and Vande Vate (1990) algorithm

for one-to-one matching problems.
8This subsection follows closely Klaus and Klijn (2007, pages 161-163).
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are matched to hospitals in the room, and for which there are no blocking coalitions within

the room.9 In the third stage, we let hospitals outside the room enter one by one. In each

step possibly one blocking coalition within the room has to be satisfied before turning

to the next step. The blocking coalitions that are satisfied in this stage are “hospital

optimal” in the sense that for the hospital involved there is no other blocking coalition

available within the room that would give it a better doctor. We call the doctor that is

in all hospital optimal blocking coalitions associated with the entering hospital the best

doctor. There may be several blocking coalitions that match the entering hospital with

the best doctor. In order to assure the convergence of the algorithm we have to choose the

blocking carefully. First, we prove (see the Claim in the third stage of the PS-algorithm

and its proof in Appendix B) that one of the following is a blocking coalition: (a) the

couple (to which the best doctor belongs), the hospital and the match of the best doctor’s

partner, (b) the couple, the hospital and the best doctor’s match, or (c) the couple and

the hospital. From these possible blocking coalitions we satisfy the blocking coalition that

the couple prefers most. In the process of satisfying the blocking coalition at most two

hospitals may exit the room.

We show that after a finite number of steps all hospitals have joined the couples in the

room. Starting from µ we have obtained a stable matching for the problem (PH , PC). We

now formalize the PS-algorithm.

A formal description of the PS-algorithm

Input: A problem (PH , PC) such that for each c ∈ C, Pc satisfies restricted complemen-

tarity, and a matching µ for (PH , PC).

Initialization: Set A := ∅. We call A the room.

• First Stage

– Satisfy all blocking hospitals and blocking couples and denote the resulting match-

ing by µ. After Stage 1 we obtain a matching µ1 := µ with no blocking

hospitals/couples.

• Second Stage

9Up to stages 1 and 2 the PS-algorithm is exactly the same as the DPC-Algorithm of Klaus and Klijn (2007, pages 161-

163). It is in the third stage where an adaptation is needed to deal with preferences that satisfy restricted complementarity

but do not satisfy weak responsiveness.
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– If there is c = (d1, d2) ∈ C \A, then let the couple and the hospitals in H assigned

to it enter the room, i.e., set A := (A ∪ {c, µ(d1), µ(d2)}) \ {u}.

– As long as there is a blocking coalition [c′ = (d′1, d
′
2), (h

′
1, h

′
2)] with {c′, h′

1, h
′
2} ⊆

A ∪ {u} do:

Begin Loop: Satisfy [c′, (h′
1, h

′
2)], and let dumped hospitals exit the room:

∗ For i = 1, 2, [if µ(d′i) = h ∈ H \ {h′
1, h

′
2}], then define µ(h) := ∅ and set

A := A \ {h};
∗ For i = 1, 2, if h′

i ∈ H and µ(h′
i) = d ∈ D \ {d′1, d′2}, then µ(d) := u;

∗ For i = 1, 2, define µ(d′i) := h′
i, and if h′

i ∈ H, then µ(h′
i) := d′i.

End Loop

After Stage 2 we obtain a matching µ2 := µ where all couples are in the

room and there is no blocking coalitions.

• Third Stage

– As long as there is h′ ∈ H \ A do:

Begin Loop: Set A := A ∪ {h′}.
If there is no blocking coalition [c′, (h′

1, h
′
2)] with h′ ∈ {h′

1, h
′
2} ⊆ A ∪ {u}, then

GO BACK to the beginning of the Third Stage. If there are blocking coalitions

[c′, (h′
1, h

′
2)] with h′ ∈ {h′

1, h
′
2} ⊆ A∪{u}, then let d′1 be h

′’s most preferred doctor

among the ones it could be matched to at these blocking coalitions. Let d′2 be

the partner of d′1. Without loss of generality, c′ = (d′1, d
′
2) ∈ C.

Let h∗
1 = µ(d′1), h∗

2 = µ(d′2).

Claim: [c′, (h′, h∗
2)], [c′, (h′, h∗

1)] or [c
′, (h′, u)] is a blocking coalition for µ.

For each couple c ∈ C and each matching ν, let

B(c, ν) :=
{
(hi, hj) ∈ H̄ : [c, (hi, hj)] is a blocking coalition for ν

}
.10

Define

(h′, ĥ) = Chc′
{
{(h′, h∗

2), (h
′, h∗

1), (h
′, u)} ∩ B(c′, µ)

}
.

The intersection above is non-empty by the Claim. Satisfy blocking coalition

[c′, (h′, ĥ)], and if some hospitals are dumped (at most two), let them exit the
10This is the set of all hospital pairs that together with c form a blocking coalition for matching ν.
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room. Formally,

define µ(c′) := (h′, ĥ) and,

∗ Case (a) If ĥ = h∗
2 and h∗

1 ∈ H, then define µ(h∗
1) = ∅ and set A := A\{h∗

1}.
∗ Case (b) If ĥ = h∗

1 and h∗
2 ∈ H, then define µ(h∗

2) = ∅ and set A := A\{h∗
2}.

∗ Case (c) If ĥ = u, then for each h∗ ∈ {h∗
1, h

∗
2} ∩H, define µ(h∗) = ∅ and set

A := A \ {h∗
1, h

∗
2}.

End Loop

After Stage 3 we obtain a matching µ3 := µ where all couples and all hospitals

are in the room and no blocking coalitions exist in the room.

Output: A stable matching µ for (PH , PC).

Remark 1. One may wonder whether for any problem for which a stable matching exists,

there exists some algorithm that starts in an arbitrary matching and converges to a stable

one. The answer to this question is negative. This means that there are problems for which

the set of stable matching is non-empty and no path of matchings obtained by satisfying

blocking coalitions and starting from certain matching converges to a stable one. Example

4.1 of Klaus and Klijn (2007, page 167) exhibits a problem for which a stable matching

exists and, starting from a certain matching, any path obtained by satisfying blocking

coalitions cycles. As Klaus and Klijn (2007) point out: “this cycling has to do with

the underlying complementarities in the couples’ preferences, and not with the particular

choice of the path (algorithm).”

Remark 2. The path to stability result generalizes to problems with couples and single

doctors. We can incorporate single doctors by letting each single doctor have a ficti-

tious partner that finds all hospitals unacceptable. For example, if single student d has

preferences given by Pd = h1, h2, u, h4, . . . then replace d by couple c with preferences

Pc = (h1, u), (h2, u), (u, u), (h4, u) . . .The path convergence result generalizes because the

preferences of a fictitious couple induced by the preferences of a single doctor satisfy re-

stricted complementarity.

Example 1 (An application of the PS-algorithm). Let (PH , PC) be the problem in Table

1. The sets of hospitals and couples are given by H = {h1, h2, h3, h4, h5, h6, h7, h8} and

C = {(d1, d2), (d3, d4), (d5, d6), (d7, d8), (d9,d10)}. All couples’ preferences satisfy restricted
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complementarity. In Table 2 we give a path of matchings µ0, . . . , µ10 such that µ0(C) =

(u, h4), (h5, u), (h8, h3), (h2, h1), (h6, h7) is unstable, each matching on the path is obtained

from the previous matching by satisfying a blocking coalition, and the final matching µ10

is stable.

We obtain such a path by applying the PS-algorithm to (PH , PC) and the initial match-

ing µ0. In Table 3 we can follow the execution of the PS-algorithm. Table 3 shows several

items at each step of the algorithm: the matching, the agents that enter the room, the

agents that exit the room, and the blocking coalitions that are satisfied. We abbreviate

the term blocking coalition by b.c.

For the PS-algorithm to work it has to be that at some point all couples and hospitals

are in the room. In Table 3 it is easy to see that at step 8 the number of agents in the

room decreases, as only one agent enters and two agents exit. We may be concerned that

the algorithm cycles with agents entering and exiting the room. This is not the case as we

show in Appendix B.

Table 1: A problem where couples’ preferences satisfy restricted complementarity

PC PH

d1d2 d3d4 d5d6 d7d8 d9d10 h1 h2 h3 h4 h5 h6 h7 h8

h3u uh1 h6u h5h2 h6h7 d1 d3 d1 d2 d6 d5 d1 d5

uh2 h2h1 uh5 h5u h7h6 d4 d1 d2 d1 d8 d9 d5

h1h4 h2u h8u uh2 h6u d3 d2 d3 d3 d7 d9

h1u h5u h2u h7u d2 d7 d4 d8 d1

uh4 uh7 d5 d8 d6 d5 d2

uh6 d6 d3

12



Table 2: A path to stability for problem (PH , PC)

µ’s/couples d1d2 d3d4 d5d6 d7d8 d9d10 ∅ ∅ ∅ ∅ ∅

µ0 uh4 h5u h8h3 h2h1 h6h7

µ1 uh4 h5u h8u h2u h6u h1, h3, h7

µ2 uh4 uu uh5 h2u h6u h1, h3, h7, h8

µ3 uh4 h2u uh5 uu h6u h1, h3, h7, h8

µ4 uh4 h2u h6u uu uu h1, h3, h5, h7, h8

µ5 h1h4 h2u h6u uu uu h3, h5, h7, h8

µ6 h3u h2u h6u uu uu h1, h4, h5, h7, h8

µ7 h3u uh1 h6u uu uu h2, h4, h5, h7, h8

µ8 h3u uh1 h6u h2u uu h4, h5, h7, h8

µ9 h3u uh1 h6u h5h2 uu h4, h7, h8

µ10 h3u uh1 h6u h5h2 h7u h4, h8
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Table 3: PS-algorithm step by step

Step Stage Matching Room Satisfy b.c.s in this column Output

1 1 µ0 ∅ blocking couples and µ1

blocking hospitals

Enter room b.c. within the room Exit room

2 2 µ1 (d1, d2), h4 - -

3 2 µ1 (d3, d4), h5 - -

4 2 µ1 (d5, d6), h8 [(d5d6), (uh5)] h8

5 2 µ2 (d7, d8), h2 [(d3d4), (h2u)] -

6 2 µ3 (d9, d10), h6 [(d5d6), (h6u)] h5

7 2 µ4 h1 [(d1d2), (h1h4)] -

8 3 µ5 h3 [(d1d2), (h3u)] h1, h4

9 3 µ6 h1 [(d3d4), (uh1)] h2

10 3 µ7 h2 [(d7d8), (h2u)] -

11 3 µ8 h5 [(d7d8), (h5h2)] -

12 3 µ9 h7 [(d9d10), (h7u)] -

13 3 µ10 h4 - -

14 3 µ10 h8 - -
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4 Conclusions

In this paper, we study stability in matching with couples problems. Stability is essential

because stable matchings are robust to rematching by coalitions of agents. In this sense,

stable matchings are expected to last and are a good equilibrium prediction.

The presence of complementarities in couples’ preferences may prevent the existence of a

stable matching (Roth, 1984). As an example of complementarities in couples’ preferences,

we can think of a couple of married doctors who wish to find jobs in the same city. The

couple rejects or accepts job offers for each spouse depending on whether the other spouse

can find a job in the same city.

Despite the theoretical impossibility, real-world centralized and decentralized matching

markets with couples perform well, suggesting stable matchings are reached. We shed

some light on this issue by studying which complementarities are compatible with the

possibility of reaching a stable matching through a decentralized matching process.

More precisely, we show that if preferences satisfy restricted complementarity (also

known as bilateral substitutability in the matching with contracts literature), then from

any arbitrary matching, there is a finite path of matchings such that each matching on

the path is obtained by satisfying a blocking coalition from the previous one and the final

matching is stable.
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Appendix A

In this appendix, we show that bilateral substitutability is equivalent to restricted com-

plementarity. Bilateral substitutability is a minimal restriction on couples’ preferences for

the existence of stable matchings (Tello, 2016). However, this condition is formulated on

choice functions. Since our objective is to adapt the DPC-Algorithm of Klaus and Klijn

(2007), it is necessary to “translate” bilateral substitutability to an equivalent condition on

preference orderings. Such a translation is given by restricted complementarity. We first

set up a matching with contracts version of the couples problem to prove the equivalence

between bilateral substitutability and restricted complementarity. Finally, we show that

in this setting: weak substitutability (Hatfield and Kojima, 2008) implies bilateral sub-

stitutability, bilateral substitutability implies restricted complementarity, and restricted

complementarity implies weak substitutability.

Contracts

A contract is an ordered pair (h, d) ∈ H × D. The ordered pair (u, d) is a null

contract. All the following definitions in this section are made for couple c = (d1, d2)

and therefore we drop all subindexes and function arguments involving it . The

set of all possible contracts with members of couple c is X̄ := (H ∪ {u}) × {d1, d2}. We

denote the set of null contracts involving members of couple c by U :=
{
(u, d1), (u, d2)}.

The preference relation P over hospital pairs induces a preference relation P̃ over

sets of contracts. Formally, for each (h1, h2), (h3, h4) ∈ H̄ we have

(h1, h2)P (h3, h4) if and only if {(h1, d1), (h2, d2)} P̃ {(h3, d1), (h4, d2)}.

We define a choice function C̃h as:

C̃h(X) := max
P̃

{
{(h, d1), (h′, d2)} ⊆ X ∪ U : h, h′ ∈ H =⇒ h ̸= h′}, for each X ⊆ X̄.

We also define a rejection function as:

R̃ej(X) = X \ (C̃h(X) ∪ U), for each X ⊆ X̄.

The rejection function gives for each X ⊆ X̄, the set of contracts with hospitals in H

that are rejected from X.

It can be easily verified that the choice function C̃h satisfies consistency (Alkan, 2002):

C̃h(X ′′) ⊆ (X ′ ∪ U) ⊆ (X ′′ ∪ U) implies C̃h(X ′) = C̃h(X ′′).
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The relation between Ch and C̃h is stated in Claims 1 and 2 below, but first we need to

give some additional definitions.

Let H ⊆ H̄ we denote,

• the sets of first and second components of the pairs in H by

H1(H) := {h : (h, h′) ∈ H} and H2(H) := {h′ : (h, h′) ∈ H},

• the set of contracts available to c when hospital pairs in H are available by

X̄(H) :=
(
H1(H)× {d1}

)
∪
(
H2(H)× {d2}

)
.

Let X ⊆ X̄ we denote,

• the set of hospitals that have a contract with doctor d ∈ {d1, d2} in X by

H(X, d) := {h ∈ H ∪ {u} : (h, d) ∈ X},

• the set of hospitals with contracts in X by

H(X) := H(X, d1) ∪H(X, d2),

• the set of hospital pairs available to c when contracts in X are available by

H̄(X) :=
{
(h, h′) ∈ H̄ : h ∈ H(X, d1) ∪ {u} and h′ ∈ H(X, d2) ∪ {u}

}
.

Claim 1. For each X ⊆ X̄, C̃h(X) = {(h, d1), (h′, d2)} =⇒ Ch(H̄(X)) = (h, h′).

Claim 1 follows from the definitions of Ch, C̃h, and H̄(·).

Claim 2. For each completeH ⊆ H̄, Ch(H) = (h, h′) =⇒ C̃h(X̄(H)) = {(h, d1), (h′, d2)}.

Claim 2 follows from the definition of a complete set of pairs, and the definitions of

Ch, C̃h and X̄(·).
Bilateral substitutability is a property of each couple’s choice function C̃h. For a couple,

it means that if a job offer from hospital h to one of its members is rejected when all other

available job offers come from different hospitals, the job offer is still rejected when a new

job offer from a different hospital is received.

Bilateral substitutability (Hatfield and Kojima, 2010): there do not exist a set of

contracts X ⊆ X̄ and contracts (h, d), (h′, d′) ∈ X̄ such that h, h′ ∈ H \H(X), (h, d) /∈
C̃h

(
X ∪ {(h, d)}

)
and (h, d) ∈ C̃h

(
X ∪ {(h, d), (h′, d′)}

)
.

Weak substitutability is a weakening of bilateral substitutability and it is not sufficient

for the existence of a stable allocation in the contracts problem. Here we present its
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restriction to the couples problems. Intuitively, it means that the set of job offers rejected

by the couple from a set of job offers, where no hospital offers a job to both members of the

couple at the same time, expands when the couple receives new job offers from different

hospitals.

Weak substitutability (Hatfield and Kojima, 2008): for each X ′ ⊆ X ′′ ⊆ X̄ such that[
(h, d), (h′, d′) ∈ X ′′ and h = h′ ∈ H

]
imply [d = d′], we have R̃ej(X ′) ⊆ R̃ej(X ′′).

Lemma 1. bilateral substitutability, weak substitutability and restricted complementarity

are equivalent.

Proof:

Weak substitutability =⇒ bilateral substitutability

Follows from the equivalence result in Tello (2016).

Bilateral substitutability =⇒ restricted complementarity

Suppose restricted complementarity does not hold. Then, there is a complete H ⊆
H̄ and h1, h2, h3, h4 such that h1, h2 /∈ {u, h3, h4}, (h3, h4) ∈ H, Ch(H) = (h1, h2),

(h3, h4)P (h1, h4) and (h3, h4)P (h1, u).
11 12

Let X ′ := {(h3, d1), (h4, d2), (u, d1), (u, d2)} and X ′′ = X̄(H).

Step 1: (h1, d1) /∈ C̃h(X ′ ∪ {(h1, d1)}).
Clearly, (h1, d1), (h2, d2) /∈ X ′. Moreover, the only pairs in H̄(X ′ ∪ {(h1, d1)}) involving

h1 are (h1, h4) and (h1, u). By assumption (h3, h4) is preferred to both of them. Hence,

(h1, h4), (h1, u) ̸= Ch(H̄(X ′ ∪ {(h1, d1)})). Therefore by Claim 1, (h1, d1) /∈ C̃h(X ′ ∪
{(h1, d1)}).

Step 2: (h1, d1) ∈ C̃h(X ′ ∪ {(h1, d1), (h2, d2)}).
Claim 2 and Ch(H) = (h1, h2) imply C̃h(X ′′) = {(h1, d1), (h2, d2)}. It also holds that

X ′ ⊆ X ′′ ∪ U . Therefore,

C̃h(X ′′) = {(h1, d1), (h2, d2)} ⊆ X ′ ∪ {(h1, d1), (h2, d2)} ⊆ X ′′ ∪ U.

Since C̃h satisfies consistency,

C̃h(X ′ ∪ {(h1, d1), (h2, d2)}) = {(h1, d1), (h2, d2)}.
11We are considering the case in which sc1 and sc2 fail. The case in which sc3 and sc4 fail is symmetric.
12Strict because h1 ̸= h3.
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Step 3: h1, h2 ∈ H \ H(X ′).

This follows from the definition of X ′ and the assumption that h1, h2 /∈ {u, h3, h4}.

From Steps 1, 2 and 3, we conclude that bilateral substitutability does not hold.

Restricted complementarity =⇒weak substitutability.

Suppose weak substitutability does not hold. Then there are sets X ′ ⊆ X ′′ ⊆ X̄ such that

(i) R̃ej(X ′) ⊈ R̃ej(X ′′) and (ii) [(h, d), (h′, d′) ∈ X ′′ and h = h′ ∈ H imply d = d′].

From (i) there is (h, d) ∈ R̃ej(X ′) \ R̃ej(X ′′). Without loss of generality let d = d1.

Let h1 = h. Since (h, d) /∈ R̃ej(X ′′) we have, (iii) C̃h(X ′′) = {(h1, d1), (h2, d2)}, for some

h2 ∈ H ∪ {u}.
Let H′ = H̄(X ′) and H′′ = H̄(X ′′). By construction, H′′ is complete. Moreover, by

Claim 1 and (iii) we have

Ch(H′′) = (h1, h2) (⋆).

Let h3, h4 ∈ H ∪ {u} be such that:

Ch(H′) = (h3, h4) (⋆⋆).

By construction, (h3, h4) ∈ H′′.

Step 1. h1 /∈ {u, h3}.
By (⋆⋆) and Claim 2, (h3, d1) /∈ R̃ej(X ′). Moreover, (u, d1) /∈ R̃ej(X ′) because R̃ej(X ′) only

contains contracts with hospitals in H. Since (h1, d1) ∈ R̃ej(X ′), h1 /∈ {u, h3}.

Step 2. h2 /∈ {u, h4}.
By Step 1, (h1, h2) ̸= (h3, h4). Suppose h2 ∈ {u, h4}. Then, as (h1, d1) ∈ X ′ we have

{(h1, d1), (h2, d2)} ⊆ X ′ ∪ U ⊆ X ′′ ∪ U.

By consistency, C̃h(X ′) = {(h1, d1), (h2, d2)}, but this and Claim 1 contradict ⋆⋆.

Step 3. h1 ̸= h4 and h2 ̸= h3.

It follows from h1, h2 ∈ H, (h1, d1), (h2, d2), (h3, d1), (h4, d2) ∈ X ′′ and (ii).

Step 4. ¬sc1 and ¬sc2 hold.

Since (h1, d1), (h3, d1), (h4, d2) ∈ X ′, we have (h1, h4), (h3, h4), (h1, u) ∈ H′. Hence, relation

⋆⋆ and h1 ̸= h3 imply (h3, h4)P (h1, h4) and (h3, h4)P (h1, u).

From steps 1 to 4, we conclude that Pc does not satisfy restricted complementarity for

H′′.
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Appendix B. The PS-algorithm is well defined

We prove Theorem 1 by showing that the PS-algorithm is well defined for problems where

couples’ preferences satisfy restricted complementarity, i.e., we prove that given any such

problem (PH , PC) and any matching µ for (PH , PC), the PS-algorithm produces a stable

matching for (PH , PC) in a finite number of steps.13

Proof. We consider the three stages of the PS-algorithm. The first stage clearly is well

defined and terminates in a finite number of steps. Also, the matching µ1 at the end of

the first stage does not have blocking hospitals.

The second stage also is well defined and terminates in a finite number of steps: there

are only a finite number of couples and hence we only go through the loop a finite number

of times. Moreover, the algorithm does not cycle in the loop since hospitals that are

dumped are put outside of the room. For the matching µ2 at the end of the second stage

it holds that

• there are no blocking hospitals because (i) matching µ1 does not have blocking hos-

pitals and (ii) in the second stage all blocking coalitions that may be created in the

room are removed by the loop.

• C ⊆ A since the second stage terminates when all couples are in the room.

• for each d ∈ D,µ2(d) ∈ A ∪ {u}, because (i) when a doctor is put in the room, the

hospital he/she is matched to at that moment is put in the room as well and (ii) in

the loop the hospitals that are not dumped remain in the room.

• there is no blocking coalition [c′, (h′
1, h

′
2)] with {h′

1, h
′
2} ⊆ A ∪ {u} since in the loop

these blocking coalitions are satisfied.

We now proceed to prove that the third stage is well-defined, terminates in a finite

number of steps, and that the output of the algorithm µ3 is a stable matching.

We first prove that the third stage terminates in a finite number of steps. To this end

we define a sequence which we prove to be strictly increasing in the number of loops of

stage 3 and bounded from above.

For each c ∈ C and each (h, h′) ∈ H̄ let

rc (h, h
′) :=

∣∣{(h′′, h′′′) ∈ H̄ : (h′′, h′′′)Rc (h, h
′)}|

13The proofs in this Appendix follow closely those in Appendix A of Klaus and Klijn (2007).
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be the position of (h, h′) in the preference list Pc. Denote by µk and nk the matching and

the number of hospitals in the room at the beginning of loop k, respectively.

Define the sequence f1, f2, . . . as:

fk :=
(
− 2

∑
c∈C

rc (µk(c))
)
+ nk, k = 1, 2, . . .

At each loop k of the third stage a hospital h′ enters the room. Consider two cases.

Case 1. If there is no blocking coalition [c′, (h′
1, h

′
2)] with h′ ∈ {h′

1, h
′
2}. Then,

the matching does not change, i.e., µk+1 = µk. Therefore, 2
∑

c∈C rc (µk+1(c)) =

2
∑

c∈C rc (µk(c)). At the same time the number of hospitals increases by one (since

h′ enters the room and no other hospital leaves it). Hence, nk+1 = nk + 1. Hence,

fk+1 = fk + 1.

Case 2. If there is a blocking coalition [c′, (h′
1, h

′
2)] with h′ ∈ {h′

1, h
′
2}. Then, from

the specific choice we make it follows that at the new matching µk+1 one couple is

strictly better off and no other couple changes mates. Hence, −2
∑

c∈C rc (µk+1(c)) ≥
−2

∑
c∈C rc (µk(c)) + 2. At the same time, hospital h′ entered the room and at most

two hospitals (which were previously matched to members of the couple in the block-

ing coalition that was satisfied) exit the room. Therefore, nk+1 ≥ nk − 1. Summing

up the two terms of fk+1 we conclude that fk+1 ≥ fk + 1.

Note that for all k = 1, 2, . . . the term −2
∑

c∈C rc (µk(c)) is bounded from above by

−2|C| and the term nk is bounded from above by |H|. So, the sequence f1, f2, . . . is

bounded from above by the number −2|C|+ |H|.
The fact that the sequence f1, f2, . . . is strictly increasing and bounded from above

implies that the third stage terminates in a finite number of steps.

It remains to show that the third stage is indeed well defined and that the final matching

is stable. It suffices to show that the matching at the beginning of each loop satisfies the

following properties:

(i) There is no blocking hospital or blocking couple;

(ii) There is no blocking coalition [c′, (h′
1, h

′
2)] with {h′

1, h
′
2} ⊆ (A ∪ {u}) \ {h′};

(iii) The Claim holds (which is conditional upon the existence of a blocking coalition

[c′, (h′
1, h

′
2)] with h′ ∈ {h′

1, h
′
2} ⊆ A ∪ {u}).
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Induction Basis: We prove that properties (i)-(iii) hold when the algorithm enters the

loop of the third stage for the first time.

(i) and (ii): It follows from the properties of µ2 that (i) and (ii) hold when the algorithm

enters the loop of the third stage for the first time.

(iii): We prove that (iii) holds when the algorithm enters the loop for the first time.

Assume that hospital h′ ∈ H \A enters the loop, thus A = A∪{h′}. Further, assume that

there is a blocking coalition
[
c′, (h′

1, h
′
2)
]
with h′ ∈ {h′

1, h
′
2} ⊆ A∪{u}. Let d′1 be h′’s most

preferred doctor among the ones it would get at these blocking coalitions. Let d′2 be the

partner of d′1. Without loss of generality we assume c′ = (d′1, d
′
2) ∈ C. Let h∗

1 = µ(d′1) and

h∗
2 = µ(d′2).

Suppose to the contrary that (iii) does not hold. Then
[
c′, (h′, h∗

2)
]
,
[
c′, (h′, h∗

1)
]
and[

c′, (h′, u)
]
are not blocking coalitions. Hence, there is a blocking coalition

[
c′, (h′, h′

3)
]

with h′
3 ∈ A \ {h∗

1, h
∗
2}.

Consider the complete set of pairs H′′ depicted in the following table

(1) (h∗
1, h

∗
2) (4) (h′, h∗

2) (7) (u, h∗
2)

(2) (h∗
1, h

′
3) (5) (h′, h′

3) (8) (u, h′
3)

(3) (h∗
1, u) (6) (h′, u) (9) (u, u)

First, we show that Chc′(H′′) = (h′, h′
3). By (i), couple c′ (weakly) prefers pair (1) to

pairs (3), (7), and (9). By (ii), couple c′ (strictly) prefers pair (1) to pairs (2) and (8).

Since
[
c′, (h′, h∗

2)
]
and

[
c′, (h′, u)

]
are not blocking coalitions, couple c′ (strictly) prefers

(1) to (4) and (6). Finally, since
[
c′, (h′, h′

3)
]
is a blocking coalition, pair (5) is (strictly)

preferred to (1) and therefore, by transitivity, (5) is preferred to all other pairs. This

implies (a1) Chc′(H′′) = (h′, h′
3).

By definition of H′′, (a2) (h∗
1, h

∗
2) ∈ H′′. Recall h′

3 ̸= u, h∗
1, h

∗
2, and note that since h′

just entered the room it must be that h′ ̸= u, h∗
1, h

∗
2. Hence, (a3)h

′, h′
3 /∈ {u, h∗

1, h
∗
2}.

From a1, a2, a3 and restricted complementarity of Pc follows
14

(h′, h∗
2)Pc′ (h

∗
1, h

∗
2) or (h′, u)Pc′ (h

∗
1, h

∗
2).

This contradicts the assumption that
[
c′, (h′, h∗

2)
]
and

[
c′, (h′, u)

]
are not blocking coali-

tions. We conclude (iii) holds.

Induction Assumption: Suppose that (i)-(iii) hold for loops 1 up to k of the third stage.

14Note (h′, h′
3, h

∗
1, h

∗
2) play the role of (h1, h2, h3, h4) in the definition of restricted complementarity.
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Induction Step: Now consider loop k + 1 (where k ≥ 1) of the third stage.

Since no agent is forced to accept an unacceptable agent in loop k, (i) is true. Using

the arguments for (iii) of the first loop it is easy to check that (iii) is again true for loop

k + 1 if (ii) is also true for loop k + 1. So, it only remains to prove that (ii) holds for loop

k + 1. It is clear that (ii) holds for loop k + 1 if there is no blocking coalition
[
c′, (h′

1, h
′
2)
]

with h′ ∈ {h′
1, h

′
2} ⊆ A ∪ {u} for the matching at the end of loop k. We show that in fact

this is the case.

Let µk and µk+1 be the matchings at the beginning of loops k and k+1, respectively.15

Assume that in loop k blocking coalition [c′, (h′, ĥ)] with c′ = (d1, d2) and

(h′, ĥ) = Chc′
(
{(h′, µk(d

′
2)), (h

′, µk(d
′
1)), (h

′, u)} ∩ B(c′, µk)
)

is satisfied. In the process of satisfying this blocking coalition, hospitals µk(d
′
1) and µk(d

′
2)

may be dumped. Define h∗
a, h

∗
b as follows,

h∗
a =

{
µk(d

′
1) if µk(d

′
1) is dumped,

u otherwise;

h∗
b =

{
µk(d

′
2) if µk(d

′
2) is dumped,

u otherwise,

then the agents in the room at the beginning of loop k + 1 are A \ {h∗
a, h

∗
b}.

To prove (ii) for loop k + 1, we have to show that there is no blocking coalition
[
c̄, (h̄, h̃)

]
with {h̄, h̃} ⊆ (A \ {h∗

a, h
∗
b}) ∪ {u} for µk+1. Suppose, by contradiction, there is such a

blocking coalition. Note that all agents remaining in the room [i.e., all agents in (A \
{h∗

a, h
∗
b})] are (weakly) better off at µk+1 compared to µk. So,

[
c̄, (h̄, h̃)

]
also blocks µk.

Hence, if h′ /∈ {h̄, h̃}, then we obtain a contradiction to induction assumption (i) or (ii)

for loop k. So, without loss of generality, (h̄, h̃) = (h′, h̃).

If c̄ ̸= c′, then it follows immediately that in loop k hospital h′ did not choose its

optimal blocking mate; a contradiction. Similarly, if the blocking coalition in question

equals
[
c̄, (h̃, h′)

]
, then d′2 Ph′d′1 and hospital h′ did not choose its optimal blocking doctor;

a contradiction. Hence, the blocking coalition we consider is of the form
[
c′, (h′, h̃)

]
.

Consider the complete set of pairs H′′ depicted in the table below.

First, we show that Chc′(H′′) = (h′, h̃).

15Note that µk+1 is also the matching at the end of loop k.
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(1) (µk(d
′
1), µk(d

′
2)) (4) (h′, µk(d

′
2)) (7) (u, µk(d

′
2))

(2) (µk(d
′
1), h̃) (5) (h′, h̃) (8) (u, h̃)

(3) (µk(d
′
1), u) (6) (h′, u) (9) (u, u)

By induction hypothesis (i), couple c′ (weakly) prefers pair (1) to pairs (3), (7) and (9).

By induction hypothesis (ii), couple c′ (strictly) prefers pair (1) to pairs (2) and (8).

Now consider the blocking coalition that was satisfied,
[
c′, (h′, ĥ)

]
. Since

[
c′, (h′, ĥ)

]
is

a blocking coalition for µk, (h
′, ĥ) is preferred to (1). By definition, (h′, ĥ) is (weakly)

preferred to pairs (4) and (6). Summarizing, the pair (h′, ĥ) is (weakly) preferred to pairs

(1),(2),(3),(4),(6),(7),(8) and (9). Lastly, since
[
c′, (h′, h̃)

]
is a blocking coalition for µk+1

and µk+1(c
′) = (h′, ĥ), (h′, h̃)Pc′ (h

′, ĥ). This implies (b1) Chc′(H′′) = (h′, h̃). Clearly,

(b2) (µk(d
′
1), µk(d

′
2)) ∈ H′′.

We now show (b3) h′, h̃ /∈ {u, µk(d
′
1), µk(d

′
2)}. Since h′ enters the room in loop k, h′ /∈

{u, µk(d
′
1), µk(d

′
2)}. Since

[
c′, (h′, h̃)

]
is a blocking coalition for µk+1,

[
c′, (h′, h̃)

]
is also a

blocking coalition for µk. Hence, by definition of (h′, ĥ), if h̃ ∈ {u, µk(d
′
1), µk(d

′
2)}, then

(h′, ĥ)Rc′(h
′, h̃). This contradicts (h′, h̃)Pc′ (h

′, ĥ).

By b1, b2, b3 and restricted complementarity of Pc′ , we conclude

(µk(d
′
1), h̃)Pc′ (µk(d

′
1), µk(d

′
2)) or (u, h̃)Pc′ (µk(d

′
1), µk(d

′
2)).

This contradicts inductive hypothesis (ii).
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