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MIDAS Modeling for Core 
Inflation Forecasting

Luis Libonatti

Abstract

This paper presents a forecasting exercise that assesses the predictive poten-
tial of a daily price index based on online prices. Prices are compiled using 
web scraping services provided by the private company PriceStats in coopera-
tion with a finance research corporation, State Street Global Markets. This 
online price index is tested as a predictor of the monthly core inflation rate 
in Argentina, known as “resto IPCBA” and published by the Statistics Office 
of the City of Buenos Aires. Mixed frequency regression models offer a conve-
nient arrangement to accommodate variables sampled at different frequen-
cies and hence many specifications are evaluated. Different classes of these 
models are found to produce a slight boost in out-of-sample predictive perfor-
mance at immediate horizons when compared to benchmark naïve models 
and estimators. Additionally, an analysis of intra-period forecasts, reveals 
a slight trend towards increased forecast accuracy as the daily variable ap-
proaches one full month for certain horizons.
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1. INTRODUCTION

Forecasting inf lation has become increasingly important 
in Argentina as it is essential for economic agents to adjust 
wages and prices—particularly in recent years—in a context 

of high and volatile inflation. Having timely updates about the future 
trajectory of the inflation rate is essential for conducting monetary 
policy, specially, since the Central Bank is transitioning towards 
an inflation targeting regime. Recent developments in the use of 
“big data” have greatly facilitated tracking macroeconomic vari-
ables in real-time. A remarkable example is the construction of on-
line price indexes that are sampled daily, rather than monthly, as it 
is standard for traditional price indexes from statistical offices. 
The question naturally arises of whether this information can help 
predict the future trajectory of traditional consumer price indexes. 
Ghysels et al. (2004) introduced a regression framework that allows 
for the exploitation of time series sampled at different frequencies, 
known in the literature as Mixed Data Sampling (midas) regression 
models. The methodology reduces to fitting a regression model to a 
low-frequency variable using high-frequency data as regressors. As it 
will be shown later, this technique closely resembles distributed 
lag models. This paper employs this methodology to assess whether 
the combination of price series sampled at different frequencies 
is an effective tool for improving forecast accuracy compared to na-
ïve models, using the online price index constructed by PriceStats 
in cooperation with State Street Global Markets.

The rest of the paper is organized as follows. In the next section, 
a brief introduction to midas models is presented. In the third sec-
tion, existing theoretical research on midas regressions as well 
as some applications in forecasting inflation are briefly reviewed. 
In the fourth section, the forecasting exercise is described, and the 
results are discussed. And finally, the fifth section concludes.

2. MIDAS REGRESSION MODELS

midas regression models propose a data-driven method to aggre-
gate high frequency variables into lower-frequency predictors. They 
provide an alternative to the well-known “bridge” approach (Schum-
acher, 2016) in which high frequency variables are aggregated with 
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equal weights (flat aggregation).1 Ghysels et al. (2004) suggested com-
bining yt,a low frequency process, and , a high frequency process 
that is observed a discrete and fixed number of times m each time 
a new value of yt  is observed, in a plain regression equation,

  2.1  	 ∑ θ= +
=

−

−y x u ,t j
j

m

t j m t
( 0)

( 1)

or more compactly,

  2.2  	

where  is a 1×m row vector that collects all the  
corresponding to period t and  is the  vector 
of weight coefficients.2 Each j high frequency observation  
within the low frequency period t enters the model linearly as a vari-
able accompanied by its specific weight,  totaling m explanatory 
variables and m  weights, plus an error term. The high frequency sub-
index  needs to be represented in terms of the low frequency index 
t by noting that  for  since m is fixed, where 

 would be the most recent observation. This structure actually 

conceals a high frequency lag polynomial  
so that  is similar in fashion to a distributed lags model.

To provide a clearer perspective, it is perhaps easier to intro-
duce matrix notation. Defining  as the  matrix 

that groups all the xt vectors together;  the collection 
of the low frequency observations of size  and  
the residuals of the same length as y, it is possible to unveil a simple 
multiple regression equation,

1	 In fact, this can be considered a special case of a midas regression.
2	 This equation may also include constants, trends, seasonal terms or other 

low frequency explanatory variables.



248

  2.3  	

Indeed, this problem can be solved by ordinary least squares 
(ols) and this method will produce consistent coefficient estimates. 
Equation (2.1) is usually referred to as the unrestricted midas regres-
sion model (u-midas). 3 However, an inconvenience arises when m, 
the length of the vector  is large relative to the sample size T, as is 
usually the case in midas regressions. When this occurs, the mod-
els suffer from parameter proliferation and ols induces poor esti-
mates and consequently, poor forecasts. A straightforward way to 
overcome this deficiency is to impose restrictions on the coefficients 
of the high frequency lag polynomial and restate each  as a func-
tion of some q hyperparameters and its subindex j (its position with-
in the low frequency lag polynomial) in such a way that  Each 

 is redefined as  where the vector γ  is the collection 
of q hyperparameters that characterize the weight function  
Equation (2.1) is transformed to,

  2.4  	

where λ  is an impact parameter and the weights are normalized 
so that they sum up to unity. Ghysels et al. (2004) initially recom-
mended what is known as the exponential Almon polynomial as a 
candidate for weight function as it allows for many different shapes 
and depends only on a few parameters. This is an exponentiated 
version of an Almon lag polynomial, which is well known in the dis-
tributed lags literature,4

3	 Foroni et al. (2015) present a detailed assessment of this strategy.
4	 See for example the book by Judge et al. (1985).
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  2.5  	

Another conventional candidate is the beta probability density,

  2.6  	

with  and 
Parameterization as in equation (2.5) has proved to be quite pop-

ular and has become the standard among researchers, particularly 
when q=2.

The introduction of constrained coefficients has many far-reach-
ing implications. The model turns nonlinear and lacks a closed form 
solution. It is necessary to resort to nonlinear least squares and ap-
proximate the solution by numerical optimization routines. Addi-
tionally, the constraints are highly likely to introduce a bias in each 

 However, based on Monte Carlo simulations, when the sample 
size is small relative to the number of parameters, Ghysels et al. (2016) 
argue that both, parameter estimation precision and out-of-sample 
forecast accuracy, gained by the increase in degrees of freedom, 
far offset the effects of the bias generated by misspecified constraints.

midas models are generally intended as a direct forecasting tool 
since this could prove to be more robust against misspecification 
(Marcellino et al., 2006). This implies that estimation additionally 
depends on the time displacement of the variables,  and the 
forecast horizon,5  The direct strategy requires estimation 
of as many models as per pair (d, h) is required. If TY is the time in-
dex of latest yt available for estimation, and TX is the time index of the 
latest  available for both estimation and forecasting, then d can 

be defined as  Setting  

a forecast can be computed with,

  2.7  	

5	 How many periods into the future it is necessary to forecast.
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The “nowcast” can be retrieved when d=–1 and h=1. Note also that, 
the fact that d is a rational number implies that it is possible to gen-
erate intra-period forecasts.

To arrive at equation (2.7), it is first necessary to estimate,

  2.8  	

and then compute  with the estimated parameters,  and  
and the vector 

It is possible to extend the midas model by allowing for more than   
m high frequency regressors. For example, by including pX lags of the 
vector xt totaling  high frequency variates where  
the midas-dl model is formed,

  2.9  	

or equivalently,

  2.10  	

In matrix notation, this can be represented by,

  2.11  	
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If different weight functions for each θr  in equation (2.9), then 
the multiplicative or aggregates-based midas model is obtained (Ghy-
sels et al., 2016). On the contrary, employing a single weight function 
for all m LX×  coefficients vectors θr  is also possible. The first meth-
od allows for greater flexibility but at the cost of more parameters 
to estimate, so this possibility will not be considered, as this may not 
be convenient for a very short sample size.

Other possible extensions include constructing high frequency 
factors (Marcellino and Schumacher, 2010), incorporating cointegra-
tion relations (Miller, 2013), integrating Markov switching (Guérin 
and Marcellino, 2013), estimating multivariate models (Ghysels 
et al., 2007), using infinite polynomials (Ghysels et al., 2007) or add-
ing low frequency autoregressive augmentations (Ghysels et al., 
2007; Clements and Galvão, 2008; Duarte, 2014), for example. Fo-
roni and Marcellino (2013) provide a comprehensive survey of pos-
sible extensions in a recent survey about mixed frequency models.

3. LITERATURE REVIEW

Clements and Galvão (2008) were among the first to study applica-
tions of midas regressions to macroeconomic variables. In their pa-
per, they forecast u.s. real quarterly output growth in combination 
with three different monthly variables: i) industrial production, ii) 
employment growth, and iii) capacity utilization. They find a slight 
increase in out-of-sample forecast accuracy with both vintage and re-
vised data compared to two benchmarks models, an autoregression 
and an adl model in particular, for short-term horizons. They also 
derive and assess a model with autoregressive dynamics introduced 
as a common factor shared by the low and the high-frequency lag poly-
nomials. Based on comments by Ghysels et al. (2007), they argue that 
including an autoregressive term in a standard midas model, as in 
the next equation,

  3.1  	 ; ,y y W L x ut t
m

t t= + ( ) +−φ λ1
1/ γ

induces a seasonal response from ty  to tx  irrespective of wheth-
er tx  exhibits a seasonal pattern. They suggest further restricting 
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the model by adding a common lag polynomial shared between ty  
and tx ,

  3.2  	 ( ) ( ) ( ; ) ,( )1 1 1− = − +φ λ φL y L W L x ut
m

t tγγ  

so that when writing the model in distributed lag representation, 
the polynomial in L  cancels out, eliminating the spurious season-
al response. A multi-step generalization of (3.2) for h -step-ahead 
forecasts would be,

  3.3  	 ; .1 1 1−( ) = −( ) ( ) +φ λ φL y L W L x uh
t

h m
t t

/ γ

Armesto et al. (2010) analyze the performance of midas models 
for the us economy for four different variable combinations: i) quar-
terly gdp growth and monthly employment growth; ii) monthly cpi in-
flation and daily Fed funds rate; iii) monthly industrial production 
growth and a measure of term spread, and iv) employment growth 
and again a measure of term spread. They contrast the results of flat 
aggregation, the exponential Almon polynomial and a step weight 
function, but are unable to find a dominant model specification. They 
provide detailed results for one-step-ahead intra-period forecasting 
performance of the models, computed by accumulating leads6 as the 
high frequency variable approaches a full low frequency period. 
They find an erratic pattern for the root mean square forecast error 
(RMSFE) of the models as a function of the leads included in the re-
gression. Thus, in a real-time setting, which intra-period forecasts 
could be the most accurate would not be trivial.

Monteforte and Moretti (2013) develop midas models to forecast 
the euro area harmonized price index inflation. They put forward 
a two-step approach involving low and high frequency variables. 
In the first place, they estimate a generalized dynamic factor model 
(Forni et al., 2000) for the inflation rate based on a set of variables, 

6	 In this instance “lead” refers to an observation of the high-frequency 
predictor that corresponds to the same temporal period of the low fre-
quency variable.
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and then they extract a common component and separate that into 
a long-run and a cyclical, or short-run, component. The second step 
consists in fitting the model of Clements and Galvão (2008) to cap-
ture short-term dynamics and use financial time series as high fre-
quency regressors, in addition to the long-run component previously 
estimated as well as other low frequency variables. They design three 
midas models, M1, M2 and M3, each with different high frequen-
cy regressors: i) M1 includes the short-term interest rate, changes 
in interest rate spread and oil future prices; ii) M2 uses changes in the 
wheat price, oil future quotes and the exchange rate; and finally, iii) 
M3 consists of long-term rates, changes in the interest rate spreads, 
and changes in the short-term rate. They contrast the out-of-sample 
performance in terms of rsmfe of these models against the equations 
for the inflation rate of two different low frequency vector autore-
gressions, and univariate random walks, autoregressions and autore-
gressive-moving average models. They compute all the intra-period 
forecasts for the midas models and the monthly average of these daily 
forecasts, and compare this average to all the low frequency models. 
All the analysis is conducted for one-month-ahead and two-month-
ahead forecasts. They find on average a 20% reduction in forecast 
error dispersion. The authors also provide a final empirical exercise 
by using forecast combinations with the midas models and the in-
flation rate implied by financial derivatives, but this approach does 
not produce any significant gains.

Duarte (2014) discusses in detail the implications of autoregressive 
augmentations in midas regression models and diverse ways to incor-
porate them. She explores the out-of-sample performance of midas 
models with autoregressive augmentations with no restrictions, with 
an autoregressive augmentation with a common factor restriction, 
and models with autoregressive augmentations with no restrictions 
and a multiplicative scheme to aggregation. She then compares these 
models to the same models but without the autoregressive compo-
nent, and to two low frequency benchmark models, a low frequency 
autoregression and multiple regression model. She computes fore-
casts for quarterly euro area gdp growth based on three different 
series: i) industrial production, ii) an economic sentiment indicator 
and iii) the Dow Jones Euro Stoxx index. She disregards the seasonal 
spikes impulse responses as the relevant impulse responses, as she 
argues that it is not possible to single out a particularly relevant im-
pulse response for a mixed-frequency process since responses vary 
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depending on when the shocks occur within the low-frequency pro-
cess. Although there is no superior model among all tested, Duarte 
finds once again that there are sizable gains compared to the bench-
marks at all horizons.

Breitung and Roling (2015) propose a “nonparametric” midas 
model to forecast monthly inflation rates using a daily predictor. 
Instead of imposing any particular polynomial parameterization, 
the nonparametric approach consists on enforcing some degree 
of smoothness to the lag distribution by minimizing a penalized 
least squares cost function,

  3.4  	 X Xθ θ( )S y Dθθ θ θη( ) = −( )′ − + ′′D θ

where D  is a m m−( )× +( )1 1  matrix such that

  3.5  	 D =

−
−

−



















( )

1 2 1 0 0
0 1 2 1 0

0 1 2 1

3 5

L

L

M O O O O M

L L

, # .

and η  is a pre-specified smoothing parameter. They refer to this 
estimator the Smoothed Least Squares estimator, and its structure 
closely resembles the well-known Hodrick-Prescott filter. If η  is not 
known, they suggest solving for the η  that minimizes the Akaike 
Information Criterion. Their target variable is the harmonized in-
dex of consumer prices for the euro area and they use a commodity 
price index as a high frequency regressor. They compare their model 
against the unconditional mean and the parametric midas model 
(exponential Almon weights) for two different forecast horizons. 
They conclude that the commodity index paired with the nonpara-
metric midas results in a reasonably good one-month-ahead fore-
casts. Additionally, the authors conduct a Monte Carlo experiment 
and compare their model to four parametric midas alternatives: i) 
the exponential Almon polynomial, ii) a hump shaped function, iii) 
a declining linear function, and iv) a sinusoidal function. They find 
that the nonparametric method performs on par with the parametric 
competitors.
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4. DATA, EXERCISE, AND RESULTS

The out-of-sample predictive performance of an online price index 
will be analyzed to forecast the core inflation rate in real-time. To be 
more specific, this will be assessed using many different midas spec-
ifications discussed in the previous sections and these estimations 
will be compared with benchmark single frequency naïve models 
and estimators. midas turn out to be  intuitive for this purpose since 
the monthly inflation rate can be approximately decomposed as the 
aggregation of daily inflation rates of the corresponding month, 
when evaluated in logarithmic differences, π

τ
τ τt

m

t

d dp p≈ −( )
∈

−∑ log log 1

Atkeson and Ohanian (2001), Stock and Watson (2007) and Faust 
and Wright (2009) have shown that simple benchmarks are not eas-
ily beaten by more sophisticated models (at least in the case of the 
US economy), and so these could serve as a good starting point 
to gauge the predictive power of the daily series.

4.1 Data

The online price index is compiled by the company PriceStats in co-
operation with State Street Global Markets, a leading financial re-
search corporation. PriceStates is a spin-off company that emerged 
from the Billion Prices Project at mit, founded by professors Alber-
to Cavallo and Roberto Rigobón. It is the first company, institution, 
or organization to apply a big data approach to produce real-time 
(daily) price indexes to track general price inflation and other re-
lated metrics. Essentially, they collect daily data of prices from on-
line retailers by “web scraping” (i.e. recording price information 
contained inside specific HyperText Markup Language tags in the 
retailers’ websites) and aggregate the data by replicating the meth-
odology of a traditional consumer price index, as is done by Nation-
al Statistics Offices with offline prices. Cavallo (2013) goes through 
the methodology and provides comparisons between online and of-
fline price indexes for Argentina, Brazil, Chile, Colombia, and Ven-
ezuela. He concludes that online price indexes can track the dynamic 
behavior of inflation rates over time fairly well with the exception 
of Argentina. In fact, the construction of online price indexes was ini-
tially motivated by the desire to provide the public with an alternate 
measure of the inflation rate in Argentina because from the years 
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2007 to 2015 there were large discrepancies between the official price 
indexes compiled by the National Institute of Statistics and Census 
(indec) and price indexes compiled by provincial statistics offices 
or those compiled by private consultants. Throughout the rest of the 
paper, this price index will be referred to as the State Street PriceS-
tats Index (ssps). Data for Argentina is available since November 1, 
2007 with a three-day publication lag.

A provincial price index that raised itself to prominence in recent 
years is the consumer price index compiled by the General Depart-
ment of Statistics and Censuses of the Government of the Autono-
mous City of Buenos Aires, known as ipcba. Although this index 
only takes into account  the territory of the City of Buenos Aires (with 
a population close to 3  million), it should be reasonable to expect 
that price dynamics in the Buenos Aires Metropolitan Area (which 
encompasses a much larger population, close to 14  million or 1/ 3  
of the total population of Argentina) share most of its features with 
the pricing structure of the City of Buenos Aires, resulting from ar-
bitrage by reason of geographical proximity, as this should prevent 
large distortions, at least in nonregulated markets. A more restricted 
version of the index is also published, called “resto ipcba” (ripcba) 
witch serves as a measure of core inflation. Compared to the headline 
version, it excludes products with strong seasonal patterns and regu-
lated prices (e.g. public utility services) and represents 78.15%  of the 
headline index. ripcba is available from July 2012 onward and is 
released monthly, with approximately a two-week publication lag.

These two indexes, as well as other provincial private and public 
price indexes, are closely monitored by the monetary authorities 
as well as the general public. This is particularly true for INDEC’s 
recently introduced National Consumer Price Index. As the name 
implies, this is the only index with full national coverage. However, 
this index so far consists of less than two years of data points and this 
limits the possibility of drawing any relevant inferences.

Inflation in Argentina in recent years has been high, unstable 
and volatile, particularly from 2012 to most of 2016 when Argentina 
experienced high monetization of fiscal deficits, strict capital controls 
and two major devaluations of the currency.7 The average monthly 

7	 The last one coinciding with the lifting of the majority of the capital 
controls in December 2015 and a subsequent transition to a flexible 
exchange rate regime and inflation targeting.
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inflation rate has been fluctuating around 2.2% for ripcba and 2.1% 
for the monthly aggregated ssps series, with coefficients of variation 
at 35%  and 49%  respectively. This should pose a significant chal-
lenge for economists’ ability to formulate accurate forecasts. Figure 
1 illustrates the comparison between these two indexes and provides 
a quick glimpse at the potential predictive power of the high-frequen-
cy index. Overall and for the scope of this work, ripcba is available 
from July 2012 to December 2017 (66 data points) while ssps ranges 
from November 1, 2007 to December 31, 2017 (3,714 data points).

4.2 Forecasting Exercise

The midas specifications tested were the midas-dl, the unrestrict-
ed autoregressive midas-dl (midas-adl), and the autoregressive 
midas-dl with the common factor restriction (midas-adl-cf). 
All midas specifications were evaluated with several high frequency  

Figure 1
COMPARISON BETWEEN rIPCBA INFLATION AND SPSS INFLATION
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regressors equal to m LX× ,8 with LX ∈{ }1 2 3, , , and forecasts were com-
puted for horizons h∈{ }1 2 3, ,  over a 36-observation evaluation sample, 
spanning from January 2015 to December 2017, and an 18 obser-
vation subsample from July 2016 to December 2017 (a period with 
a more stable inflation rate), using recursive (expanding) windows. 
midas-adl-cf models included quadratic and cubic variations of the 
standard Almon polynomial and the exponential version, as well as the 
Beta probability density function. midas-adl models further added 
flat aggregation (equal weights); and finally, midas-dl models add-
ed the nonparametric (np) model described in Section 3. Forecast 
combinations of the various midas models with equal weights were 
also considered. In addition, all these models were compared to two 
benchmarks: i) the low-frequency unconditional mean and ii) a low- 
frequency first order autoregression.9

In a first stage, the models were estimated with a balanced dataset. 
In other words, there is exact frequency matching: m  daily observa-
tions from the same month or XL  groups of m  daily observations from 
the same months correspond to a specific low-frequency monthly ob-
servation of the dependent variable. In total, two sets of rmsfe were 
computed, one corresponding to the large sample and the other to a 
reduced subsample. For all forecast horizons, d  was set to d = −1 .

A second stage involved estimating intra-period forecasts for the 
best selected XL  for each forecast horizon based on the results from 
the large sample of the first stage and briefly analyzing the stability 
of the forecasts as more recent information is incorporated in the 
models. When intra-period forecasts were computed, d  is a fraction 
in the interval −[ )1 0, . More specifically, d i m= − +1 /  for i  in 1, , m  
where m  is the frequency. Forecasts from the autoregression and the 
uncondditional mean remained the same throughout the month.

To account for the fact that ssps is an irregularly spaced series, 
the frequency was assumed fixed at 28m = , and so days 29 , 30  and 31  
of each month are discarded. Daily inflation rates were first computed 
with the full dataset and then the observations beyond day 28  of each 
month were discarded.

8	 First order midas-adl-cf models include m L L hX X× + ( ) min , . 
high-frequency regressors since the common factor restriction increases 
the number of variates depending on the forecast horizon and the num-
ber of high frequency lags.

9	 A detailed list of the models can be found in Appendix A.
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Estimation was conducted in R with the midasr package developed 
by Ghysels et al. (2016) while optimization was performed with three 
routines included in optimx10 for nonlinear models or with the lm 
function from the stats package for linear ones. Models that require 
optimx were solved simultaneously with three optimization routines 
(ucminf, nlminb and Nelder-Mead) for each model, forecast horizon 
h , number of high frequency regressors XL , and out-of-sample pe-
riod. Only the best solution was kept. The algorithm was initialized 
taking the hypothesis of equal weights and a null impact parameter 
as starting conditions. This strategy delivered reasonable results 
empirically and serves as a check on whether the high-frequency re-
gressors are actually relevant.

4.3 Empirical Results

Tables 1 and 2 summarize the main results of the first stage. In gen-
eral, for 1h =  (nowcasts), larger values of XL  produce better results 
while this tends to reverse when forecasting further into the future, 
i.e. 3h = . For 2h = , the results are ambiguous and indicate that 

2XL =  or 3XL =  perform best. All three classes of midas models 
exhibit similar performance irrespective of the inclusion of the au-
toregressive term or how it is incorporated. For all h , most midas 
models for at least some XL  are able to produce a small gain at around 
10%  when compared to the autoregression and a larger 25%  against 
the unconditional mean.11 The smaller sample greatly amplifies these 
results. Note that for each h, there is a flat aggregation model that 
performed very well and, at times, even better than standard midas 
models, but overall, there is not a single midas model that system-
atically outperforms the rest. The forecast combination tested does 
not seem to improve over any particular midas model.

Figures (2)-(4) condense the main findings of the second stage. 
Forecasts for 1h =  display a clear trend towards better accuracy 
as the high frequency variable reaches a full low frequency period. 
In day 1  to day 28  point to point comparison, the rmsfe is reduced 
by approximately 20%  and particularly, in the second half of the 
month, the models start to surpass the accuracy of the autoregression 

10	 A comprehensive description about this package can be found in Nash 
and Varadhan (2011).

11	 Tables with rmsfe ratios are presented in Appendix B.
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by up to  15%  at most for some days. The improved performance, 
when evaluated in the subsample, suggests that it is even possible 
to obtain even better results as the inflation rate stabilizes. Similar 
behavior, although less evident, is observed for forecasts for period 

3h =  in the case of midas-dl models. Forecasts for horizon 2h =  dis-
play a rather erratic pattern excepting the flat aggregation midas-dl 
and midas-adl models.

Figure 5 zooms in on the evolution of all intra-period forecasts 
for selected models, either 1h = , 2h =  or 3h = . Despite the intra-pe-
riod forecasts evidencing some volatility within the month, this does 
not seem to be a major concern as inflation stabilizes at the end of 
the sample. Additionally, note that forecasting further into the fu-
ture yields a dynamic closer to the unconditional mean of the whole 
process. In the future, these results could be used as a training sample 
from which to compute inverse mean square error weights and per-
form forecast combinations, which could prove to be effective in miti-
gating intra-period forecast volatility.

Although the results look promising, they should be interpreted 
with caution. The predictive ability of the models was tested with 
the methodology by Giacomini and White (2006)12 and both the un-
conditional and the conditional versions of the test were examined. 
The midas models were evaluated against the two naïve benchmarks, 
modeling the difference in forecast accuracy as a constant (uncondi-
tional) and also as a first order autoregression (conditional). The results 
do not indicate that the difference in forecast accuracy is significant 
(at 0.05) for most midas models. However, since the “large” out-of-
sample evaluation set actually constitutes a small sample by literature 
standards, the result of the tests cannot be taken as final. As more ob-
servations become available, the tests could be updated with a larger 
sample to arrive at a more robust conclusion.

12	 This is similar to the standard test by Diebold and Mariano (1995). 
The key difference lies in that the estimation sample size is kept fixed 
instead of ever expanding, as this allows to better incorporate estimation 
uncertainty and to compare nested models.
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Figure 2

EVOLUTION OF THE RMSFE FOR HORIZON h =1 WITHIN A MONTH
FOR SELECTED MODELS WITH LX  = 3

0.9
0.8
0.7
0.6
0.5
0.4

1.0

0.3

2015
Day within month

- (2015.01:2017.12)





1050 25

0.9
0.8
0.7
0.6
0.5
0.4

1.0

0.3

2015
Day within month

- (2016.07:2017.12)






1050 25

0.9
0.8
0.7
0.6
0.5
0.4

1.0

0.3

2015
Day within month

- (2015.01:2017.12)






1050 25

0.9
0.8
0.7
0.6
0.5
0.4

1.0

0.3

2015
Day within month

- (2016.07:2017.12)





1050 25

0.9
0.8
0.7
0.6
0.5
0.4

1.0

0.3

2015
Day within month

-- (2015.01:2017.12)






1050 25

0.9
0.8
0.7
0.6
0.5
0.4

1.0

0.3

2015
Day within month

-- (2016.07:2017.12)






1050 25

 (1)



Flat



Almon (q=2)

Almon (q=3)



266

Figure 3

EVOLUTION OF THE RMSFE FOR HORIZON h =2 WITHIN A MONTH
FOR SELECTED MODELS WITH LX  = 3
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Figure 4

EVOLUTION OF THE RMSFE FOR HORIZON h =3 WITHIN A MONTH
FOR SELECTED MODELS WITH LX  = 2
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5. CONCLUSION

For some particular midas specifications, there is a slight improve-
ment compared to the low-frequency benchmark autoregression 
and the unconditional mean. In principle, this would imply that 
high-frequency online price indices have a good potential to fore-
cast future behavior of consumer inflation for immediate horizons 
in Argentina, but these results are still not robust. This could serve 
as a useful complementary tool to assess the out-of-sample perfor-
mance of perhaps more sophisticated models. Future research could 
focus on building an alternative variable such as a daily financial 
factor as suggested by Monteforte and Moretti (2013) or comparing 
with measures of market expectations in order to further validate 
the findings of this paper.

ANNEX

Appendix A: midas Specifications

The full set of specifications of the models is detailed below. All mod-
els were estimated with LX ∈{ }1 2 3, , , h∈{ }1 2 3, ,  and d  as explained 
in subsection 4.2. The subscript d h,( )  on parameter estimates de-
noting dependence on d  and h  has been suppressed for simplicity.
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