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Abstract

This paper presents a forecasting exercise that assesses the predictive poten-
tial of a daily price index based on online prices. Prices are compiled using
web scraping services provided by the private company PriceStats in coopera-
tion with a finance research corporation, State Street Global Markets. This
online price index is tested as a predictor of the monthly core inflation rate
in Argentina, known as “resto IPCBA” and published by the Statistics Office
of the City of Buenos Aires. Mixed frequency regression models offer a conve-
nient arrangement to accommodate variables sampled at different frequen-
cies and hence many specifications are evaluated. Different classes of these
models are found to produce a slight boost in out-of-sample predictive perfor-
mance at immediate horizons when compared to benchmark naive models
and estimators. Additionally, an analysis of intra-period forecasts, reveals
a slight trend towards increased forecast accuracy as the daily variable ap-
proaches one full month for certain horizons.
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1. INTRODUCTION

orecasting inflation has become increasingly important

in Argentina as it is essential for economic agents to adjust

wages and prices—particularly in recent years—in a context
ofhighandvolatileinflation. Having timelyupdates about the future
trajectory of the inflation rate is essential for conducting monetary
policy, specially, since the Central Bank is transitioning towards
an inflation targeting regime. Recent developments in the use of
“big data” have greatly facilitated tracking macroeconomic vari-
ables in real-time. A remarkable example is the construction of on-
line price indexes that are sampled daily, rather than monthly, as it
is standard for traditional price indexes from statistical offices.
The question naturally arises of whether this information can help
predictthefuture trajectoryof traditional consumer price indexes.
Ghysels et al. (2004) introduced aregression framework that allows
forthe exploitation of time series sampled at different frequencies,
knownintheliterature as Mixed DataSampling (MIDAS) regression
models. The methodologyreducestofittingaregression modeltoa
low-frequencyvariable using high-frequencydataasregressors. Asit
will be shown later, this technique closely resembles distributed
lagmodels. This paper employs thismethodologyto assess whether
the combination of price series sampled at different frequencies
isan effective tool for improving forecast accuracy compared to na-
ive models, using the online price index constructed by PriceStats
in cooperation with State Street Global Markets.

The rest of the paperis organized as follows. In the next section,
abriefintroduction to MIDAS models is presented. In the third sec-
tion, existing theoretical research on MIDAS regressions as well
as some applications in forecasting inflation are briefly reviewed.
Inthefourth section, the forecasting exercise is described, and the
results are discussed. And finally, the fifth section concludes.

2. MIDAS REGRESSION MODELS

MIDAS regression models propose a data-driven method to aggre-
gate high frequencyvariablesinto lowerfrequency predictors. They
provideanalternative to the well-known “bridge” approach (Schum-
acher, 2016) in which high frequencyvariables are aggregated with
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equalweights (flataggregation).! Ghysels e al. (2004) suggested com-
bining y,,alowfrequency process, and x_ 2 highfrequency process
that is observed a discrete and fixed number of times m each time
anew value of y, is observed, in a plain regression equation,

(m=1)
m Y= 2 Hjx

(j=0)

t—j/m + Mt’

or more compactly,

m Y, =(9'xl’),+ut

where X, = [xt . -x,_(m_l)/m } isa Ixmrowvectorthat collectsall the X,

corresponding to period tand = I:HO -0 J/ is the mXx1 vector
of weight coefficients.? Each jhigh frequency observation X i/m
within thelowfrequency period tenters the modellinearlyasavari-
able accompanied by its specific weight, 6 , totaling mexplanatory
variablesand m weights, plusan error term. The high frequencysub-
index 7 needstoberepresentedintermsofthelowfrequencyindex
tbynoting that 7=¢-1+ 4 /m for J=L...m since mis fixed, where

X0 /m would be the mostrecent observation. Thisstructure actually

. . 1/m)_ N m-l i/m
conceals a high frequency lag polynomial H(L / )= 2]-:0 er X,
sothat L//mx[ =X/ issimilarinfashiontoadistributedlags model.
To provide a clearer perspective, it is perhaps easier to intro-
duce matrix notation. Defining X = [z]..27] as the T Xm matrix

that groups all the x,vectors together; Y= [3’1 - ~yT:| » the collection
of the low frequency observations of size T'X1; and u = [u;...uq]
the residuals of the same length as y, it is possible to unveil a simple
multiple regression equation,

! In fact, this can be considered a special case of a MIDAS regression.

2 Thisequation mayalsoinclude constants, trends, seasonal terms or other
low frequency explanatory variables.
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Indeed, this problem can be solved by ordinary least squares
(oLS) and this method will produce consistent coefficient estimates.
Equation (2.1) isusuallyreferred toas the unrestricted MIDASregres-
sion model (U-MIDAS). * However, an inconvenience arises when m,
the length of the vector 0, is large relative to the sample size 7, asis
usually the case in MIDAS regressions. When this occurs, the mod-
els suffer from parameter proliferation and OLS induces poor esti-
mates and consequently, poor forecasts. A straightforward way to
overcome this deficiencyistoimposerestrictions on the coefficients
of the high frequency lag polynomial and restate each 6 asa func-
tion of some ghyperparameters and its subindex j (its position with-
in the low frequencylag polynomial) in such away that ¢ > m. Each
9]‘ isredefinedas . =w (}/,]) where the vector ¥ isthe collection
of ghyperparameters that characterize the weight function w (e
Equation (2.1) is transformed to,

w;(¥;))
m ye=4 Z (Z W](y,j)) Xt—j/m T U-

where 1 isanimpact parameter and the weights are normalized
so that they sum up to unity. Ghysels et al. (2004) initially recom-
mended what is known as the exponential Almon polynomial as a
candidate for weight function as it allows for many different shapes
and depends only on a few parameters. This is an exponentiated
version of an Almon lag polynomial, which is well known in the dis-

tributed lags literature,*

* Foroni et al. (2015) present a detailed assessment of this strategy.

* See for example the book by Judge et al. (1985).
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i) g
m wj(yl,...,yq,])—e :

Another conventional candidate is the beta probability density,

m wj(yl’yQ;j):Z}/l_l(l_zj)yg—l,

with 2 Ej/(m—l),j/l >0and y,>0.

Parameterizationasin equation (2.5) has proved to be quite pop-
ularand has become the standard among researchers, particularly
when ¢=2.

Theintroduction of constrained coefficients has manyfarreach-
ingimplications. The model turns nonlinearandlacksaclosed form
solution. It is necessary to resort to nonlinear least squares and ap-
proximate the solution by numerical optimization routines. Addi-
tionally, the constraints are highlylikely to introduce a biasin each

6 .. However, based on Monte Carlo simulations, when the sample
sizeissmallrelative tothe number of parameters, Ghysels etal. (2016)
argue thatboth, parameter estimation precision and out-of-sample
forecast accuracy, gained by the increase in degrees of freedom,
far offset the effects of the bias generated by misspecified constraints.

MIDAS models are generallyintended as a direct forecasting tool
since this could prove to be more robust against misspecification
(Marcellino et al., 2006). This implies that estimation additionally
depends on the time displacement of the variables, d € Q, and the
forecast horizon,? 7€ N. The direct strategy requires estimation
of'as many models as per pair (d, #) is required. If Tyis the time in-
dex oflatest y,available for estimation, and Tyisthetimeindex ofthe
latest x_ available for both estimation and forecasting, then d can

i d=T,-T,. i Um. o) = § 7 L\ Y/m
be defined as y ~Ix* Setting W(L ’7)_2j=owj(7’])l‘ ,

aforecast can be computed with,

<7 Um. s
s _;Ld,hW(L ’yd,h)xT—d'

® How many periods into the future it is necessary to forecast.
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The “nowcast” can be retrieved when d=-1 and A=1. Note also that,
the fact that dis arational number implies that it is possible to gen-
erate intra-period forecasts.

To arrive at equation (2.7), itis first necessary to estimate,

2.8 = )“W(Ll/m;f')xt—h—d tu,

A

and thencompute j,. , withtheestimated parameters, A .. and 4 dh
and the vector x,. .

Itis possible to extend the MIDAS model by allowing for more than
mhigh frequencyregressors. For example, byincluding pxlags of the
vector x,totaling m X L, high frequency variates where Ly =p, +1,

the MIDAS-DL model is formed,
P)( ,
2] 5= 20, ) +u,.

r=0

or equivalently,

Px m-1
m yt :Z() ‘2001',jxt—r—j/m+ut'
r=0 j=

In matrix notation, this can be represented by,

) _ 90,[]

Ty 1T e Tope T N | Ty ]

N o xzf(mfl)f mo xz‘PX v Xz’ﬂx ’(’”’1)/”’ 90,’"‘1 h

- : +
e e e 9
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If different weight functions for each 0, in equation (2.9), then
the multiplicative oraggregates-based MIDASmodelis obtained (Ghy-
selsetal.,2016). On the contrary, employing asingle weight function
forall mx Ly coefficientsvectors 68, isalso possible. The first meth-
od allows for greater flexibility but at the cost of more parameters
to estimate, so this possibilitywill not be considered, as this may not
be convenient for a very short sample size.

Other possible extensions include constructing high frequency
factors (Marcellinoand Schumacher, 2010), incorporating cointegra-
tion relations (Miller, 2013), integrating Markov switching (Guérin
and Marcellino, 2013), estimating multivariate models (Ghysels
etal.,2007), using infinite polynomials (Ghysels et al., 2007) or add-
ing low frequency autoregressive augmentations (Ghysels et al.,
2007; Clements and Galvao, 2008; Duarte, 2014), for example. Fo-
roniand Marcellino (2013) provide a comprehensive survey of pos-
sible extensions in a recent survey about mixed frequency models.

3. LITERATURE REVIEW

Clements and Galvao (2008) were among the first to study applica-
tions of MIDASregressions to macroeconomic variables. In their pa-
per, they forecast U.S. real quarterly output growth in combination
with three different monthly variables: i) industrial production, i)
employment growth, and #ii) capacity utilization. They find a slight
increase in out-of-sample forecast accuracywith both vintage and re-
vised data compared to two benchmarks models, an autoregression
and an ADL model in particular, for short-term horizons. They also
derive and assessamodel with autoregressive dynamicsintroduced
asacommon factorshared bythelowand the high-frequencylag poly-
nomials. Based on comments by Ghysels etal. (2007), theyargue that
including an autoregressive term in a standard MIDAS model, as in
the next equation,

m Vi :¢yt71+;tW(Ll/’”;y)x,+u[,

induces a seasonal response from y, to x, irrespective of wheth-
er x, exhibits a seasonal pattern. They suggest further restricting
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the model by adding a common lag polynomial shared between ¥y,
and x,,

3.2 (1-¢L)y, = A(1— LYW (LY™;y)x, +u,,

so that when writing the model in distributed lag representation,
the polynomialin L cancels out, eliminating the spurious season-
al response. A multi-step generalization of (3.2) for A-step-ahead
forecasts would be,

3.3 (1=pL")y, = A(1=pL )W (IV7;7)x, +u,.

Armesto et al. (2010) analyze the performance of MIDAS models
forthe US economy for four different variable combinations: ¢)quar-
terly GDP growth and monthly employment growth; :z)monthly CPIin-
flation and daily Fed funds rate; ¢i¢) monthly industrial production
growth and a measure of term spread, and iv) employment growth
and againameasure of termspread. They contrast the results of flat
aggregation, the exponential Almon polynomial and a step weight
function, butare unable tofind adominantmodelspecification. They
provide detailed results for one-step-ahead intra-period forecasting
performance ofthe models, computed byaccumulatingleads®asthe
high frequency variable approaches a full low frequency period.
Theyfind an erratic pattern for the root mean square forecast error
(RMSFE) of the models asa function of the leadsincluded in the re-
gression. Thus, in a real-time setting, which intra-period forecasts
could be the most accurate would not be trivial.

Monteforte and Moretti (2013) develop MIDAS models to forecast
the euro area harmonized price index inflation. They put forward
a two-step approach involving low and high frequency variables.
Inthe first place, they estimate ageneralized dynamic factor model
(Forni et al., 2000) for the inflation rate based on a set of variables,

® In this instance “lead” refers to an observation of the high-frequency
predictor that corresponds to the same temporal period of the low fre-

quency variable.
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and then they extract acommon component and separate thatinto
along-runandacyclical, orshortrun, component. The second step
consists in fitting the model of Clements and Galvao (2008) to cap-
ture short-term dynamics and use financial time series as high fre-
quencyregressors,inaddition tothelong-run component previously
estimated aswell as other low frequencyvariables. They design three
MIDAS models, M1, M2 and M3, each with different high frequen-
cy regressors: i) M1 includes the short-term interest rate, changes
ininterestrate spread and oil future prices; ity M2 uses changesin the
wheat price, oil future quotesand the exchange rate; and finally, i)
M3 consists of long-term rates, changesin the interest rate spreads,
and changesinthe short-termrate. They contrast the out-of-sample
performanceinterms of RSMFE of these modelsagainst the equations
for the inflation rate of two different low frequency vector autore-
gressions, and univariate randomwalks, autoregressionsand autore-
gressive-moving average models. They compute all the intra-period
forecasts for the MIDAS modelsand the monthlyaverage of these daily
forecasts,and compare thisaverage toall the low frequency models.
Allthe analysis is conducted for one-month-ahead and two-month-
ahead forecasts. They find on average a 20% reduction in forecast
error dispersion. The authorsalso provide afinal empirical exercise
by using forecast combinations with the MIDAS models and the in-
flation rate implied by financial derivatives, but thisapproach does
not produce any significant gains.

Duarte (2014) discussesin detailtheimplications of autoregressive
augmentationsin MIDASregression modelsand diverse ways toincor-
porate them. She explores the out-of-sample performance of MIDAS
modelswith autoregressive augmentations with norestrictions, with
an autoregressive augmentation with a common factor restriction,
and modelswith autoregressive augmentations with norestrictions
and amultiplicative schemeto aggregation. She then comparesthese
models to the same models but without the autoregressive compo-
nent, and to two low frequency benchmark models, alow frequency
autoregression and multiple regression model. She computes fore-
casts for quarterly euro area GDP growth based on three different
series: ¢)Jindustrial production, ¢7)an economic sentiment indicator
and #ii)the Dow Jones Euro Stoxx index. She disregards the seasonal
spikes impulse responses as the relevant impulse responses, as she
argues thatitis not possible to single out a particularly relevant im-
pulse response for a mixed-frequency process since responses vary
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depending on when the shocks occurwithin the low-frequency pro-
cess. Although there is no superior model amongall tested, Duarte
findsonceagainthattherearesizable gains compared to the bench-
marksatall horizons.

Breitung and Roling (2015) propose a “nonparametric” MIDAS
model to forecast monthly inflation rates using a daily predictor.
Instead of imposing any particular polynomial parameterization,
the nonparametric approach consists on enforcing some degree
of smoothness to the lag distribution by minimizing a penalized
least squares cost function,

5.4 S(8)=(y-X0) (y-X6)+n6'D'DO

where D isa (m—1)x(m+1) matrix such that

1 -2 1 0 0

o1 -2 1 -+ 0
3.5 p={. . T

0 1 -2 1

and 7 is a pre-specified smoothing parameter. They refer to this
estimator the Smoothed Least Squares estimator, and its structure
closelyresembles the well-known Hodrick-Prescott filter. If n is not
known, they suggest solving for the 1 that minimizes the Akaike
Information Criterion. Their target variable is the harmonized in-
dex of consumer prices for the euro area and they use acommodity
priceindexasahigh frequencyregressor. They compare their model
against the unconditional mean and the parametric MIDAS model
(exponential Almon weights) for two different forecast horizons.
They conclude that the commodity index paired with the nonpara-
metric MIDAS results in a reasonably good one-month-ahead fore-
casts. Additionally, the authors conduct a Monte Carlo experiment
and compare their model to four parametric MIDAS alternatives: 7)
the exponential Almon polynomial, i7)ahump shaped function, #ii)
adeclininglinear function, and iv)asinusoidal function. Theyfind
thatthe nonparametric method performs on parwith the parametric
competitors.
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4. DATA, EXERCISE, AND RESULTS

The out-of-sample predictive performance of an online price index
willbeanalyzed to forecast the coreinflationrateinreal-time. Tobe
more specific, thiswillbe assessed using many different MIDAS spec-
ifications discussed in the previous sections and these estimations
will be compared with benchmark single frequency naive models
and estimators. MIDAS turn out to be intuitive for this purposesince
the monthlyinflation rate can be approximately decomposed asthe
aggregation of daily inflation rates of the corresponding month,
whenevaluatedinlogarithmicdifferences, 77 ~ Z(log pd —log pf_l)

TEl
Atkeson and Ohanian (2001), Stock and Watson (2007) and Faust
and Wright (2009) have shown that simple benchmarks are not eas-
ily beaten by more sophisticated models (at least in the case of the
US economy), and so these could serve as a good starting point
to gauge the predictive power of the daily series.

4.1 Data

The online priceindexis compiled by the company PriceStatsin co-
operation with State Street Global Markets, a leading financial re-
search corporation. PriceStatesisaspin-off companythat emerged
from the Billion Prices Project at MIT, founded by professors Alber-
to Cavalloand Roberto Rigobén. Itis the first company, institution,
or organization to apply a big data approach to produce real-time
(daily) price indexes to track general price inflation and other re-
lated metrics. Essentially, they collect daily data of prices from on-
line retailers by “web scraping” (i.e. recording price information
contained inside specific HyperText Markup Language tags in the
retailers’ websites) and aggregate the data by replicating the meth-
odologyofatraditional consumer price index, asis done by Nation-
al Statistics Offices with offline prices. Cavallo (2013) goes through
the methodologyand provides comparisons between online and of-
fline price indexes for Argentina, Brazil, Chile, Colombia, and Ven-
ezuela. He concludes that online price indexes can track the dynamic
behavior of inflation rates over time fairly well with the exception
of Argentina. In fact, the construction of online price indexeswasini-
tiallymotivated by the desire to provide the publicwith an alternate
measure of the inflation rate in Argentina because from the years
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2007t0 2015 there werelarge discrepanciesbetween the official price
indexes compiled by the National Institute of Statistics and Census
(INDEC) and price indexes compiled by provincial statistics offices
or those compiled by private consultants. Throughout the rest of the
paper, this price index will be referred to as the State Street PriceS-
tats Index (SSPS). Data for Argentinais available since November 1,
2007 with a three-day publication lag.

Aprovincial priceindex thatraiseditselfto prominenceinrecent
years is the consumer price index compiled by the General Depart-
ment of Statistics and Censuses of the Government of the Autono-
mous City of Buenos Aires, known as IPCBA. Although this index
onlytakesintoaccount theterritoryofthe City of BuenosAires (with
a population close to 3 million), it should be reasonable to expect
that price dynamics in the Buenos Aires Metropolitan Area (which
encompassesamuchlarger population, closeto 14 millionor 1 /3
of the total population of Argentina) share most of its features with
the pricing structure of the City of Buenos Aires, resulting from ar-
bitrage by reason of geographical proximity, as this should prevent
large distortions, atleastin nonregulated markets. Amorerestricted
version of the index is also published, called “resto IPCBA” (rIPCBA)
witchservesasameasure of coreinflation. Compared tothe headline
version, itexcludes products with strong seasonal patternsand regu-
lated prices (e.g. public utility services) and represents 78.15% ofthe
headline index. rIPCBA is available from July 2012 onward and is
released monthly, with approximately a two-week publication lag.

These two indexes, as well as other provincial private and public
price indexes, are closely monitored by the monetary authorities
as well as the general public. This is particularly true for INDEC’s
recently introduced National Consumer Price Index. As the name
implies, thisis the onlyindex with full national coverage. However,
thisindexsofar consists of less than twoyears of data points and this
limits the possibility of drawing any relevant inferences.

Inflation in Argentina in recent years has been high, unstable
andvolatile, particularly from 2012 to most of 2016 when Argentina
experienced highmonetization of fiscal deficits, strict capital controls
and two major devaluations of the currency.” The average monthly

7 The last one coinciding with the lifting of the majority of the capital
controls in December 2015 and a subsequent transition to a flexible
exchange rate regime and inflation targeting.
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COMPARISON BETWEEN rIPCBA INFLATION AND SPSS INFLATION
AGGREGATED TO MONTHLY FREQUENCY
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inflationrate hasbeen fluctuating around 2.2% forrIPCBAand 2.1%
forthemonthlyaggregated SSPSseries, with coefficients of variation
at 35% and 49% respectively. This should pose a significant chal-
lenge for economists’ ability to formulate accurate forecasts. Figure
lillustratesthe comparison between these twoindexesand provides
aquickglimpseatthe potential predictive power of the high-frequen-
cyindex. Overall and for the scope of this work, rTPCBA is available
from July 2012 to December 2017 (66 data points) while SSPS ranges
from November 1, 2007 to December 31, 2017 (3,714 data points).

4.2 Forecasting Exercise

The MIDAS specifications tested were the MIDAS-DL, the unrestrict-
ed autoregressive MIDAS-DL (MIDAS-ADL), and the autoregressive
MIDAS-DL with the common factor restriction (MIDAS-ADL-CF).
AlIMIDAS specifications were evaluated with several high frequency
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regressorsequalto mx Ly, *with Ly € {1, 2, 3}, and forecasts were com-
puted for horizons 4 € {1, 2, 3} overa 36-observation evaluation sample,
spanning from January 2015 to December 2017, and an 18 obser-
vation subsample from July 2016 to December 2017 (a period with
amore stable inflation rate), using recursive (expanding) windows.
MIDAS-ADL-CF modelsincluded quadratic and cubic variations of the
standard Almon polynomialand the exponential version, aswellas the
Beta probability density function. MIDAS-ADL models further added
flat aggregation (equal weights); and finally, MIDAS-DL models add-
ed the nonparametric (NP) model described in Section 3. Forecast
combinations of the various MIDAS models with equal weights were
also considered. In addition, all these models were compared to two
benchmarks: i) the low-frequency unconditional mean and ) a low-
frequency first order autoregression.’

Inafirststage, the models were estimated with abalanced dataset.
In other words, there is exact frequency matching: m daily observa-
tionsfrom the same monthor Ly groupsof m dailyobservations from
the same months correspond to aspecific low-frequency monthly ob-
servation of the dependent variable. In total, two sets of RMSFE were
computed, one corresponding to the large sample and the othertoa
reduced subsample. For all forecast horizons, d wassetto d =—1.

A second stage involved estimating intra-period forecasts for the
bestselected Ly for each forecast horizon based on the results from
the large sample of the first stage and briefly analyzing the stability
of the forecasts as more recent information is incorporated in the
models. When intra-period forecasts were computed, d is afraction
intheinterval [—1,0) .Morespecifically, g = —1+i/m foriin L,...,m
where m isthe frequency. Forecasts from the autoregression and the
uncondditional mean remained the same throughout the month.

To account for the fact that SSPS is an irregularly spaced series,
thefrequencywasassumed fixedat m =28 ,and sodays 29, 30 and 31
of eachmonth are discarded. Dailyinflation rates were first computed
withthefull datasetand then the observations beyond day 28 of each
month were discarded.

8 TFirst order MIDAS-ADL-CF models include mX[LX + min (LX,h)] )
high-frequency regressors since the common factor restriction increases
the number of variates depending on the forecast horizon and the num-
ber of high frequency lags.

9 A detailed list of the models can be found in Appendix A.

258



Estimationwas conducted in Rwith the midasr package developed
by Ghysels et al. (2016) while optimization was performed with three
routines included in optimx' for nonlinear models or with the Im
function from the stats package forlinear ones. Models thatrequire
optimx were solved simultaneouslywith three optimization routines
(ucminf, nlminb and Nelder-Mead) for each model, forecast horizon
h ,number of high frequencyregressors Ly ,and out-of-sample pe-
riod. Only the best solution was kept. The algorithm was initialized
taking the hypothesis of equal weightsand anullimpact parameter
as starting conditions. This strategy delivered reasonable results
empiricallyand servesasacheck on whether the high-frequencyre-
gressors are actually relevant.

4.3 Empirical Results

Tables 1 and 2 summarize the main results of the first stage. In gen-
eral,for 2 =1 (nowcasts), largervalues of Ly producebetterresults
while this tends to reverse when forecasting furtherinto the future,
i.e. h=3.For h=2, the results are ambiguous and indicate that
Ly =2 or Ly =3 perform best. All three classes of MIDAS models
exhibit similar performance irrespective of the inclusion of the au-
toregressive term or how it is incorporated. For all # , most MIDAS
modelsforatleastsome Ly areabletoproduceasmallgainataround
10% when compared to the autoregressionand alarger 25% against
the unconditional mean.! The smaller sample greatlyamplifies these
results. Note that for each £, there is a flat aggregation model that
performedverywelland, attimes, even better than standard MIDAS
models, but overall, there is not a single MIDAS model that system-
atically outperformstherest. The forecast combination tested does
not seem to improve over any particular MIDAS model.

Figures (2)-(4) condense the main findings of the second stage.
Forecasts for £ =1 display a clear trend towards better accuracy
as the high frequency variable reaches a full low frequency period.
Inday 1 today 28 pointto point comparison, the RMSFEisreduced
by approximately 20% and particularly, in the second half of the
month, themodelsstarttosurpasstheaccuracyofthe autoregression

19" A comprehensive description about this package can be found in Nash
and Varadhan (2011).
' Tables with RMSFE ratios are presented in Appendix B.
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by up to 15% at most for some days. The improved performance,
when evaluated in the subsample, suggests that it is even possible
to obtain even better results as the inflation rate stabilizes. Similar
behavior, although less evident, is observed for forecasts for period
h =3 inthe case of MIDAS-DL models. Forecasts for horizon - =2 dis-
playarather erratic pattern excepting the flat aggregation MIDAS-DL
and MIDAS-ADL models.

Figure 5 zooms in on the evolution of all intra-period forecasts
forselected models, either =1, =2 or =3 .Despite theintra-pe-
riod forecasts evidencing some volatility within the month, this does
not seem to be a major concern as inflation stabilizes at the end of
the sample. Additionally, note that forecasting further into the fu-
ture yields a dynamic closer to the unconditional mean of the whole
process.Inthefuture, theseresults could beused asatraining sample
from which to compute inverse mean square error weights and per-
form forecast combinations, which could prove to be effective in miti-
gating intra-period forecast volatility.

Although the results look promising, they should be interpreted
with caution. The predictive ability of the models was tested with
the methodology by Giacomini and White (2006)'? and both the un-
conditional and the conditional versions of the test were examined.
The MIDAS modelswere evaluated against the twonaive benchmarks,
modeling the difference in forecast accuracy as a constant (uncondi-
tional) and alsoasafirstorderautoregression (conditional). The results
do notindicate that the difference in forecast accuracy is significant
(at 0.05) for most MIDAS models. However, since the “large” out-of-
sample evaluation setactually constitutes asmall sample by literature
standards, the result of the tests cannot be taken as final. As more ob-
servations become available, the tests could be updated with alarger
sample to arrive at a more robust conclusion.

2 This is similar to the standard test by Diebold and Mariano (1995).
The key difference lies in that the estimation sample size is kept fixed
instead of ever expanding, as this allows to better incorporate estimation
uncertainty and to compare nested models.
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Figure 2

EVOLUTION OF THE RMSFE FOR HORIZON h =1 WITHIN A MONTH
FOR SELECTED MODELS WITH Lx=3
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Figure 3

EVOLUTION OF THE RMSFE FOR HORIZON £ =2 WITHIN A MONTH
FOR SELECTED MODELS WITH Lx=3
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Figure 4

EVOLUTION OF THE RMSFE FOR HORIZON h =3 WITHIN A MONTH
FOR SELECTED MODELS WITH Lx =2
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5. CONCLUSION

For some particular MIDAS specifications, there is aslight improve-
ment compared to the low-frequency benchmark autoregression
and the unconditional mean. In principle, this would imply that
high-frequency online price indices have a good potential to fore-
cast future behavior of consumer inflation forimmediate horizons
in Argentina, but these results are still not robust. This could serve
as a useful complementary tool to assess the out-of-sample perfor-
mance of perhaps more sophisticated models. Future research could
focus on building an alternative variable such as a daily financial
factorassuggested by Monteforte and Moretti (2013) or comparing
with measures of market expectations in order to further validate
the findings of this paper.

ANNEX

Appendix A: MIDAS Specifications

The fullset of specifications of the modelsis detailed below. Allmod-
els were estimated with Ly €{1,2,3}, h€{1,2,3} and d as explained
in subsection 4.2. The subscript (d,4) on parameter estimates de-
noting dependence on d and %~ hasbeen suppressed forsimplicity.
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